research communications
E)-2-{[(6-methoxy-1,3-benzothiazol-2-yl)imino]methyl}phenol
of (aDepartment of Chemistry and Earth Sciences, Qatar University, Doha, Qatar, bChemistry Department, Morgan State University, Baltimore, MD 21251, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C15H12N2O2S, crystallizes in the orthorhombic Pna21, with two molecules in the (Z′ = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. Each molecule contains an intramolecular hydrogen bond between the –OH group and imine N atom, forming a six-membered ring. The two independent molecules are linked by a pair of C—H⋯O hydrogen bonds, forming dimers with an R22(20) ring motif. These dimers are further lined into sheets in the ab plane by weak intermolecular C—H⋯N interactions. The structure was refined as an inversion twin
Keywords: crystal structure; aminobenzothiazole derivatives; aminothiazole Schiff bases; hydrogen bonding.
CCDC reference: 1053989
1. Chemical context
A wide range of biological activities have been attributed to aminothiazoles and compounds having similar structures (Tahiliani et al., 2003) and they have many applications in both human and veterinary medicine (Smith et al., 1999; Sarhan et al., 2010). Certain 2-aminobenzothiazole derivatives act on the central nervous system (Funderburk et al., 1953), possess antimicrobial (Murhekar & Khadsan, 2010; Ravi et al., 2014), antifungal (Catalano et al., 2013) and antibacterial properties (Asiri et al., 2013), serve as selective receptors for anion sensing (Hijji & Wairia, 2005), are active in corrosion inhibition (Quraishi et al., 1997; Rawat & Quraishi, 2003) and act as plant-growth regulators (Mahajan et al., 2013). In addition, some metal complexes of of 2-aminobenzothiazole derivatives have potent antibacterial properties (Sharma et al., 2002; Song et al., 2010). Among antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl)benzothiazoles as potent and selective antitumor drugs against breast, ovarian, colon and renal cell lines has stimulated remarkable interest (Usman et al., 2003; Shi et al., 1996; Havrylyuk et al. 2010) in this class of compound from both a synthetic, and particularly, a structural point of view. Aminothiazole have been prepared as intermediate ligands and for complexation with various metals (Liang et al.,1999; Liu et al., 2009).
In this context, the synthesis and structural characterization of new 2-aminobenzothiazole Schiff base derivatives is of interest (El'tsov & Mokrushin, 2002).
2. Structural commentary
The title compound, C15H12N2O2S, crystallizes in the orthorhombic Pna21, with two molecules (A and B) in the (Z′ = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. This spacer is both planar [r.m.s. deviations of fitted atoms of 0.004 (3) and 0.007 (3) Å, respectively for molecules A and B] and very close to coplanar with both the Schiff base and 2-aminobenzothiazole end moieties [making dihedral angles of 2.6 (9) and 4.0 (3)°, respectively, in molecule A and 3.3 (8) and 3.9 (7)° in molecule B]. The molecules themselves are very close to planar, as is shown by the dihedral angles of 4.0 (3) and 6.3 (2) between the two end groups for molecules A and B, respectively. Each molecule contains an intramolecular hydrogen bond between the OH group and imine N atom, forming a six-membered ring.
3. Supramolecular features
In addition to the intramolecular hydrogen bond mentioned above, the molecules are linked by a pair of C—H⋯O hydrogen bonds (Table 1), forming dimers with an (20) ring motif, as shown in Fig. 1. These dimers are further linked into sheets in the ab plane by weak intermolecular C—H⋯N interactions involving C15 and N2B, as shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.35, last update November 2014; Groom & Allen, 2014) for related Schiff base derivatives of 2-aminobenzothiazole gave 23 hits of which the closest example to the title compound was (E)-2-[(6-ethoxybenzothiazol-2-yl)iminomethyl]-6-methoxyphenol (Kong, 2009).
5. Synthesis and crystallization
A mixture of 0.505 g (4.10 mmol) salicylaldehyde and 0.746 g (4.10 mmol) 2-amino-6-methoxybenzothiozole was dissolved in 2 ml of acetonitrile in a vial. The mixture was reacted in a Biotage initiator eight mono mode microwave at 423 K for 2 min and then allowed to cool for 15 min. The resulting product was recrystallized from acetonitrile, filtered and then vacuum dried to afford 0.971 g (86% yield) of a yellow crystalline solid (m.p. 399–403 K). A sample was dissolved in ethanol and allowed to crystallize by slow evaporation to give yellow needles used for X-ray structural determination.
1H NMR (300 MHz, CDCl3): δ 12.07 (s, 1H), 9.36 (s, 1H), 8.81 (dd, J = 9.0, 2.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 9.0 Hz. 1H), 7.55 (m, 2H), 7.09 (d, 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 3.83 (s, 3H)
13C NMR (300 MHz, CDCl3, p.p.m.): δ 55.07, 105.07, 115.46, 118.4, 121.2, 122.88, 125.26, 130.4, 132.44, 135.07, 145.59, 157.8 162.69, 165.36, 169.49
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined as riding: C–H = 0.93–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. Phenol H atoms were located in a difference Fourier map and then refined as riding on their attached O atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1053989
10.1107/S2056989015005228/hg5435sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015005228/hg5435Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015005228/hg5435Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H12N2O2S | Dx = 1.489 Mg m−3 |
Mr = 284.33 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 2917 reflections |
a = 35.623 (2) Å | θ = 4.7–76.1° |
b = 3.8172 (2) Å | µ = 2.30 mm−1 |
c = 18.6525 (8) Å | T = 120 K |
V = 2536.4 (2) Å3 | Needle, yellow–orange |
Z = 8 | 0.38 × 0.09 × 0.06 mm |
F(000) = 1184 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3895 independent reflections |
Radiation source: sealed X-ray tube | 3677 reflections with I > 2σ(I) |
Detector resolution: 5.3250 pixels mm-1 | Rint = 0.045 |
ω scans | θmax = 76.2°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −41→44 |
Tmin = 0.573, Tmax = 0.863 | k = −2→4 |
6990 measured reflections | l = −20→23 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.073 | w = 1/[σ2(Fo2) + (0.0845P)2 + 6.6687P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.189 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 1.01 e Å−3 |
3895 reflections | Δρmin = −0.74 e Å−3 |
364 parameters | Absolute structure: Refined as an inversion twin. |
1 restraint | Absolute structure parameter: 0.65 (5) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.87402 (5) | 0.3471 (4) | 0.32176 (9) | 0.0241 (4) | |
O1A | 0.97069 (15) | 0.6508 (16) | 0.4723 (3) | 0.0337 (13) | |
H1A | 0.9559 | 0.6313 | 0.4376 | 0.050* | |
O2A | 0.78912 (15) | −0.1334 (15) | 0.1150 (3) | 0.0283 (12) | |
N1A | 0.94790 (18) | 0.3743 (16) | 0.3497 (4) | 0.0250 (13) | |
N2A | 0.92781 (17) | 0.1374 (18) | 0.2372 (4) | 0.0283 (13) | |
C1A | 1.0055 (2) | 0.5657 (19) | 0.4512 (4) | 0.0261 (15) | |
C2A | 1.0359 (2) | 0.648 (2) | 0.4958 (4) | 0.0306 (16) | |
H1 | 1.0314 | 0.7620 | 0.5402 | 0.037* | |
C3A | 1.0718 (2) | 0.568 (2) | 0.4768 (4) | 0.0318 (17) | |
H2 | 1.0919 | 0.6241 | 0.5082 | 0.038* | |
C4A | 1.0793 (2) | 0.403 (2) | 0.4114 (5) | 0.0274 (15) | |
H3 | 1.1045 | 0.3592 | 0.3970 | 0.033* | |
C5A | 1.0495 (2) | 0.303 (2) | 0.3674 (4) | 0.0274 (16) | |
H4 | 1.0542 | 0.1730 | 0.3249 | 0.033* | |
C6A | 1.0126 (2) | 0.394 (2) | 0.3862 (4) | 0.0274 (16) | |
C7A | 0.9824 (2) | 0.2951 (18) | 0.3370 (4) | 0.0238 (15) | |
H5 | 0.9884 | 0.1694 | 0.2946 | 0.029* | |
C8A | 0.9213 (2) | 0.2730 (17) | 0.2996 (4) | 0.0225 (14) | |
C9A | 0.89431 (19) | 0.0635 (19) | 0.2017 (4) | 0.0237 (14) | |
C10A | 0.8905 (2) | −0.087 (2) | 0.1348 (4) | 0.0265 (15) | |
H10A | 0.9120 | −0.1510 | 0.1078 | 0.032* | |
C11A | 0.8548 (2) | −0.1449 (19) | 0.1075 (4) | 0.0264 (16) | |
H11A | 0.8521 | −0.2508 | 0.0617 | 0.032* | |
C12A | 0.8227 (2) | −0.0498 (17) | 0.1462 (4) | 0.0212 (14) | |
C13A | 0.8255 (2) | 0.1077 (19) | 0.2129 (4) | 0.0254 (15) | |
H13A | 0.8037 | 0.1706 | 0.2392 | 0.031* | |
C14A | 0.8617 (2) | 0.1715 (18) | 0.2403 (4) | 0.0240 (14) | |
C15A | 0.75623 (19) | −0.027 (2) | 0.1521 (5) | 0.0289 (16) | |
H15A | 0.7340 | −0.1033 | 0.1254 | 0.043* | |
H15B | 0.7560 | 0.2289 | 0.1566 | 0.043* | |
H15C | 0.7560 | −0.1328 | 0.2000 | 0.043* | |
S1B | 0.87656 (5) | 0.8509 (4) | 0.49182 (9) | 0.0246 (4) | |
O1B | 0.78077 (16) | 0.5412 (16) | 0.3390 (3) | 0.0361 (14) | |
H1B | 0.7960 | 0.6119 | 0.3701 | 0.054* | |
O2B | 0.95964 (15) | 1.3166 (15) | 0.7026 (3) | 0.0293 (12) | |
N1B | 0.80272 (18) | 0.8089 (15) | 0.4624 (4) | 0.0247 (13) | |
N2B | 0.82255 (17) | 1.0626 (16) | 0.5746 (4) | 0.0263 (13) | |
C1B | 0.7453 (2) | 0.5753 (18) | 0.3644 (4) | 0.0248 (15) | |
C2B | 0.7160 (2) | 0.4583 (19) | 0.3210 (5) | 0.0291 (15) | |
H6 | 0.7209 | 0.3632 | 0.2749 | 0.035* | |
C3B | 0.6790 (2) | 0.484 (2) | 0.3472 (4) | 0.0299 (17) | |
H7 | 0.6587 | 0.4020 | 0.3187 | 0.036* | |
C4B | 0.6717 (2) | 0.628 (2) | 0.4136 (4) | 0.0287 (16) | |
H8 | 0.6466 | 0.6431 | 0.4301 | 0.034* | |
C5B | 0.7005 (2) | 0.7494 (18) | 0.4564 (4) | 0.0243 (15) | |
H9 | 0.6950 | 0.8494 | 0.5019 | 0.029* | |
C6B | 0.7381 (2) | 0.7258 (16) | 0.4329 (4) | 0.0204 (14) | |
C7B | 0.7681 (2) | 0.8352 (17) | 0.4793 (4) | 0.0245 (15) | |
H10 | 0.7618 | 0.9319 | 0.5247 | 0.029* | |
C8B | 0.8289 (2) | 0.9165 (19) | 0.5123 (4) | 0.0252 (15) | |
C9B | 0.8560 (2) | 1.1290 (19) | 0.6098 (4) | 0.0253 (15) | |
C10B | 0.8589 (2) | 1.2798 (19) | 0.6777 (4) | 0.0262 (16) | |
H10B | 0.8370 | 1.3415 | 0.7040 | 0.031* | |
C11B | 0.8943 (2) | 1.3379 (19) | 0.7062 (5) | 0.0261 (15) | |
H11B | 0.8967 | 1.4428 | 0.7522 | 0.031* | |
C12B | 0.9269 (2) | 1.2432 (18) | 0.6678 (5) | 0.0252 (16) | |
C13B | 0.9242 (2) | 1.0870 (17) | 0.6009 (4) | 0.0246 (14) | |
H13B | 0.9460 | 1.0207 | 0.5748 | 0.029* | |
C14B | 0.8884 (2) | 1.0313 (17) | 0.5736 (4) | 0.0234 (14) | |
C15B | 0.9936 (2) | 1.235 (2) | 0.6643 (5) | 0.0288 (16) | |
H15D | 1.0149 | 1.3469 | 0.6882 | 0.043* | |
H15E | 0.9916 | 1.3226 | 0.6150 | 0.043* | |
H15F | 0.9972 | 0.9808 | 0.6635 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0280 (8) | 0.0261 (8) | 0.0182 (9) | −0.0016 (6) | −0.0003 (7) | −0.0049 (7) |
O1A | 0.029 (3) | 0.044 (3) | 0.028 (3) | −0.005 (2) | 0.000 (2) | 0.001 (3) |
O2A | 0.031 (3) | 0.031 (3) | 0.023 (3) | −0.003 (2) | −0.002 (2) | −0.004 (2) |
N1A | 0.032 (3) | 0.021 (3) | 0.022 (3) | −0.002 (2) | −0.002 (3) | −0.006 (2) |
N2A | 0.032 (3) | 0.033 (3) | 0.020 (3) | −0.007 (2) | −0.003 (3) | 0.001 (3) |
C1A | 0.033 (4) | 0.025 (3) | 0.020 (4) | −0.006 (3) | −0.003 (3) | 0.006 (3) |
C2A | 0.040 (4) | 0.034 (4) | 0.018 (4) | −0.015 (3) | −0.002 (3) | 0.002 (3) |
C3A | 0.039 (4) | 0.033 (4) | 0.024 (4) | −0.007 (3) | −0.008 (3) | 0.009 (3) |
C4A | 0.027 (3) | 0.026 (3) | 0.030 (4) | 0.004 (3) | 0.001 (3) | 0.002 (3) |
C5A | 0.038 (4) | 0.030 (4) | 0.014 (4) | −0.001 (3) | −0.001 (3) | 0.000 (3) |
C6A | 0.034 (4) | 0.025 (3) | 0.023 (4) | −0.002 (3) | 0.000 (3) | 0.004 (3) |
C7A | 0.037 (4) | 0.022 (3) | 0.012 (3) | −0.003 (3) | 0.000 (3) | 0.003 (3) |
C8A | 0.034 (4) | 0.017 (3) | 0.017 (4) | 0.000 (2) | 0.002 (3) | −0.004 (2) |
C9A | 0.028 (3) | 0.027 (3) | 0.016 (3) | −0.004 (3) | 0.001 (3) | 0.007 (3) |
C10A | 0.030 (3) | 0.028 (4) | 0.022 (4) | 0.003 (3) | 0.003 (3) | −0.002 (3) |
C11A | 0.041 (4) | 0.021 (3) | 0.016 (4) | −0.008 (3) | 0.000 (3) | 0.003 (3) |
C12A | 0.032 (3) | 0.014 (3) | 0.018 (3) | −0.004 (2) | −0.003 (3) | 0.004 (3) |
C13A | 0.030 (3) | 0.027 (4) | 0.019 (3) | 0.002 (3) | 0.004 (3) | 0.004 (3) |
C14A | 0.033 (3) | 0.016 (3) | 0.023 (4) | −0.005 (3) | 0.003 (3) | 0.005 (3) |
C15A | 0.025 (3) | 0.029 (3) | 0.033 (4) | −0.003 (3) | −0.002 (3) | −0.005 (3) |
S1B | 0.0291 (9) | 0.0271 (8) | 0.0177 (9) | 0.0008 (6) | −0.0003 (6) | −0.0047 (7) |
O1B | 0.033 (3) | 0.046 (3) | 0.029 (3) | −0.001 (2) | 0.002 (2) | −0.013 (3) |
O2B | 0.029 (3) | 0.036 (3) | 0.022 (3) | 0.004 (2) | −0.001 (2) | −0.001 (2) |
N1B | 0.032 (3) | 0.020 (3) | 0.022 (3) | 0.002 (2) | −0.004 (3) | 0.002 (2) |
N2B | 0.034 (3) | 0.020 (3) | 0.024 (3) | −0.002 (2) | −0.004 (3) | −0.003 (3) |
C1B | 0.033 (4) | 0.018 (3) | 0.023 (4) | 0.001 (3) | −0.003 (3) | 0.002 (3) |
C2B | 0.040 (4) | 0.029 (3) | 0.018 (4) | 0.000 (3) | 0.000 (3) | 0.003 (3) |
C3B | 0.036 (4) | 0.028 (4) | 0.026 (4) | −0.002 (3) | −0.010 (3) | 0.009 (3) |
C4B | 0.030 (4) | 0.030 (4) | 0.026 (4) | 0.000 (3) | 0.003 (3) | 0.002 (3) |
C5B | 0.031 (4) | 0.020 (3) | 0.022 (4) | 0.001 (3) | 0.003 (3) | 0.003 (3) |
C6B | 0.029 (3) | 0.012 (3) | 0.021 (4) | 0.001 (2) | −0.002 (3) | 0.004 (3) |
C7B | 0.040 (4) | 0.014 (3) | 0.019 (4) | −0.003 (2) | −0.003 (3) | 0.009 (3) |
C8B | 0.028 (4) | 0.022 (3) | 0.025 (4) | 0.002 (3) | 0.001 (3) | 0.000 (3) |
C9B | 0.033 (3) | 0.019 (3) | 0.024 (4) | −0.004 (2) | −0.001 (3) | −0.001 (3) |
C10B | 0.040 (4) | 0.017 (3) | 0.021 (4) | 0.001 (3) | 0.005 (3) | −0.002 (3) |
C11B | 0.033 (4) | 0.021 (3) | 0.024 (4) | −0.002 (3) | 0.000 (3) | −0.002 (3) |
C12B | 0.033 (4) | 0.014 (3) | 0.028 (4) | −0.004 (2) | −0.003 (3) | 0.002 (3) |
C13B | 0.033 (3) | 0.018 (3) | 0.023 (4) | 0.002 (3) | 0.003 (3) | 0.006 (3) |
C14B | 0.045 (4) | 0.014 (3) | 0.011 (3) | 0.000 (3) | 0.003 (3) | 0.006 (2) |
C15B | 0.040 (4) | 0.025 (3) | 0.021 (4) | −0.002 (3) | −0.004 (3) | 0.001 (3) |
S1A—C14A | 1.718 (8) | S1B—C14B | 1.726 (8) |
S1A—C8A | 1.759 (8) | S1B—C8B | 1.758 (8) |
O1A—C1A | 1.341 (10) | O1B—C1B | 1.356 (9) |
O1A—H1A | 0.8399 | O1B—H1B | 0.8400 |
O2A—C12A | 1.369 (9) | O2B—C12B | 1.364 (9) |
O2A—C15A | 1.421 (9) | O2B—C15B | 1.438 (10) |
N1A—C7A | 1.288 (10) | N1B—C7B | 1.278 (10) |
N1A—C8A | 1.385 (10) | N1B—C8B | 1.380 (10) |
N2A—C8A | 1.295 (10) | N2B—C8B | 1.309 (10) |
N2A—C9A | 1.393 (9) | N2B—C9B | 1.383 (9) |
C1A—C6A | 1.402 (11) | C1B—C2B | 1.395 (11) |
C1A—C2A | 1.402 (11) | C1B—C6B | 1.424 (10) |
C2A—C3A | 1.362 (12) | C2B—C3B | 1.409 (11) |
C2A—H1 | 0.9500 | C2B—H6 | 0.9500 |
C3A—C4A | 1.398 (12) | C3B—C4B | 1.378 (12) |
C3A—H2 | 0.9500 | C3B—H7 | 0.9500 |
C4A—C5A | 1.395 (11) | C4B—C5B | 1.381 (11) |
C4A—H3 | 0.9500 | C4B—H8 | 0.9500 |
C5A—C6A | 1.405 (12) | C5B—C6B | 1.412 (10) |
C5A—H4 | 0.9500 | C5B—H9 | 0.9500 |
C6A—C7A | 1.463 (11) | C6B—C7B | 1.435 (10) |
C7A—H5 | 0.9500 | C7B—H10 | 0.9500 |
C9A—C10A | 1.382 (11) | C9B—C14B | 1.388 (11) |
C9A—C14A | 1.428 (10) | C9B—C10B | 1.396 (11) |
C10A—C11A | 1.385 (11) | C10B—C11B | 1.388 (12) |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
C11A—C12A | 1.401 (11) | C11B—C12B | 1.410 (11) |
C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
C12A—C13A | 1.385 (11) | C12B—C13B | 1.387 (11) |
C13A—C14A | 1.407 (10) | C13B—C14B | 1.391 (11) |
C13A—H13A | 0.9500 | C13B—H13B | 0.9500 |
C15A—H15A | 0.9800 | C15B—H15D | 0.9800 |
C15A—H15B | 0.9800 | C15B—H15E | 0.9800 |
C15A—H15C | 0.9800 | C15B—H15F | 0.9800 |
C14A—S1A—C8A | 88.5 (4) | C14B—S1B—C8B | 89.2 (4) |
C1A—O1A—H1A | 109.5 | C1B—O1B—H1B | 109.3 |
C12A—O2A—C15A | 116.6 (6) | C12B—O2B—C15B | 116.0 (6) |
C7A—N1A—C8A | 117.5 (6) | C7B—N1B—C8B | 117.6 (7) |
C8A—N2A—C9A | 110.8 (6) | C8B—N2B—C9B | 110.5 (6) |
O1A—C1A—C6A | 122.3 (7) | O1B—C1B—C2B | 117.6 (7) |
O1A—C1A—C2A | 119.1 (7) | O1B—C1B—C6B | 121.3 (6) |
C6A—C1A—C2A | 118.6 (7) | C2B—C1B—C6B | 121.1 (7) |
C3A—C2A—C1A | 121.4 (8) | C1B—C2B—C3B | 118.4 (8) |
C3A—C2A—H1 | 119.3 | C1B—C2B—H6 | 120.8 |
C1A—C2A—H1 | 119.3 | C3B—C2B—H6 | 120.8 |
C2A—C3A—C4A | 120.5 (7) | C4B—C3B—C2B | 121.0 (7) |
C2A—C3A—H2 | 119.8 | C4B—C3B—H7 | 119.5 |
C4A—C3A—H2 | 119.8 | C2B—C3B—H7 | 119.5 |
C5A—C4A—C3A | 119.4 (7) | C3B—C4B—C5B | 120.9 (7) |
C5A—C4A—H3 | 120.3 | C3B—C4B—H8 | 119.5 |
C3A—C4A—H3 | 120.3 | C5B—C4B—H8 | 119.5 |
C4A—C5A—C6A | 119.9 (7) | C4B—C5B—C6B | 120.2 (7) |
C4A—C5A—H4 | 120.1 | C4B—C5B—H9 | 119.9 |
C6A—C5A—H4 | 120.1 | C6B—C5B—H9 | 119.9 |
C1A—C6A—C5A | 120.0 (7) | C5B—C6B—C1B | 118.3 (7) |
C1A—C6A—C7A | 122.1 (7) | C5B—C6B—C7B | 120.0 (7) |
C5A—C6A—C7A | 117.9 (7) | C1B—C6B—C7B | 121.6 (7) |
N1A—C7A—C6A | 121.7 (7) | N1B—C7B—C6B | 123.1 (7) |
N1A—C7A—H5 | 119.2 | N1B—C7B—H10 | 118.4 |
C6A—C7A—H5 | 119.2 | C6B—C7B—H10 | 118.4 |
N2A—C8A—N1A | 126.7 (7) | N2B—C8B—N1B | 127.5 (7) |
N2A—C8A—S1A | 116.5 (6) | N2B—C8B—S1B | 114.9 (6) |
N1A—C8A—S1A | 116.8 (5) | N1B—C8B—S1B | 117.6 (6) |
C10A—C9A—N2A | 126.7 (7) | N2B—C9B—C14B | 115.8 (7) |
C10A—C9A—C14A | 119.7 (7) | N2B—C9B—C10B | 124.8 (7) |
N2A—C9A—C14A | 113.6 (7) | C14B—C9B—C10B | 119.3 (7) |
C9A—C10A—C11A | 119.2 (7) | C11B—C10B—C9B | 118.8 (8) |
C9A—C10A—H10A | 120.4 | C11B—C10B—H10B | 120.6 |
C11A—C10A—H10A | 120.4 | C9B—C10B—H10B | 120.6 |
C10A—C11A—C12A | 121.2 (8) | C10B—C11B—C12B | 120.8 (8) |
C10A—C11A—H11A | 119.4 | C10B—C11B—H11B | 119.6 |
C12A—C11A—H11A | 119.4 | C12B—C11B—H11B | 119.6 |
O2A—C12A—C13A | 123.1 (7) | O2B—C12B—C13B | 125.1 (7) |
O2A—C12A—C11A | 115.8 (7) | O2B—C12B—C11B | 114.2 (7) |
C13A—C12A—C11A | 121.1 (7) | C13B—C12B—C11B | 120.7 (7) |
C12A—C13A—C14A | 117.8 (7) | C12B—C13B—C14B | 117.3 (7) |
C12A—C13A—H13A | 121.1 | C12B—C13B—H13B | 121.4 |
C14A—C13A—H13A | 121.1 | C14B—C13B—H13B | 121.4 |
C13A—C14A—C9A | 120.8 (7) | C9B—C14B—C13B | 123.0 (7) |
C13A—C14A—S1A | 128.5 (6) | C9B—C14B—S1B | 109.6 (6) |
C9A—C14A—S1A | 110.5 (6) | C13B—C14B—S1B | 127.4 (6) |
O2A—C15A—H15A | 109.5 | O2B—C15B—H15D | 109.5 |
O2A—C15A—H15B | 109.5 | O2B—C15B—H15E | 109.5 |
H15A—C15A—H15B | 109.5 | H15D—C15B—H15E | 109.5 |
O2A—C15A—H15C | 109.5 | O2B—C15B—H15F | 109.5 |
H15A—C15A—H15C | 109.5 | H15D—C15B—H15F | 109.5 |
H15B—C15A—H15C | 109.5 | H15E—C15B—H15F | 109.5 |
O1A—C1A—C2A—C3A | −179.9 (7) | O1B—C1B—C2B—C3B | 178.6 (6) |
C6A—C1A—C2A—C3A | 0.7 (11) | C6B—C1B—C2B—C3B | −1.5 (11) |
C1A—C2A—C3A—C4A | 0.6 (12) | C1B—C2B—C3B—C4B | 1.1 (11) |
C2A—C3A—C4A—C5A | −3.6 (12) | C2B—C3B—C4B—C5B | −0.1 (12) |
C3A—C4A—C5A—C6A | 5.3 (12) | C3B—C4B—C5B—C6B | −0.6 (11) |
O1A—C1A—C6A—C5A | −178.4 (7) | C4B—C5B—C6B—C1B | 0.2 (10) |
C2A—C1A—C6A—C5A | 1.0 (11) | C4B—C5B—C6B—C7B | −176.6 (6) |
O1A—C1A—C6A—C7A | −0.1 (11) | O1B—C1B—C6B—C5B | −179.3 (6) |
C2A—C1A—C6A—C7A | 179.3 (7) | C2B—C1B—C6B—C5B | 0.9 (10) |
C4A—C5A—C6A—C1A | −4.0 (11) | O1B—C1B—C6B—C7B | −2.5 (10) |
C4A—C5A—C6A—C7A | 177.6 (7) | C2B—C1B—C6B—C7B | 177.6 (6) |
C8A—N1A—C7A—C6A | 179.3 (6) | C8B—N1B—C7B—C6B | −178.6 (6) |
C1A—C6A—C7A—N1A | 2.9 (11) | C5B—C6B—C7B—N1B | 177.4 (6) |
C5A—C6A—C7A—N1A | −178.8 (7) | C1B—C6B—C7B—N1B | 0.7 (10) |
C9A—N2A—C8A—N1A | 179.1 (7) | C9B—N2B—C8B—N1B | 179.2 (7) |
C9A—N2A—C8A—S1A | −2.8 (8) | C9B—N2B—C8B—S1B | −0.3 (8) |
C7A—N1A—C8A—N2A | −7.7 (11) | C7B—N1B—C8B—N2B | −4.1 (11) |
C7A—N1A—C8A—S1A | 174.3 (5) | C7B—N1B—C8B—S1B | 175.5 (5) |
C14A—S1A—C8A—N2A | 1.2 (6) | C14B—S1B—C8B—N2B | 0.4 (6) |
C14A—S1A—C8A—N1A | 179.5 (6) | C14B—S1B—C8B—N1B | −179.2 (6) |
C8A—N2A—C9A—C10A | −178.8 (7) | C8B—N2B—C9B—C14B | 0.0 (9) |
C8A—N2A—C9A—C14A | 3.3 (9) | C8B—N2B—C9B—C10B | −179.3 (7) |
N2A—C9A—C10A—C11A | 179.6 (7) | N2B—C9B—C10B—C11B | −178.8 (7) |
C14A—C9A—C10A—C11A | −2.7 (11) | C14B—C9B—C10B—C11B | 2.0 (11) |
C9A—C10A—C11A—C12A | 0.6 (11) | C9B—C10B—C11B—C12B | −0.7 (11) |
C15A—O2A—C12A—C13A | 4.5 (10) | C15B—O2B—C12B—C13B | 2.6 (10) |
C15A—O2A—C12A—C11A | −177.6 (6) | C15B—O2B—C12B—C11B | −178.0 (6) |
C10A—C11A—C12A—O2A | −177.3 (6) | C10B—C11B—C12B—O2B | 179.9 (7) |
C10A—C11A—C12A—C13A | 0.5 (11) | C10B—C11B—C12B—C13B | −0.6 (11) |
O2A—C12A—C13A—C14A | 178.2 (6) | O2B—C12B—C13B—C14B | 179.9 (6) |
C11A—C12A—C13A—C14A | 0.5 (10) | C11B—C12B—C13B—C14B | 0.5 (10) |
C12A—C13A—C14A—C9A | −2.6 (10) | N2B—C9B—C14B—C13B | 178.5 (6) |
C12A—C13A—C14A—S1A | −177.6 (6) | C10B—C9B—C14B—C13B | −2.2 (11) |
C10A—C9A—C14A—C13A | 3.8 (10) | N2B—C9B—C14B—S1B | 0.3 (8) |
N2A—C9A—C14A—C13A | −178.3 (6) | C10B—C9B—C14B—S1B | 179.6 (6) |
C10A—C9A—C14A—S1A | 179.6 (6) | C12B—C13B—C14B—C9B | 0.9 (10) |
N2A—C9A—C14A—S1A | −2.4 (8) | C12B—C13B—C14B—S1B | 178.8 (5) |
C8A—S1A—C14A—C13A | 176.1 (7) | C8B—S1B—C14B—C9B | −0.4 (5) |
C8A—S1A—C14A—C9A | 0.7 (5) | C8B—S1B—C14B—C13B | −178.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···N1A | 0.84 | 1.93 | 2.647 (9) | 143 |
C13A—H13A···O1B | 0.95 | 2.48 | 3.289 (9) | 144 |
C15A—H15A···N2Bi | 0.98 | 2.57 | 3.525 (10) | 166 |
O1B—H1B···N1B | 0.84 | 1.89 | 2.636 (9) | 147 |
C13B—H13B···O1A | 0.95 | 2.53 | 3.356 (10) | 145 |
Symmetry code: (i) −x+3/2, y−3/2, z−1/2. |
Acknowledgements
RJB wishes to acknowledge the assistance of the Department of Chemistry at the University of Canterbury, New Zealand, in allowing access to their diffractometer during his visit in 2014. YH would like to thank support from the Qatar National Research Fund Grant No. NPRP 7–495-1–094.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Asiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, 120, 82–89. CrossRef CAS PubMed Google Scholar
Catalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). Eur. J. Med. Chem. 64, 357–364. CrossRef CAS PubMed Google Scholar
El'tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547–549. Web of Science CrossRef CAS Google Scholar
Funderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356–367. PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Havrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012–5021. CSD CrossRef CAS PubMed Google Scholar
Hijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1–12. Google Scholar
Kong, L.-Q. (2009). Acta Cryst. E65, o832. CSD CrossRef IUCr Journals Google Scholar
Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396. CAS Google Scholar
Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765–771. CAS Google Scholar
Murhekar, M. M. & Khadsan, R. E. (2010). Pharma Chem. 2, 219–223. CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Quraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475–480. CrossRef CAS Google Scholar
Ravi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637. Google Scholar
Rawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238–241. CrossRef CAS Google Scholar
Sarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). Eur. J. Med. Chem. 45, 2689–2694. CrossRef CAS PubMed Google Scholar
Sharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188–190. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384. CrossRef CAS PubMed Web of Science Google Scholar
Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703. CSD CrossRef Google Scholar
Song, S., Song, M., Zhang, H. & Yang, L. (2010). Huaxue Yanjiu, 21, 21–25. CAS Google Scholar
Tahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171–174. Google Scholar
Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.