research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 385-387

Crystal structure of (E)-2-{[(6-meth­­oxy-1,3-benzo­thia­zol-2-yl)imino]­meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Earth Sciences, Qatar University, Doha, Qatar, bChemistry Department, Morgan State University, Baltimore, MD 21251, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 4 March 2015; accepted 13 March 2015; online 21 March 2015)

The title compound, C15H12N2O2S, crystallizes in the ortho­rhom­bic space group Pna21, with two mol­ecules in the asymmetric unit (Z′ = 2). Each mol­ecule consists of a 2-hy­droxy Schiff base moiety linked through a spacer to a 2-amino­benzo­thia­zole moiety. Each mol­ecule contains an intra­molecular hydrogen bond between the –OH group and imine N atom, forming a six-membered ring. The two independent molecules are linked by a pair of C—H⋯O hydrogen bonds, forming dimers with an R22(20) ring motif. These dimers are further lined into sheets in the ab plane by weak inter­molecular C—H⋯N inter­actions. The structure was refined as an inversion twin

1. Chemical context

A wide range of biological activities have been attributed to amino­thia­zoles and compounds having similar structures (Tahiliani et al., 2003[Tahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171-174.]) and they have many applications in both human and veterinary medicine (Smith et al., 1999[Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695-703.]; Sarhan et al., 2010[Sarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). Eur. J. Med. Chem. 45, 2689-2694.]). Certain 2-amino­benzo­thia­zole derivatives act on the central nervous system (Funderburk et al., 1953[Funderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356-367.]), possess anti­microbial (Murhekar & Khadsan, 2010[Murhekar, M. M. & Khadsan, R. E. (2010). Pharma Chem. 2, 219-223.]; Ravi et al., 2014[Ravi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637.]), anti­fungal (Catalano et al., 2013[Catalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). Eur. J. Med. Chem. 64, 357-364.]) and anti­bacterial properties (Asiri et al., 2013[Asiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, 120, 82-89.]), serve as selective receptors for anion sensing (Hijji & Wairia, 2005[Hijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1-12.]), are active in corrosion inhibition (Quraishi et al., 1997[Quraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475-480.]; Rawat & Quraishi, 2003[Rawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238-241.]) and act as plant-growth regulators (Mahajan et al., 2013[Mahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765-771.]). In addition, some metal complexes of Schiff bases of 2-amino­benzo­thia­zole derivatives have potent anti­bacterial properties (Sharma et al., 2002[Sharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188-190.]; Song et al., 2010[Song, S., Song, M., Zhang, H. & Yang, L. (2010). Huaxue Yanjiu, 21, 21-25.]). Among anti­tumor agents discovered in recent years, the identification of various 2-(4-amino­phen­yl)benzo­thia­zoles as potent and selective anti­tumor drugs against breast, ovarian, colon and renal cell lines has stimulated remarkable inter­est (Usman et al., 2003[Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41-m43.]; Shi et al., 1996[Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375-3384.]; Havrylyuk et al. 2010[Havrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012-5021.]) in this class of compound from both a synthetic, and particularly, a structural point of view. Amino­thia­zole Schiff bases have been prepared as inter­mediate ligands and for complexation with various metals (Liang et al.,1999[Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393-396.]; Liu et al., 2009[Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738.]).

[Scheme 1]

In this context, the synthesis and structural characterization of new 2-amino­benzo­thia­zole Schiff base derivatives is of inter­est (El'tsov & Mokrushin, 2002[El'tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547-549.]).

2. Structural commentary

The title compound, C15H12N2O2S, crystallizes in the ortho­rhom­bic space group, Pna21, with two mol­ecules (A and B) in the asymmetric unit (Z′ = 2). Each mol­ecule consists of a 2-hy­droxy Schiff base moiety linked through a spacer to a 2-amino­benzo­thia­zole moiety. This spacer is both planar [r.m.s. deviations of fitted atoms of 0.004 (3) and 0.007 (3) Å, respectively for mol­ecules A and B] and very close to coplanar with both the Schiff base and 2-amino­benzo­thia­zole end moieties [making dihedral angles of 2.6 (9) and 4.0 (3)°, respectively, in mol­ecule A and 3.3 (8) and 3.9 (7)° in mol­ecule B]. The mol­ecules themselves are very close to planar, as is shown by the dihedral angles of 4.0 (3) and 6.3 (2) between the two end groups for mol­ecules A and B, respectively. Each mol­ecule contains an intra­molecular hydrogen bond between the OH group and imine N atom, forming a six-membered ring.

3. Supra­molecular features

In addition to the intra­molecular hydrogen bond mentioned above, the mol­ecules are linked by a pair of C—H⋯O hydrogen bonds (Table 1[link]), forming dimers with an [R_{2}^{2}](20) ring motif, as shown in Fig. 1[link]. These dimers are further linked into sheets in the ab plane by weak inter­molecular C—H⋯N inter­actions involving C15 and N2B, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.84 1.93 2.647 (9) 143
C13A—H13A⋯O1B 0.95 2.48 3.289 (9) 144
C15A—H15A⋯N2Bi 0.98 2.57 3.525 (10) 166
O1B—H1B⋯N1B 0.84 1.89 2.636 (9) 147
C13B—H13B⋯O1A 0.95 2.53 3.356 (10) 145
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular diagram for mol­ecules A and B of the title compound, showing the atom labeling. Displacement parameters are drawn at the 30% probability level. The diagram shows the two mol­ecules (A and B) linked into dimers by [R_{2}^{2}](20) C—H⋯O hydrogen bonds (dashed lines; see Table 1[link] for details).
[Figure 2]
Figure 2
Packing diagram, viewed along the b axis, showing a sheet of [R_{2}^{2}](20) C—H⋯O-linked dimers in the ac plane.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.35, last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for related Schiff base derivatives of 2-amino­benzo­thia­zole gave 23 hits of which the closest example to the title compound was (E)-2-[(6-eth­oxy­benzo­thia­zol-2-yl)imino­meth­yl]-6-meth­oxy­phenol (Kong, 2009[Kong, L.-Q. (2009). Acta Cryst. E65, o832.]).

5. Synthesis and crystallization

A mixture of 0.505 g (4.10 mmol) salicyl­aldehyde and 0.746 g (4.10 mmol) 2-amino-6-meth­oxy­benzo­thio­zole was dissolved in 2 ml of aceto­nitrile in a vial. The mixture was reacted in a Biotage initiator eight mono mode microwave at 423 K for 2 min and then allowed to cool for 15 min. The resulting product was recrystallized from aceto­nitrile, filtered and then vacuum dried to afford 0.971 g (86% yield) of a yellow crystalline solid (m.p. 399–403 K). A sample was dissolved in ethanol and allowed to crystallize by slow evaporation to give yellow needles used for X-ray structural determination.

1H NMR (300 MHz, CDCl3): δ 12.07 (s, 1H), 9.36 (s, 1H), 8.81 (dd, J = 9.0, 2.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 9.0 Hz. 1H), 7.55 (m, 2H), 7.09 (d, 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 3.83 (s, 3H)

13C NMR (300 MHz, CDCl3, p.p.m.): δ 55.07, 105.07, 115.46, 118.4, 121.2, 122.88, 125.26, 130.4, 132.44, 135.07, 145.59, 157.8 162.69, 165.36, 169.49

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically and refined as riding: C–H = 0.93–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. Phenol H atoms were located in a difference Fourier map and then refined as riding on their attached O atoms.

Table 2
Experimental details

Crystal data
Chemical formula C15H12N2O2S
Mr 284.33
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 120
a, b, c (Å) 35.623 (2), 3.8172 (2), 18.6525 (8)
V3) 2536.4 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.30
Crystal size (mm) 0.38 × 0.09 × 0.06
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.573, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 6990, 3895, 3677
Rint 0.045
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.189, 1.09
No. of reflections 3895
No. of parameters 364
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.65 (5)
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus et al., 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-2-{[(6-Methoxy-1,3-benzothiazol-2-yl)imino]methyl}phenol top
Crystal data top
C15H12N2O2SDx = 1.489 Mg m3
Mr = 284.33Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 2917 reflections
a = 35.623 (2) Åθ = 4.7–76.1°
b = 3.8172 (2) ŵ = 2.30 mm1
c = 18.6525 (8) ÅT = 120 K
V = 2536.4 (2) Å3Needle, yellow–orange
Z = 80.38 × 0.09 × 0.06 mm
F(000) = 1184
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3895 independent reflections
Radiation source: sealed X-ray tube3677 reflections with I > 2σ(I)
Detector resolution: 5.3250 pixels mm-1Rint = 0.045
ω scansθmax = 76.2°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 4144
Tmin = 0.573, Tmax = 0.863k = 24
6990 measured reflectionsl = 2023
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.0845P)2 + 6.6687P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.01 e Å3
3895 reflectionsΔρmin = 0.74 e Å3
364 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.65 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.87402 (5)0.3471 (4)0.32176 (9)0.0241 (4)
O1A0.97069 (15)0.6508 (16)0.4723 (3)0.0337 (13)
H1A0.95590.63130.43760.050*
O2A0.78912 (15)0.1334 (15)0.1150 (3)0.0283 (12)
N1A0.94790 (18)0.3743 (16)0.3497 (4)0.0250 (13)
N2A0.92781 (17)0.1374 (18)0.2372 (4)0.0283 (13)
C1A1.0055 (2)0.5657 (19)0.4512 (4)0.0261 (15)
C2A1.0359 (2)0.648 (2)0.4958 (4)0.0306 (16)
H11.03140.76200.54020.037*
C3A1.0718 (2)0.568 (2)0.4768 (4)0.0318 (17)
H21.09190.62410.50820.038*
C4A1.0793 (2)0.403 (2)0.4114 (5)0.0274 (15)
H31.10450.35920.39700.033*
C5A1.0495 (2)0.303 (2)0.3674 (4)0.0274 (16)
H41.05420.17300.32490.033*
C6A1.0126 (2)0.394 (2)0.3862 (4)0.0274 (16)
C7A0.9824 (2)0.2951 (18)0.3370 (4)0.0238 (15)
H50.98840.16940.29460.029*
C8A0.9213 (2)0.2730 (17)0.2996 (4)0.0225 (14)
C9A0.89431 (19)0.0635 (19)0.2017 (4)0.0237 (14)
C10A0.8905 (2)0.087 (2)0.1348 (4)0.0265 (15)
H10A0.91200.15100.10780.032*
C11A0.8548 (2)0.1449 (19)0.1075 (4)0.0264 (16)
H11A0.85210.25080.06170.032*
C12A0.8227 (2)0.0498 (17)0.1462 (4)0.0212 (14)
C13A0.8255 (2)0.1077 (19)0.2129 (4)0.0254 (15)
H13A0.80370.17060.23920.031*
C14A0.8617 (2)0.1715 (18)0.2403 (4)0.0240 (14)
C15A0.75623 (19)0.027 (2)0.1521 (5)0.0289 (16)
H15A0.73400.10330.12540.043*
H15B0.75600.22890.15660.043*
H15C0.75600.13280.20000.043*
S1B0.87656 (5)0.8509 (4)0.49182 (9)0.0246 (4)
O1B0.78077 (16)0.5412 (16)0.3390 (3)0.0361 (14)
H1B0.79600.61190.37010.054*
O2B0.95964 (15)1.3166 (15)0.7026 (3)0.0293 (12)
N1B0.80272 (18)0.8089 (15)0.4624 (4)0.0247 (13)
N2B0.82255 (17)1.0626 (16)0.5746 (4)0.0263 (13)
C1B0.7453 (2)0.5753 (18)0.3644 (4)0.0248 (15)
C2B0.7160 (2)0.4583 (19)0.3210 (5)0.0291 (15)
H60.72090.36320.27490.035*
C3B0.6790 (2)0.484 (2)0.3472 (4)0.0299 (17)
H70.65870.40200.31870.036*
C4B0.6717 (2)0.628 (2)0.4136 (4)0.0287 (16)
H80.64660.64310.43010.034*
C5B0.7005 (2)0.7494 (18)0.4564 (4)0.0243 (15)
H90.69500.84940.50190.029*
C6B0.7381 (2)0.7258 (16)0.4329 (4)0.0204 (14)
C7B0.7681 (2)0.8352 (17)0.4793 (4)0.0245 (15)
H100.76180.93190.52470.029*
C8B0.8289 (2)0.9165 (19)0.5123 (4)0.0252 (15)
C9B0.8560 (2)1.1290 (19)0.6098 (4)0.0253 (15)
C10B0.8589 (2)1.2798 (19)0.6777 (4)0.0262 (16)
H10B0.83701.34150.70400.031*
C11B0.8943 (2)1.3379 (19)0.7062 (5)0.0261 (15)
H11B0.89671.44280.75220.031*
C12B0.9269 (2)1.2432 (18)0.6678 (5)0.0252 (16)
C13B0.9242 (2)1.0870 (17)0.6009 (4)0.0246 (14)
H13B0.94601.02070.57480.029*
C14B0.8884 (2)1.0313 (17)0.5736 (4)0.0234 (14)
C15B0.9936 (2)1.235 (2)0.6643 (5)0.0288 (16)
H15D1.01491.34690.68820.043*
H15E0.99161.32260.61500.043*
H15F0.99720.98080.66350.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0280 (8)0.0261 (8)0.0182 (9)0.0016 (6)0.0003 (7)0.0049 (7)
O1A0.029 (3)0.044 (3)0.028 (3)0.005 (2)0.000 (2)0.001 (3)
O2A0.031 (3)0.031 (3)0.023 (3)0.003 (2)0.002 (2)0.004 (2)
N1A0.032 (3)0.021 (3)0.022 (3)0.002 (2)0.002 (3)0.006 (2)
N2A0.032 (3)0.033 (3)0.020 (3)0.007 (2)0.003 (3)0.001 (3)
C1A0.033 (4)0.025 (3)0.020 (4)0.006 (3)0.003 (3)0.006 (3)
C2A0.040 (4)0.034 (4)0.018 (4)0.015 (3)0.002 (3)0.002 (3)
C3A0.039 (4)0.033 (4)0.024 (4)0.007 (3)0.008 (3)0.009 (3)
C4A0.027 (3)0.026 (3)0.030 (4)0.004 (3)0.001 (3)0.002 (3)
C5A0.038 (4)0.030 (4)0.014 (4)0.001 (3)0.001 (3)0.000 (3)
C6A0.034 (4)0.025 (3)0.023 (4)0.002 (3)0.000 (3)0.004 (3)
C7A0.037 (4)0.022 (3)0.012 (3)0.003 (3)0.000 (3)0.003 (3)
C8A0.034 (4)0.017 (3)0.017 (4)0.000 (2)0.002 (3)0.004 (2)
C9A0.028 (3)0.027 (3)0.016 (3)0.004 (3)0.001 (3)0.007 (3)
C10A0.030 (3)0.028 (4)0.022 (4)0.003 (3)0.003 (3)0.002 (3)
C11A0.041 (4)0.021 (3)0.016 (4)0.008 (3)0.000 (3)0.003 (3)
C12A0.032 (3)0.014 (3)0.018 (3)0.004 (2)0.003 (3)0.004 (3)
C13A0.030 (3)0.027 (4)0.019 (3)0.002 (3)0.004 (3)0.004 (3)
C14A0.033 (3)0.016 (3)0.023 (4)0.005 (3)0.003 (3)0.005 (3)
C15A0.025 (3)0.029 (3)0.033 (4)0.003 (3)0.002 (3)0.005 (3)
S1B0.0291 (9)0.0271 (8)0.0177 (9)0.0008 (6)0.0003 (6)0.0047 (7)
O1B0.033 (3)0.046 (3)0.029 (3)0.001 (2)0.002 (2)0.013 (3)
O2B0.029 (3)0.036 (3)0.022 (3)0.004 (2)0.001 (2)0.001 (2)
N1B0.032 (3)0.020 (3)0.022 (3)0.002 (2)0.004 (3)0.002 (2)
N2B0.034 (3)0.020 (3)0.024 (3)0.002 (2)0.004 (3)0.003 (3)
C1B0.033 (4)0.018 (3)0.023 (4)0.001 (3)0.003 (3)0.002 (3)
C2B0.040 (4)0.029 (3)0.018 (4)0.000 (3)0.000 (3)0.003 (3)
C3B0.036 (4)0.028 (4)0.026 (4)0.002 (3)0.010 (3)0.009 (3)
C4B0.030 (4)0.030 (4)0.026 (4)0.000 (3)0.003 (3)0.002 (3)
C5B0.031 (4)0.020 (3)0.022 (4)0.001 (3)0.003 (3)0.003 (3)
C6B0.029 (3)0.012 (3)0.021 (4)0.001 (2)0.002 (3)0.004 (3)
C7B0.040 (4)0.014 (3)0.019 (4)0.003 (2)0.003 (3)0.009 (3)
C8B0.028 (4)0.022 (3)0.025 (4)0.002 (3)0.001 (3)0.000 (3)
C9B0.033 (3)0.019 (3)0.024 (4)0.004 (2)0.001 (3)0.001 (3)
C10B0.040 (4)0.017 (3)0.021 (4)0.001 (3)0.005 (3)0.002 (3)
C11B0.033 (4)0.021 (3)0.024 (4)0.002 (3)0.000 (3)0.002 (3)
C12B0.033 (4)0.014 (3)0.028 (4)0.004 (2)0.003 (3)0.002 (3)
C13B0.033 (3)0.018 (3)0.023 (4)0.002 (3)0.003 (3)0.006 (3)
C14B0.045 (4)0.014 (3)0.011 (3)0.000 (3)0.003 (3)0.006 (2)
C15B0.040 (4)0.025 (3)0.021 (4)0.002 (3)0.004 (3)0.001 (3)
Geometric parameters (Å, º) top
S1A—C14A1.718 (8)S1B—C14B1.726 (8)
S1A—C8A1.759 (8)S1B—C8B1.758 (8)
O1A—C1A1.341 (10)O1B—C1B1.356 (9)
O1A—H1A0.8399O1B—H1B0.8400
O2A—C12A1.369 (9)O2B—C12B1.364 (9)
O2A—C15A1.421 (9)O2B—C15B1.438 (10)
N1A—C7A1.288 (10)N1B—C7B1.278 (10)
N1A—C8A1.385 (10)N1B—C8B1.380 (10)
N2A—C8A1.295 (10)N2B—C8B1.309 (10)
N2A—C9A1.393 (9)N2B—C9B1.383 (9)
C1A—C6A1.402 (11)C1B—C2B1.395 (11)
C1A—C2A1.402 (11)C1B—C6B1.424 (10)
C2A—C3A1.362 (12)C2B—C3B1.409 (11)
C2A—H10.9500C2B—H60.9500
C3A—C4A1.398 (12)C3B—C4B1.378 (12)
C3A—H20.9500C3B—H70.9500
C4A—C5A1.395 (11)C4B—C5B1.381 (11)
C4A—H30.9500C4B—H80.9500
C5A—C6A1.405 (12)C5B—C6B1.412 (10)
C5A—H40.9500C5B—H90.9500
C6A—C7A1.463 (11)C6B—C7B1.435 (10)
C7A—H50.9500C7B—H100.9500
C9A—C10A1.382 (11)C9B—C14B1.388 (11)
C9A—C14A1.428 (10)C9B—C10B1.396 (11)
C10A—C11A1.385 (11)C10B—C11B1.388 (12)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.401 (11)C11B—C12B1.410 (11)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.385 (11)C12B—C13B1.387 (11)
C13A—C14A1.407 (10)C13B—C14B1.391 (11)
C13A—H13A0.9500C13B—H13B0.9500
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C14A—S1A—C8A88.5 (4)C14B—S1B—C8B89.2 (4)
C1A—O1A—H1A109.5C1B—O1B—H1B109.3
C12A—O2A—C15A116.6 (6)C12B—O2B—C15B116.0 (6)
C7A—N1A—C8A117.5 (6)C7B—N1B—C8B117.6 (7)
C8A—N2A—C9A110.8 (6)C8B—N2B—C9B110.5 (6)
O1A—C1A—C6A122.3 (7)O1B—C1B—C2B117.6 (7)
O1A—C1A—C2A119.1 (7)O1B—C1B—C6B121.3 (6)
C6A—C1A—C2A118.6 (7)C2B—C1B—C6B121.1 (7)
C3A—C2A—C1A121.4 (8)C1B—C2B—C3B118.4 (8)
C3A—C2A—H1119.3C1B—C2B—H6120.8
C1A—C2A—H1119.3C3B—C2B—H6120.8
C2A—C3A—C4A120.5 (7)C4B—C3B—C2B121.0 (7)
C2A—C3A—H2119.8C4B—C3B—H7119.5
C4A—C3A—H2119.8C2B—C3B—H7119.5
C5A—C4A—C3A119.4 (7)C3B—C4B—C5B120.9 (7)
C5A—C4A—H3120.3C3B—C4B—H8119.5
C3A—C4A—H3120.3C5B—C4B—H8119.5
C4A—C5A—C6A119.9 (7)C4B—C5B—C6B120.2 (7)
C4A—C5A—H4120.1C4B—C5B—H9119.9
C6A—C5A—H4120.1C6B—C5B—H9119.9
C1A—C6A—C5A120.0 (7)C5B—C6B—C1B118.3 (7)
C1A—C6A—C7A122.1 (7)C5B—C6B—C7B120.0 (7)
C5A—C6A—C7A117.9 (7)C1B—C6B—C7B121.6 (7)
N1A—C7A—C6A121.7 (7)N1B—C7B—C6B123.1 (7)
N1A—C7A—H5119.2N1B—C7B—H10118.4
C6A—C7A—H5119.2C6B—C7B—H10118.4
N2A—C8A—N1A126.7 (7)N2B—C8B—N1B127.5 (7)
N2A—C8A—S1A116.5 (6)N2B—C8B—S1B114.9 (6)
N1A—C8A—S1A116.8 (5)N1B—C8B—S1B117.6 (6)
C10A—C9A—N2A126.7 (7)N2B—C9B—C14B115.8 (7)
C10A—C9A—C14A119.7 (7)N2B—C9B—C10B124.8 (7)
N2A—C9A—C14A113.6 (7)C14B—C9B—C10B119.3 (7)
C9A—C10A—C11A119.2 (7)C11B—C10B—C9B118.8 (8)
C9A—C10A—H10A120.4C11B—C10B—H10B120.6
C11A—C10A—H10A120.4C9B—C10B—H10B120.6
C10A—C11A—C12A121.2 (8)C10B—C11B—C12B120.8 (8)
C10A—C11A—H11A119.4C10B—C11B—H11B119.6
C12A—C11A—H11A119.4C12B—C11B—H11B119.6
O2A—C12A—C13A123.1 (7)O2B—C12B—C13B125.1 (7)
O2A—C12A—C11A115.8 (7)O2B—C12B—C11B114.2 (7)
C13A—C12A—C11A121.1 (7)C13B—C12B—C11B120.7 (7)
C12A—C13A—C14A117.8 (7)C12B—C13B—C14B117.3 (7)
C12A—C13A—H13A121.1C12B—C13B—H13B121.4
C14A—C13A—H13A121.1C14B—C13B—H13B121.4
C13A—C14A—C9A120.8 (7)C9B—C14B—C13B123.0 (7)
C13A—C14A—S1A128.5 (6)C9B—C14B—S1B109.6 (6)
C9A—C14A—S1A110.5 (6)C13B—C14B—S1B127.4 (6)
O2A—C15A—H15A109.5O2B—C15B—H15D109.5
O2A—C15A—H15B109.5O2B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O2A—C15A—H15C109.5O2B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
O1A—C1A—C2A—C3A179.9 (7)O1B—C1B—C2B—C3B178.6 (6)
C6A—C1A—C2A—C3A0.7 (11)C6B—C1B—C2B—C3B1.5 (11)
C1A—C2A—C3A—C4A0.6 (12)C1B—C2B—C3B—C4B1.1 (11)
C2A—C3A—C4A—C5A3.6 (12)C2B—C3B—C4B—C5B0.1 (12)
C3A—C4A—C5A—C6A5.3 (12)C3B—C4B—C5B—C6B0.6 (11)
O1A—C1A—C6A—C5A178.4 (7)C4B—C5B—C6B—C1B0.2 (10)
C2A—C1A—C6A—C5A1.0 (11)C4B—C5B—C6B—C7B176.6 (6)
O1A—C1A—C6A—C7A0.1 (11)O1B—C1B—C6B—C5B179.3 (6)
C2A—C1A—C6A—C7A179.3 (7)C2B—C1B—C6B—C5B0.9 (10)
C4A—C5A—C6A—C1A4.0 (11)O1B—C1B—C6B—C7B2.5 (10)
C4A—C5A—C6A—C7A177.6 (7)C2B—C1B—C6B—C7B177.6 (6)
C8A—N1A—C7A—C6A179.3 (6)C8B—N1B—C7B—C6B178.6 (6)
C1A—C6A—C7A—N1A2.9 (11)C5B—C6B—C7B—N1B177.4 (6)
C5A—C6A—C7A—N1A178.8 (7)C1B—C6B—C7B—N1B0.7 (10)
C9A—N2A—C8A—N1A179.1 (7)C9B—N2B—C8B—N1B179.2 (7)
C9A—N2A—C8A—S1A2.8 (8)C9B—N2B—C8B—S1B0.3 (8)
C7A—N1A—C8A—N2A7.7 (11)C7B—N1B—C8B—N2B4.1 (11)
C7A—N1A—C8A—S1A174.3 (5)C7B—N1B—C8B—S1B175.5 (5)
C14A—S1A—C8A—N2A1.2 (6)C14B—S1B—C8B—N2B0.4 (6)
C14A—S1A—C8A—N1A179.5 (6)C14B—S1B—C8B—N1B179.2 (6)
C8A—N2A—C9A—C10A178.8 (7)C8B—N2B—C9B—C14B0.0 (9)
C8A—N2A—C9A—C14A3.3 (9)C8B—N2B—C9B—C10B179.3 (7)
N2A—C9A—C10A—C11A179.6 (7)N2B—C9B—C10B—C11B178.8 (7)
C14A—C9A—C10A—C11A2.7 (11)C14B—C9B—C10B—C11B2.0 (11)
C9A—C10A—C11A—C12A0.6 (11)C9B—C10B—C11B—C12B0.7 (11)
C15A—O2A—C12A—C13A4.5 (10)C15B—O2B—C12B—C13B2.6 (10)
C15A—O2A—C12A—C11A177.6 (6)C15B—O2B—C12B—C11B178.0 (6)
C10A—C11A—C12A—O2A177.3 (6)C10B—C11B—C12B—O2B179.9 (7)
C10A—C11A—C12A—C13A0.5 (11)C10B—C11B—C12B—C13B0.6 (11)
O2A—C12A—C13A—C14A178.2 (6)O2B—C12B—C13B—C14B179.9 (6)
C11A—C12A—C13A—C14A0.5 (10)C11B—C12B—C13B—C14B0.5 (10)
C12A—C13A—C14A—C9A2.6 (10)N2B—C9B—C14B—C13B178.5 (6)
C12A—C13A—C14A—S1A177.6 (6)C10B—C9B—C14B—C13B2.2 (11)
C10A—C9A—C14A—C13A3.8 (10)N2B—C9B—C14B—S1B0.3 (8)
N2A—C9A—C14A—C13A178.3 (6)C10B—C9B—C14B—S1B179.6 (6)
C10A—C9A—C14A—S1A179.6 (6)C12B—C13B—C14B—C9B0.9 (10)
N2A—C9A—C14A—S1A2.4 (8)C12B—C13B—C14B—S1B178.8 (5)
C8A—S1A—C14A—C13A176.1 (7)C8B—S1B—C14B—C9B0.4 (5)
C8A—S1A—C14A—C9A0.7 (5)C8B—S1B—C14B—C13B178.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.841.932.647 (9)143
C13A—H13A···O1B0.952.483.289 (9)144
C15A—H15A···N2Bi0.982.573.525 (10)166
O1B—H1B···N1B0.841.892.636 (9)147
C13B—H13B···O1A0.952.533.356 (10)145
Symmetry code: (i) x+3/2, y3/2, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the assistance of the Department of Chemistry at the University of Canterbury, New Zealand, in allowing access to their diffractometer during his visit in 2014. YH would like to thank support from the Qatar National Research Fund Grant No. NPRP 7–495-1–094.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, 120, 82–89.  CrossRef CAS PubMed Google Scholar
First citationCatalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). Eur. J. Med. Chem. 64, 357–364.  CrossRef CAS PubMed Google Scholar
First citationEl'tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547–549.  Web of Science CrossRef CAS Google Scholar
First citationFunderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356–367.  PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHavrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012–5021.  CSD CrossRef CAS PubMed Google Scholar
First citationHijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1–12.  Google Scholar
First citationKong, L.-Q. (2009). Acta Cryst. E65, o832.  CSD CrossRef IUCr Journals Google Scholar
First citationLiang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396.  CAS Google Scholar
First citationLiu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765–771.  CAS Google Scholar
First citationMurhekar, M. M. & Khadsan, R. E. (2010). Pharma Chem. 2, 219–223.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQuraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475–480.  CrossRef CAS Google Scholar
First citationRavi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637.  Google Scholar
First citationRawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238–241.  CrossRef CAS Google Scholar
First citationSarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). Eur. J. Med. Chem. 45, 2689–2694.  CrossRef CAS PubMed Google Scholar
First citationSharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188–190.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSmith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.  CSD CrossRef Google Scholar
First citationSong, S., Song, M., Zhang, H. & Yang, L. (2010). Huaxue Yanjiu, 21, 21–25.  CAS Google Scholar
First citationTahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171–174.  Google Scholar
First citationUsman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 385-387
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds