organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o236-o237

Crystal structure of ethyl 2-(1H-benzimidazol-2-yl)-2-[2-(4-nitro­phen­yl)hydrazinyl­­idene]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Moléculaire, Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, 40001 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliqué, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco, and cLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: berraho@uca.ma

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 20 February 2015; accepted 9 March 2015; online 14 March 2015)

The title compound, C17H15N5O4, was obtained via the condensation of 3-eth­oxy-2-[2-(4-nitro­phen­yl)hydrazono]-3-oxo­propanoic acid with 1,2-di­amino­benzene. In the mol­ecule, the dihedral angles between the acetate group and the two aromatic subunits (benzimidazole and nitro­phenyl­hydrazone) are 7.35 (9) and 18.23 (9)°, respectively. Intra­molecular N—H⋯O and N—H⋯N contacts occur. In the crystal, C—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into chains along the b-axis direction.

1. Related literature

For the pharmacological activity of benzimidazole derivatives, see: Luo et al. (2011[Luo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78-83.]); Ouattara et al. (2011[Ouattara, M., Sissouma, D., Koné, M. W., Menan, H. E., Touré, S. A. & Ouattara, L. (2011). Trop. J. Pharm. Res. 10, 767-775.]); Bhrigu et al. (2012[Bhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. Drug Res. 69, 53-62.]); Singh et al. (2012[Singh, N., Pandurangan, A., Rana, K., Anand, P., Ahmad, A. & Tiwari, A. K. (2012). Int. Curr. Pharm. Res. 1, 119-127.]); Parajuli et al. (2014[Parajuli, B., Fishel, M. L. & Hurley, T. D. (2014). J. Med. Chem. 57, 449-461.]). For their agrochemical activity, see: Attrassi et al. (2007[Attrassi, K., Benkirane, R., Attrassi, B., Badoc, A. & Douira, A. (2007). Bull. Soc. Pharm. Bordeaux, 146, 195-210.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H15N5O4

  • Mr = 353.34

  • Monoclinic, P 21 /c

  • a = 12.877 (5) Å

  • b = 5.874 (5) Å

  • c = 21.988 (5) Å

  • β = 99.060 (5)°

  • V = 1642.4 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.33 × 0.17 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 24995 measured reflections

  • 3362 independent reflections

  • 2562 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 3362 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.50 3.161 (3) 134
C8—H8⋯O4i 0.93 2.54 3.258 (3) 134
N2—H2⋯O4 0.86 2.21 2.750 (3) 121
N4—H4⋯N1 0.86 2.02 2.679 (3) 133
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The development of an efficient synthesis of bioactive compounds is a major challenge in modern chemistry. The high therapeutic properties of benzimidazole derivatives related drugs have encouraged the medicinal chemists to synthesize a large number of new chemotherapeutic agents. The benzimidazole motif is an integral part in numerous fields, as pharmaceuticals (Luo et al., 2011; Ouattara et al., 2011; Bhrigu et al., 2012; Singh et al., 2012; Parajuli et al., 2014), and agrochemicals (Attrassi et al., 2007). The structure of this new product was determined by its single-crystal X-ray structure. The dihedral angles between the acetate chain and the two aromatic subunits (benzimidazole and nitrophenylhydrazone) are 7.35 (9)° and 18.23 (9)°, respectively. In the crystal structure, the molecules are linked by C—H···O and N—H···O intermolecular hydrogen bonds into chains along the b axis (Fig.2). In addition an intramolecular N—H···O hydrogen bond is also observed.

Related literature top

For the pharmacological activity of benzimidazole derivatives, see: Luo et al. (2011); Ouattara et al. (2011); Bhrigu et al. (2012); Singh et al. (2012); Parajuli et al. (2014). For their agrochemical activity, see: Attrassi et al. (2007).

Experimental top

1,2-diaminobenzene (0.5 g, 4.6 mmol) and 3-ethoxy-2-[2-(4-nitrophenyl)hydrazono]-3-oxopropanoic acid (1.19 g, 4.6 mmol) were heated in xylene (15 ml) for 12 h. The solvent was evaporated. The title compound was isolated by column chromatography on silica gel using hexane/ethyl acetate as eluent. The solid product was recrystallized in dichloromethane at 15°C to give yellow crystals (yield: 45%) of the title compound.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine) with Uiso(H) = 1.2 Ueq(methylene, methine and OH) or Uiso(H) = 1.5 Ueq(methyl).

Structure description top

The development of an efficient synthesis of bioactive compounds is a major challenge in modern chemistry. The high therapeutic properties of benzimidazole derivatives related drugs have encouraged the medicinal chemists to synthesize a large number of new chemotherapeutic agents. The benzimidazole motif is an integral part in numerous fields, as pharmaceuticals (Luo et al., 2011; Ouattara et al., 2011; Bhrigu et al., 2012; Singh et al., 2012; Parajuli et al., 2014), and agrochemicals (Attrassi et al., 2007). The structure of this new product was determined by its single-crystal X-ray structure. The dihedral angles between the acetate chain and the two aromatic subunits (benzimidazole and nitrophenylhydrazone) are 7.35 (9)° and 18.23 (9)°, respectively. In the crystal structure, the molecules are linked by C—H···O and N—H···O intermolecular hydrogen bonds into chains along the b axis (Fig.2). In addition an intramolecular N—H···O hydrogen bond is also observed.

For the pharmacological activity of benzimidazole derivatives, see: Luo et al. (2011); Ouattara et al. (2011); Bhrigu et al. (2012); Singh et al. (2012); Parajuli et al. (2014). For their agrochemical activity, see: Attrassi et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C—H···O and N—H···O interactions (dashed lines) and the formation of a chain parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 2-(1H-benzimidazol-2-yl)-2-[2-(4-nitrophenyl)hydrazinylidene]acetate top
Crystal data top
C17H15N5O4F(000) = 736
Mr = 353.34Dx = 1.429 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3362 reflections
a = 12.877 (5) Åθ = 2.7–26.4°
b = 5.874 (5) ŵ = 0.11 mm1
c = 21.988 (5) ÅT = 293 K
β = 99.060 (5)°Platelet, colourless
V = 1642.4 (16) Å30.33 × 0.17 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2562 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ω and φ scansh = 1616
24995 measured reflectionsk = 77
3362 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5028P]
where P = (Fo2 + 2Fc2)/3
3362 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H15N5O4V = 1642.4 (16) Å3
Mr = 353.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.877 (5) ŵ = 0.11 mm1
b = 5.874 (5) ÅT = 293 K
c = 21.988 (5) Å0.33 × 0.17 × 0.04 mm
β = 99.060 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2562 reflections with I > 2σ(I)
24995 measured reflectionsRint = 0.033
3362 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3362 reflectionsΔρmin = 0.17 e Å3
236 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24083 (11)0.7913 (3)0.32924 (7)0.0367 (3)
C120.49273 (11)0.6017 (3)0.39833 (6)0.0349 (3)
C130.46733 (12)0.3904 (3)0.42102 (7)0.0405 (4)
H130.39800.33980.41470.049*
C50.25493 (11)0.9962 (3)0.29411 (7)0.0357 (3)
C150.64834 (12)0.3339 (3)0.46186 (7)0.0415 (4)
C20.13384 (12)0.6936 (3)0.32829 (7)0.0413 (4)
C170.59698 (12)0.6755 (3)0.40730 (7)0.0406 (4)
H170.61380.81550.39170.049*
C60.32726 (11)1.2789 (3)0.25402 (7)0.0365 (3)
C110.39466 (12)1.4456 (3)0.23679 (7)0.0410 (4)
H110.46621.44380.25210.049*
C160.67524 (12)0.5414 (3)0.43928 (7)0.0439 (4)
H160.74480.59000.44550.053*
C80.17657 (12)1.4543 (3)0.18916 (8)0.0460 (4)
H80.10521.45640.17330.055*
C90.24422 (13)1.6167 (3)0.17267 (8)0.0470 (4)
H90.21801.73110.14530.056*
C140.54567 (13)0.2574 (3)0.45284 (7)0.0437 (4)
H140.52950.11650.46820.052*
C100.35198 (12)1.6127 (3)0.19643 (7)0.0441 (4)
H100.39551.72530.18470.053*
C70.21950 (11)1.2872 (3)0.23044 (7)0.0378 (3)
C30.03236 (14)0.4189 (4)0.37222 (10)0.0645 (5)
H3A0.00320.34450.33390.077*
H3B0.01670.53490.38110.077*
N10.34778 (9)1.0947 (2)0.29374 (6)0.0382 (3)
N20.17568 (9)1.1066 (2)0.25700 (6)0.0401 (3)
H20.11021.06980.25130.048*
N30.31612 (9)0.6757 (2)0.36227 (6)0.0384 (3)
N40.41544 (9)0.7421 (2)0.36668 (6)0.0390 (3)
H40.43160.86800.35050.047*
N50.73044 (13)0.1896 (3)0.49538 (7)0.0567 (4)
O10.82217 (12)0.2456 (3)0.49629 (8)0.0857 (5)
O20.70291 (13)0.0185 (2)0.52145 (7)0.0771 (4)
O30.13339 (9)0.5214 (2)0.36682 (6)0.0566 (3)
O40.05567 (8)0.7645 (2)0.29566 (6)0.0548 (3)
C40.04983 (17)0.2514 (4)0.42261 (11)0.0837 (7)
H4A0.07450.32820.46070.126*
H4B0.10140.14230.41440.126*
H4C0.01500.17460.42560.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (7)0.0419 (8)0.0390 (8)0.0026 (6)0.0040 (6)0.0048 (6)
C120.0317 (7)0.0409 (8)0.0317 (7)0.0023 (6)0.0040 (6)0.0034 (6)
C130.0342 (8)0.0451 (9)0.0424 (8)0.0027 (7)0.0063 (7)0.0026 (7)
C50.0284 (7)0.0394 (8)0.0388 (8)0.0026 (6)0.0036 (6)0.0068 (6)
C150.0431 (9)0.0444 (9)0.0354 (8)0.0112 (7)0.0012 (6)0.0017 (7)
C20.0333 (8)0.0440 (8)0.0465 (9)0.0006 (7)0.0063 (7)0.0017 (7)
C170.0349 (8)0.0401 (8)0.0462 (9)0.0013 (6)0.0042 (7)0.0037 (7)
C60.0311 (7)0.0399 (8)0.0382 (8)0.0027 (6)0.0048 (6)0.0064 (6)
C110.0305 (7)0.0482 (9)0.0444 (9)0.0024 (6)0.0059 (6)0.0075 (7)
C160.0307 (8)0.0520 (10)0.0478 (9)0.0002 (7)0.0024 (7)0.0031 (8)
C80.0317 (8)0.0497 (9)0.0546 (10)0.0042 (7)0.0009 (7)0.0016 (8)
C90.0449 (9)0.0457 (9)0.0504 (9)0.0047 (7)0.0082 (7)0.0033 (8)
C140.0509 (10)0.0395 (8)0.0416 (8)0.0002 (7)0.0098 (7)0.0019 (7)
C100.0420 (9)0.0452 (9)0.0467 (9)0.0055 (7)0.0122 (7)0.0042 (7)
C70.0297 (7)0.0396 (8)0.0439 (8)0.0008 (6)0.0052 (6)0.0045 (7)
C30.0377 (9)0.0708 (12)0.0829 (14)0.0125 (9)0.0033 (9)0.0184 (11)
N10.0289 (6)0.0420 (7)0.0430 (7)0.0009 (5)0.0036 (5)0.0044 (6)
N20.0249 (6)0.0435 (7)0.0505 (8)0.0004 (5)0.0017 (5)0.0006 (6)
N30.0297 (6)0.0451 (7)0.0402 (7)0.0003 (5)0.0046 (5)0.0049 (6)
N40.0279 (6)0.0435 (7)0.0443 (7)0.0005 (5)0.0015 (5)0.0026 (6)
N50.0581 (10)0.0579 (10)0.0501 (9)0.0171 (8)0.0038 (7)0.0030 (8)
O10.0495 (8)0.0996 (12)0.1017 (12)0.0226 (8)0.0076 (8)0.0158 (10)
O20.0933 (11)0.0556 (8)0.0748 (10)0.0155 (8)0.0109 (8)0.0150 (7)
O30.0330 (6)0.0639 (8)0.0703 (8)0.0079 (5)0.0002 (5)0.0183 (6)
O40.0278 (6)0.0640 (8)0.0704 (8)0.0009 (5)0.0006 (5)0.0136 (6)
C40.0629 (13)0.0951 (17)0.0888 (16)0.0217 (12)0.0014 (12)0.0320 (14)
Geometric parameters (Å, º) top
C1—N31.3064 (19)C16—H160.9300
C1—C51.457 (2)C8—C91.378 (2)
C1—C21.490 (2)C8—C71.391 (2)
C12—N41.3921 (19)C8—H80.9300
C12—C171.395 (2)C9—C101.404 (2)
C12—C131.396 (2)C9—H90.9300
C13—C141.377 (2)C14—H140.9300
C13—H130.9300C10—H100.9300
C5—N11.3295 (19)C7—N21.374 (2)
C5—N21.3659 (19)C3—O31.455 (2)
C15—C161.381 (2)C3—C41.472 (3)
C15—C141.381 (2)C3—H3A0.9700
C15—N51.461 (2)C3—H3B0.9700
C2—O41.2140 (18)N2—H20.8600
C2—O31.320 (2)N3—N41.3259 (17)
C17—C161.381 (2)N4—H40.8600
C17—H170.9300N5—O11.223 (2)
C6—N11.389 (2)N5—O21.236 (2)
C6—C111.400 (2)C4—H4A0.9600
C6—C71.404 (2)C4—H4B0.9600
C11—C101.378 (2)C4—H4C0.9600
C11—H110.9300
N3—C1—C5125.50 (13)C10—C9—H9119.4
N3—C1—C2114.28 (14)C13—C14—C15119.79 (15)
C5—C1—C2120.20 (13)C13—C14—H14120.1
N4—C12—C17118.87 (14)C15—C14—H14120.1
N4—C12—C13121.10 (13)C11—C10—C9121.48 (15)
C17—C12—C13120.03 (14)C11—C10—H10119.3
C14—C13—C12119.47 (15)C9—C10—H10119.3
C14—C13—H13120.3N2—C7—C8132.42 (14)
C12—C13—H13120.3N2—C7—C6105.33 (13)
N1—C5—N2112.18 (14)C8—C7—C6122.25 (14)
N1—C5—C1123.37 (13)O3—C3—C4107.77 (15)
N2—C5—C1124.43 (13)O3—C3—H3A110.2
C16—C15—C14121.63 (14)C4—C3—H3A110.2
C16—C15—N5119.41 (15)O3—C3—H3B110.2
C14—C15—N5118.96 (16)C4—C3—H3B110.2
O4—C2—O3123.72 (14)H3A—C3—H3B108.5
O4—C2—C1123.71 (15)C5—N1—C6105.10 (12)
O3—C2—C1112.57 (13)C5—N2—C7107.60 (12)
C16—C17—C12120.24 (15)C5—N2—H2126.2
C16—C17—H17119.9C7—N2—H2126.2
C12—C17—H17119.9C1—N3—N4120.69 (14)
N1—C6—C11130.57 (14)N3—N4—C12117.87 (13)
N1—C6—C7109.78 (13)N3—N4—H4121.1
C11—C6—C7119.65 (14)C12—N4—H4121.1
C10—C11—C6118.11 (14)O1—N5—O2123.90 (16)
C10—C11—H11120.9O1—N5—C15118.19 (17)
C6—C11—H11120.9O2—N5—C15117.91 (17)
C15—C16—C17118.83 (15)C2—O3—C3117.63 (13)
C15—C16—H16120.6C3—C4—H4A109.5
C17—C16—H16120.6C3—C4—H4B109.5
C9—C8—C7117.22 (15)H4A—C4—H4B109.5
C9—C8—H8121.4C3—C4—H4C109.5
C7—C8—H8121.4H4A—C4—H4C109.5
C8—C9—C10121.29 (16)H4B—C4—H4C109.5
C8—C9—H9119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.503.161 (3)134
C8—H8···O4i0.932.543.258 (3)134
N2—H2···O40.862.212.750 (3)121
N4—H4···N10.862.022.679 (3)133
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.503.161 (3)134
C8—H8···O4i0.932.543.258 (3)134
N2—H2···O40.862.212.750 (3)121
N4—H4···N10.862.022.679 (3)133
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAttrassi, K., Benkirane, R., Attrassi, B., Badoc, A. & Douira, A. (2007). Bull. Soc. Pharm. Bordeaux, 146, 195–210.  Google Scholar
First citationBhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. Drug Res. 69, 53–62.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLuo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83.  Web of Science CrossRef CAS Google Scholar
First citationOuattara, M., Sissouma, D., Koné, M. W., Menan, H. E., Touré, S. A. & Ouattara, L. (2011). Trop. J. Pharm. Res. 10, 767–775.  Web of Science CrossRef CAS Google Scholar
First citationParajuli, B., Fishel, M. L. & Hurley, T. D. (2014). J. Med. Chem. 57, 449–461.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N., Pandurangan, A., Rana, K., Anand, P., Ahmad, A. & Tiwari, A. K. (2012). Int. Curr. Pharm. Res. 1, 119–127.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o236-o237
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds