metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m98-m99

Crystal structure of {bis­­[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}chlorido­platinum(II) chloride dihydrate1

CROSSMARK_Color_square_no_text.svg

aDepartamento de Ingenierías Química Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Gto, Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

Edited by E. F. C. Herdtweck, Technischen Universität München, Germany (Received 3 March 2015; accepted 14 March 2015; online 21 March 2015)

The title complex, [PtCl(C14H23N5)]Cl·2H2O, is isomorphous with the PdII compound characterized previously [Mendoza, Bernès & Mendoza-Díaz (2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]). Acta Cryst. E62, m2934–m2936]. The angle between pyrazole mean planes in the main ligand is 88.3 (4)°, similar to that observed in the PdII analogue [87.62 (11)°]. This tridentate ligand adopts a conformation approximating a twofold symmetry, allowing its coordination to the metal atom, together with a chloride ligand, in an almost perfect square-planar geometry. A chloride anion and two water mol­ecules in the asymmetric unit form a hydrogen-bonded network connected to the complex mol­ecules in the crystal via the NH amine groups, forming chains along [100].

1. Related literature

For the isomorphous PdII structure, see: Mendoza et al. (2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]). For a pseudopolymorph of the PdII complex, see: Guzei et al. (2010[Guzei, I. A., Spencer, L. C., Miti, N. & Darkwa, J. (2010). Acta Cryst. E66, m1243.]). For other PdII and NiII complexes bearing the same bis­(pyrazol-1-yl)amine ligand, see: Mendoza et al. (2015[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2015). Acta Cryst. E71, 22-27.]); Ajellal et al. (2006[Ajellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). Organometallics, 25, 1213-1216.]); Massoud et al. (2012[Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012). Polyhedron, 31, 601-606.], 2013[Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968-3978.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [PtCl(C14H23N5)]Cl·2H2O

  • Mr = 563.39

  • Monoclinic, P 21 /n

  • a = 7.944 (4) Å

  • b = 22.523 (4) Å

  • c = 11.783 (2) Å

  • β = 109.34 (2)°

  • V = 1989.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.34 mm−1

  • T = 291 K

  • 0.60 × 0.40 × 0.18 mm

2.2. Data collection

  • Bruker P4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.024, Tmax = 0.111

  • 4492 measured reflections

  • 3482 independent reflections

  • 3032 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 97 reflections intensity decay: 1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.138

  • S = 1.05

  • 3482 reflections

  • 233 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.96 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯O2 0.89 2.08 2.960 (11) 172
O1—H11⋯Cl2i 0.85 (2) 2.26 (3) 3.105 (11) 174
O1—H12⋯Cl2 0.85 (2) 2.28 (5) 3.123 (11) 169
O2—H21⋯Cl2ii 0.84 (2) 2.24 (4) 3.063 (10) 166
O2—H22⋯O1i 0.84 (2) 2.01 (4) 2.839 (13) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])'; software used to prepare material for publication: SHELXL2014.

Supporting information


Structural commentary top

The aim of this structure determination is to confirm that a series of PdII complexes based on a tridentate ligand, bis­[2-(3,5-di­methyl­pyrazol-1-yl)ethyl]­amine (pza), for which a structural study has been published (Mendoza et al., 2015), is isomorphous to the Pt(II) analogous series. The starting material for this work was a dihydrate, [Pd(pza)Cl]Cl.2 H2O, also characterized by X-ray diffraction (Mendoza et al., 2006). However, although a stabilizing hydrogen-bond network is present in this structure, a less hydrated pseudo polymorph, [Pd(pza)Cl]Cl.0.25 H2O, has been reported (Guzei et al., 2010). It is unclear whether the difference for water content results from the different starting materials used in the synthesis, Na2[PdCl4] vs. [PdCl2(CH3CN)2], or results from solvents used for crystallization, CH3CN vs. CH2Cl2.

The present work reports the characterization of the dihydrate platinum complex, [Pt(pza)Cl]Cl.2 H2O (Fig. 1), which is, as expected, isomorphous to its PdII analogue. Main structural features are thus preserved in the Pt(II) complex: square planar coordination geometry of the metal, κ3-coordination of the bis­(pyrazol-1-yl)amine ligand, and formation of a stabilizing network of hydrogen bonds, involving two water molecules, the chloride counterion, and the amine NH group of the pza ligand (Fig. 2). Pyrazole mean planes are almost perpendicular to each other, with a dihedral angle of 88.3 (4)°, similar to that observed in the PdII analogue, 87.62 (11)°.

Inter­estingly, the reported coordination chemistry of this ligand with NiII is quite different, with regards to structures. In the five-coordinate molecular complexes [Ni(pza)X2], the pza ligand adopts a flat geometry, characterized by the angle between pyrazole rings of 20.8° (X = Cl; Ajellal et al., 2006) or 12.9° (X = NCS; Massoud et al., 2012). This arrangement strongly contrasts with that described for a dinuclear six-coordinated NiII complex, in which pza is folded in order to suit to the o­cta­hedral geometry of the metal. In that case, the dihedral angle between pyrazole rings is 50.7° (Massoud et al., 2013). These structures for 10-group metals show the extreme conformational flexibility of pza, which allows the ligand conformation to be tailored to the requirements of virtually any 4-, 5- or 6-coordinated metal ion.

Synthesis and crystallization top

The synthesis of the Pt(II) complex is parallel to that of the PdII analogue. K2PtCl4 (1 mmol) was dissolved in water, and 1 mmol of bis-[2-(3,5-di­methyl-1-pyrazolyl)ethyl]­amine dissolved in hot water was added slowly, under stirring. After 12 h. of stirring at 298 K, a brown solid formed, which was filtered, and dried at 343 K. Yield: 80 %. Elemental analysis of this compound fits for the dihydrated complex crystallized with one KCl molecule: found C 26.57, H 3.86, N 10.55%; calculated for [Pt(C14H23N5)Cl]Cl.2 H2O.KCl: C 26.36, H 4.27, N 10.98%. The crude product was redissolved in CH3CN, and the precipitate of KCl filtered off. Single crystals of the title compound were obtained after evaporation of CH3CN.

Refinement top

In the complex, H atoms were placed in calculated positions and refined with fixed bond lengths, C—H = 0.97, 0.96 and 0.93 Å for methyl­ene, methyl, and aromatic groups respectively, and N—H = 0.89 Å. Water H atoms were found in a difference map and refined with restrained bond lengths, O—H = 0.85 (2) Å. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = xUeq(carrier atom), with x = 1.5 for methyl CH3 and water molecules, and x = 1.2 otherwise.

Related literature top

For the isomorphous PdII structure, see: Mendoza et al. (2006). For a pseudopolymorph of the PdII complex, see: Guzei et al. (2010). For other PdII and NiII complexes bearing the same bis(pyrazol-1-yl)amine ligand, see: Mendoza et al. (2015); Ajellal et al. (2006); Massoud et al. (2012, 2013).

Structure description top

The aim of this structure determination is to confirm that a series of PdII complexes based on a tridentate ligand, bis­[2-(3,5-di­methyl­pyrazol-1-yl)ethyl]­amine (pza), for which a structural study has been published (Mendoza et al., 2015), is isomorphous to the Pt(II) analogous series. The starting material for this work was a dihydrate, [Pd(pza)Cl]Cl.2 H2O, also characterized by X-ray diffraction (Mendoza et al., 2006). However, although a stabilizing hydrogen-bond network is present in this structure, a less hydrated pseudo polymorph, [Pd(pza)Cl]Cl.0.25 H2O, has been reported (Guzei et al., 2010). It is unclear whether the difference for water content results from the different starting materials used in the synthesis, Na2[PdCl4] vs. [PdCl2(CH3CN)2], or results from solvents used for crystallization, CH3CN vs. CH2Cl2.

The present work reports the characterization of the dihydrate platinum complex, [Pt(pza)Cl]Cl.2 H2O (Fig. 1), which is, as expected, isomorphous to its PdII analogue. Main structural features are thus preserved in the Pt(II) complex: square planar coordination geometry of the metal, κ3-coordination of the bis­(pyrazol-1-yl)amine ligand, and formation of a stabilizing network of hydrogen bonds, involving two water molecules, the chloride counterion, and the amine NH group of the pza ligand (Fig. 2). Pyrazole mean planes are almost perpendicular to each other, with a dihedral angle of 88.3 (4)°, similar to that observed in the PdII analogue, 87.62 (11)°.

Inter­estingly, the reported coordination chemistry of this ligand with NiII is quite different, with regards to structures. In the five-coordinate molecular complexes [Ni(pza)X2], the pza ligand adopts a flat geometry, characterized by the angle between pyrazole rings of 20.8° (X = Cl; Ajellal et al., 2006) or 12.9° (X = NCS; Massoud et al., 2012). This arrangement strongly contrasts with that described for a dinuclear six-coordinated NiII complex, in which pza is folded in order to suit to the o­cta­hedral geometry of the metal. In that case, the dihedral angle between pyrazole rings is 50.7° (Massoud et al., 2013). These structures for 10-group metals show the extreme conformational flexibility of pza, which allows the ligand conformation to be tailored to the requirements of virtually any 4-, 5- or 6-coordinated metal ion.

For the isomorphous PdII structure, see: Mendoza et al. (2006). For a pseudopolymorph of the PdII complex, see: Guzei et al. (2010). For other PdII and NiII complexes bearing the same bis(pyrazol-1-yl)amine ligand, see: Mendoza et al. (2015); Ajellal et al. (2006); Massoud et al. (2012, 2013).

Synthesis and crystallization top

The synthesis of the Pt(II) complex is parallel to that of the PdII analogue. K2PtCl4 (1 mmol) was dissolved in water, and 1 mmol of bis-[2-(3,5-di­methyl-1-pyrazolyl)ethyl]­amine dissolved in hot water was added slowly, under stirring. After 12 h. of stirring at 298 K, a brown solid formed, which was filtered, and dried at 343 K. Yield: 80 %. Elemental analysis of this compound fits for the dihydrated complex crystallized with one KCl molecule: found C 26.57, H 3.86, N 10.55%; calculated for [Pt(C14H23N5)Cl]Cl.2 H2O.KCl: C 26.36, H 4.27, N 10.98%. The crude product was redissolved in CH3CN, and the precipitate of KCl filtered off. Single crystals of the title compound were obtained after evaporation of CH3CN.

Refinement details top

In the complex, H atoms were placed in calculated positions and refined with fixed bond lengths, C—H = 0.97, 0.96 and 0.93 Å for methyl­ene, methyl, and aromatic groups respectively, and N—H = 0.89 Å. Water H atoms were found in a difference map and refined with restrained bond lengths, O—H = 0.85 (2) Å. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = xUeq(carrier atom), with x = 1.5 for methyl CH3 and water molecules, and x = 1.2 otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008)'; software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, with displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title complex, emphasizing the hydrogen-bond network (dashed bonds). H atoms not involved in hydrogen bonds are omitted.
{Bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine-κN}chloridoplatinum(II) chloride dihydrate top
Crystal data top
[PtCl(C14H23N5)]Cl·2H2OF(000) = 1096
Mr = 563.39Dx = 1.881 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.944 (4) ÅCell parameters from 74 reflections
b = 22.523 (4) Åθ = 4.6–12.5°
c = 11.783 (2) ŵ = 7.34 mm1
β = 109.34 (2)°T = 291 K
V = 1989.1 (11) Å3Irregular, yellow
Z = 40.60 × 0.40 × 0.18 mm
Data collection top
Bruker P4
diffractometer
3032 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.057
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
2θ/ω scansh = 91
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 261
Tmin = 0.024, Tmax = 0.111l = 1314
4492 measured reflections3 standard reflections every 97 reflections
3482 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0808P)2 + 10.4703P]
where P = (Fo2 + 2Fc2)/3
3482 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 2.96 e Å3
4 restraintsΔρmin = 1.26 e Å3
0 constraints
Crystal data top
[PtCl(C14H23N5)]Cl·2H2OV = 1989.1 (11) Å3
Mr = 563.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.944 (4) ŵ = 7.34 mm1
b = 22.523 (4) ÅT = 291 K
c = 11.783 (2) Å0.60 × 0.40 × 0.18 mm
β = 109.34 (2)°
Data collection top
Bruker P4
diffractometer
3032 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.057
Tmin = 0.024, Tmax = 0.1113 standard reflections every 97 reflections
4492 measured reflections intensity decay: 1%
3482 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0524 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0808P)2 + 10.4703P]
where P = (Fo2 + 2Fc2)/3
3482 reflectionsΔρmax = 2.96 e Å3
233 parametersΔρmin = 1.26 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.29461 (4)0.17362 (2)0.81174 (3)0.04691 (17)
Cl10.4903 (3)0.22408 (12)0.9706 (2)0.0666 (6)
Cl20.2473 (5)0.01323 (18)0.3417 (3)0.0959 (10)
N10.3971 (10)0.2093 (3)0.6922 (7)0.0529 (17)
N20.4257 (12)0.1738 (3)0.6053 (8)0.0557 (19)
C30.4939 (12)0.2055 (5)0.5363 (9)0.057 (2)
C40.5163 (14)0.2619 (5)0.5808 (9)0.064 (2)
H4A0.56590.29350.55220.077*
C50.4526 (13)0.2634 (4)0.6751 (9)0.059 (2)
C60.5244 (18)0.1798 (5)0.4275 (11)0.074 (3)
H6A0.58410.14230.44780.111*
H6B0.59680.20650.39990.111*
H6C0.41180.17420.36500.111*
C70.431 (2)0.3173 (5)0.7433 (12)0.080 (4)
H7A0.36080.30750.79300.121*
H7B0.37250.34800.68770.121*
H7C0.54650.33100.79300.121*
C80.3519 (13)0.1130 (5)0.5867 (10)0.060 (2)
H8A0.40910.08880.65700.073*
H8B0.37290.09490.51790.073*
C90.1509 (12)0.1172 (4)0.5650 (9)0.055 (2)
H9A0.10140.15080.51340.066*
H9B0.09230.08150.52470.066*
N100.1180 (10)0.1241 (3)0.6811 (7)0.0542 (18)
H10A0.12960.08760.71150.065*
N110.1783 (9)0.1329 (3)0.9188 (7)0.0512 (17)
N120.0039 (10)0.1288 (3)0.8745 (7)0.0530 (17)
C130.0607 (13)0.0933 (4)0.9487 (10)0.060 (2)
C140.0871 (13)0.0748 (5)1.0375 (10)0.064 (3)
H14A0.08930.05021.10130.077*
C150.2331 (12)0.0988 (4)1.0167 (8)0.053 (2)
C160.2500 (13)0.0794 (5)0.9250 (11)0.071 (3)
H16A0.31430.11540.92610.107*
H16B0.26130.05290.98600.107*
H16C0.29820.06090.84760.107*
C170.4253 (14)0.0902 (6)1.0886 (10)0.071 (3)
H17A0.49550.12001.06690.106*
H17B0.46320.05161.07240.106*
H17C0.44090.09351.17270.106*
C180.1019 (13)0.1636 (4)0.7703 (10)0.060 (2)
H18A0.06290.20470.78230.072*
H18B0.22830.16240.75960.072*
C190.0704 (12)0.1391 (5)0.6588 (9)0.064 (3)
H19A0.14260.10380.63220.077*
H19B0.10810.16830.59480.077*
O10.6546 (14)0.0365 (5)0.3986 (10)0.093 (3)
H110.68 (2)0.026 (8)0.471 (6)0.139*
H120.543 (5)0.030 (8)0.373 (17)0.139*
O20.1596 (12)0.0015 (4)0.7589 (8)0.076 (2)
H210.049 (5)0.001 (7)0.722 (13)0.114*
H220.205 (17)0.016 (7)0.710 (10)0.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0457 (2)0.0476 (2)0.0468 (3)0.00155 (12)0.01444 (16)0.00047 (13)
Cl10.0658 (14)0.0665 (15)0.0609 (14)0.0101 (12)0.0120 (11)0.0062 (12)
Cl20.099 (2)0.111 (3)0.0747 (19)0.0099 (19)0.0257 (17)0.0069 (18)
N10.054 (4)0.055 (4)0.052 (4)0.006 (3)0.020 (3)0.003 (3)
N20.062 (5)0.055 (5)0.052 (5)0.001 (3)0.022 (4)0.002 (3)
C30.050 (5)0.067 (6)0.056 (5)0.004 (4)0.021 (4)0.006 (5)
C40.067 (6)0.067 (6)0.061 (6)0.004 (5)0.023 (5)0.013 (5)
C50.059 (5)0.059 (6)0.058 (6)0.006 (4)0.016 (4)0.003 (4)
C60.079 (7)0.083 (8)0.069 (7)0.001 (6)0.037 (6)0.004 (6)
C70.126 (11)0.046 (6)0.078 (8)0.017 (6)0.044 (8)0.000 (5)
C80.068 (6)0.060 (6)0.058 (6)0.002 (5)0.027 (5)0.009 (5)
C90.061 (5)0.048 (5)0.053 (5)0.007 (4)0.014 (4)0.002 (4)
N100.063 (5)0.042 (4)0.054 (5)0.002 (3)0.014 (3)0.005 (3)
N110.045 (4)0.048 (4)0.063 (5)0.001 (3)0.022 (3)0.002 (3)
N120.047 (4)0.056 (4)0.057 (5)0.002 (3)0.019 (3)0.000 (4)
C130.055 (5)0.052 (5)0.083 (7)0.001 (4)0.035 (5)0.004 (5)
C140.064 (6)0.074 (7)0.067 (6)0.002 (5)0.039 (5)0.008 (5)
C150.055 (5)0.061 (6)0.047 (5)0.006 (4)0.021 (4)0.007 (4)
C160.057 (6)0.073 (7)0.092 (8)0.006 (5)0.037 (6)0.005 (6)
C170.059 (6)0.089 (8)0.063 (6)0.008 (5)0.019 (5)0.016 (6)
C180.047 (5)0.056 (5)0.071 (7)0.003 (4)0.011 (5)0.000 (5)
C190.045 (5)0.081 (7)0.058 (6)0.004 (5)0.005 (4)0.007 (5)
O10.095 (6)0.083 (6)0.104 (7)0.008 (5)0.037 (6)0.015 (5)
O20.085 (5)0.084 (5)0.069 (5)0.028 (4)0.042 (4)0.025 (4)
Geometric parameters (Å, º) top
Pt1—N12.013 (7)N10—H10A0.8900
Pt1—N112.015 (7)N11—C151.332 (12)
Pt1—N102.037 (7)N11—N121.370 (10)
Pt1—Cl12.298 (3)N12—C131.366 (12)
N1—C51.334 (12)N12—C181.448 (13)
N1—N21.375 (11)C13—C141.354 (15)
N2—C31.325 (12)C13—C161.470 (14)
N2—C81.477 (13)C14—C151.373 (13)
C3—C41.364 (15)C14—H14A0.9300
C3—C61.497 (15)C15—C171.493 (14)
C4—C51.365 (14)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C71.497 (15)C16—H16C0.9600
C6—H6A0.9600C17—H17A0.9600
C6—H6B0.9600C17—H17B0.9600
C6—H6C0.9600C17—H17C0.9600
C7—H7A0.9600C18—C191.520 (16)
C7—H7B0.9600C18—H18A0.9700
C7—H7C0.9600C18—H18B0.9700
C8—C91.534 (13)C19—H19A0.9700
C8—H8A0.9700C19—H19B0.9700
C8—H8B0.9700O1—H110.85 (2)
C9—N101.483 (12)O1—H120.85 (2)
C9—H9A0.9700O2—H210.84 (2)
C9—H9B0.9700O2—H220.84 (2)
N10—C191.470 (12)
N1—Pt1—N11174.6 (3)C19—N10—Pt1114.5 (6)
N1—Pt1—N1091.5 (3)C9—N10—Pt1117.9 (6)
N11—Pt1—N1083.1 (3)C19—N10—H10A104.3
N1—Pt1—Cl192.9 (2)C9—N10—H10A104.3
N11—Pt1—Cl192.4 (2)Pt1—N10—H10A104.3
N10—Pt1—Cl1175.3 (2)C15—N11—N12107.0 (7)
C5—N1—N2105.9 (7)C15—N11—Pt1135.9 (6)
C5—N1—Pt1134.5 (7)N12—N11—Pt1116.0 (6)
N2—N1—Pt1119.6 (6)C13—N12—N11109.1 (8)
C3—N2—N1110.2 (7)C13—N12—C18131.4 (8)
C3—N2—C8129.1 (9)N11—N12—C18119.3 (7)
N1—N2—C8119.6 (8)C14—C13—N12106.8 (8)
N2—C3—C4107.0 (9)C14—C13—C16130.7 (10)
N2—C3—C6122.2 (9)N12—C13—C16122.5 (10)
C4—C3—C6130.6 (9)C13—C14—C15108.0 (9)
C3—C4—C5107.5 (9)C13—C14—H14A126.0
C3—C4—H4A126.3C15—C14—H14A126.0
C5—C4—H4A126.3N11—C15—C14109.1 (9)
N1—C5—C4109.3 (9)N11—C15—C17123.0 (8)
N1—C5—C7123.9 (9)C14—C15—C17127.8 (9)
C4—C5—C7126.6 (10)C13—C16—H16A109.5
C3—C6—H6A109.5C13—C16—H16B109.5
C3—C6—H6B109.5H16A—C16—H16B109.5
H6A—C6—H6B109.5C13—C16—H16C109.5
C3—C6—H6C109.5H16A—C16—H16C109.5
H6A—C6—H6C109.5H16B—C16—H16C109.5
H6B—C6—H6C109.5C15—C17—H17A109.5
C5—C7—H7A109.5C15—C17—H17B109.5
C5—C7—H7B109.5H17A—C17—H17B109.5
H7A—C7—H7B109.5C15—C17—H17C109.5
C5—C7—H7C109.5H17A—C17—H17C109.5
H7A—C7—H7C109.5H17B—C17—H17C109.5
H7B—C7—H7C109.5N12—C18—C19109.9 (8)
N2—C8—C9108.0 (8)N12—C18—H18A109.7
N2—C8—H8A110.1C19—C18—H18A109.7
C9—C8—H8A110.1N12—C18—H18B109.7
N2—C8—H8B110.1C19—C18—H18B109.7
C9—C8—H8B110.1H18A—C18—H18B108.2
H8A—C8—H8B108.4N10—C19—C18112.2 (8)
N10—C9—C8110.1 (8)N10—C19—H19A109.2
N10—C9—H9A109.6C18—C19—H19A109.2
C8—C9—H9A109.6N10—C19—H19B109.2
N10—C9—H9B109.6C18—C19—H19B109.2
C8—C9—H9B109.6H19A—C19—H19B107.9
H9A—C9—H9B108.2H11—O1—H12101 (10)
C19—N10—C9109.8 (7)H21—O2—H22106 (10)
C5—N1—N2—C31.0 (11)C15—N11—N12—C132.0 (10)
Pt1—N1—N2—C3179.8 (6)Pt1—N11—N12—C13171.7 (6)
C5—N1—N2—C8170.2 (9)C15—N11—N12—C18177.2 (8)
Pt1—N1—N2—C810.9 (11)Pt1—N11—N12—C1813.1 (10)
N1—N2—C3—C42.2 (11)N11—N12—C13—C141.1 (11)
C8—N2—C3—C4170.1 (10)C18—N12—C13—C14175.5 (10)
N1—N2—C3—C6174.6 (9)N11—N12—C13—C16179.3 (9)
C8—N2—C3—C66.7 (17)C18—N12—C13—C166.3 (16)
N2—C3—C4—C52.5 (12)N12—C13—C14—C150.3 (12)
C6—C3—C4—C5173.9 (11)C16—C13—C14—C15177.7 (11)
N2—N1—C5—C40.6 (11)N12—N11—C15—C142.2 (11)
Pt1—N1—C5—C4177.9 (7)Pt1—N11—C15—C14168.8 (7)
N2—N1—C5—C7174.4 (11)N12—N11—C15—C17178.0 (9)
Pt1—N1—C5—C77.0 (16)Pt1—N11—C15—C1711.4 (16)
C3—C4—C5—N11.9 (12)C13—C14—C15—N111.6 (12)
C3—C4—C5—C7172.9 (11)C13—C14—C15—C17178.7 (11)
C3—N2—C8—C9112.7 (11)C13—N12—C18—C19115.1 (11)
N1—N2—C8—C954.3 (11)N11—N12—C18—C1971.0 (11)
N2—C8—C9—N1079.8 (10)C9—N10—C19—C18163.9 (8)
C8—C9—N10—C19169.6 (8)Pt1—N10—C19—C1828.6 (11)
C8—C9—N10—Pt136.0 (10)N12—C18—C19—N1043.4 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O20.892.082.960 (11)172
O1—H11···Cl2i0.85 (2)2.26 (3)3.105 (11)174
O1—H12···Cl20.85 (2)2.28 (5)3.123 (11)169
O2—H21···Cl2ii0.84 (2)2.24 (4)3.063 (10)166
O2—H22···O1i0.84 (2)2.01 (4)2.839 (13)169
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O20.892.082.960 (11)171.7
O1—H11···Cl2i0.85 (2)2.26 (3)3.105 (11)174
O1—H12···Cl20.85 (2)2.28 (5)3.123 (11)169
O2—H21···Cl2ii0.84 (2)2.24 (4)3.063 (10)166
O2—H22···O1i0.84 (2)2.01 (4)2.839 (13)169
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Footnotes

1This work forms part of the PhD thesis of María de los Angeles Mendoza (Guanajuato, Mexico, 2010).

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial support of MAM during her postgraduate studies under grant No. 179804/194677.

References

First citationAjellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). Organometallics, 25, 1213–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuzei, I. A., Spencer, L. C., Miti, N. & Darkwa, J. (2010). Acta Cryst. E66, m1243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMassoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). Dalton Trans. 42, 3968–3978.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMassoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012). Polyhedron, 31, 601–606.  CSD CrossRef CAS Google Scholar
First citationMendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934–m2936.  Google Scholar
First citationMendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2015). Acta Cryst. E71, 22–27.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m98-m99
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds