organic compounds
The tripeptide N-Cbz-βGly-Gly-Gly-Obz
aDepartment of Physics, Indian Institute of Science, Bangalore 560012, India
*Correspondence e-mail: sumeshnicholas@gmail.com
The title peptide, N-benzyloxycarbonyl-β-glycylglycylglycine benzyl ester, C22H25N3O6, contains a non-proteinogenic amino acid residue, β-glycine, which is a homologated analogue of glycine. In the molecular structure, β-glycine adopts an extended conformation with a trans conformation about its Cβ—Cα bond. The second glycine residue adopts an extended conformation while the third glycine residue adopts a helical conformation. In the crystal, three N—H⋯O hydrogen bonds, two involving the same carbonyl O atom as acceptor, results in an infinite two-dimensional network parallel to the bc plane.
Keywords: crystal structure; glycine; peptide; β-peptide; β-glycine,hydrogen bonding.
CCDC reference: 1051721
1. Related literature
For comprehensive reviews on β-amino acids and β-peptides, see: Cheng et al. (2001); Seebach et al. (2004). For conformations and structural features of β-peptides, see: Appella et al. (1996, 1997); Seebach & Matthews (1997); Gellman (1998); Hill et al. (2001); Seebach et al. (1996, 2005, 2006). For the conformations of hybrid peptide sequences formed of α-, β- and higher ω-amino acids, see: Banerjee & Balaram (1997); Karle et al. (1997); Gopi et al. (2002); Roy & Balaram (2004); Ananda et al. (2005); Roy et al. (2005); Schmitt et al. (2005, 2006); Sharma et al. (2009); Schramm et al. (2010).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1051721
10.1107/S2056989015004272/lr2132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015004272/lr2132Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015004272/lr2132Isup3.docx
Supporting information file. DOI: 10.1107/S2056989015004272/lr2132Isup4.docx
Insertion of methylene units to the backbone of α-amino acids generates a family of amino acids referred to as ω-amino acids (Cheng et al., 2001; Seebach et al., 2004). β-Amino acids are obtained when a single methylene unit is added to the backbone of an α-amino acid. Compounds containing β-amino acids are ubiquitously found in biological systems (Seebach et al., 2004). The simplest β-amino acid, β-glycine, is a component of co-enzyme A, pantothenic acid and carnosine. β-amino acids have an additional degree of torsional freedom about the Cβ—Cα bond (θ) and this increases the conformational possibilities of formed of β-amino acids.
Interest in β-amino acids has resulted in a considerable body of work on the conformation of formed of β-amino acids (Seebach and Matthews, 1997; Gellman, 1998; Hill et al., 2001; Cheng et al., 2001; Seebach et al., 2004, 2005, 2006). Hybrid sequences containing α-, β- and higher ω-amino acids have also been investigated (Banerjee and Balaram, 1997; Karle et al., 1997; Gopi et al., 2002; Roy and Balaram, 2004; Ananda et al., 2005; Roy et al., 2005; Schmitt et al., 2005, 2006; Sharma et al., 2009; Schramm et al., 2010). Helical structures formed by β-peptides have been observed by several research groups (Seebach et al., 1996, 2005; Appella et al., 1996, 1997).
In case of β-amino acids, information regarding the conformational preferences can only be obtained by crystallographic characterization of synthetic unlike in case of α-amino acids where such information can be gathered from the crystal structures of proteins. This paper presents the crystallographic characterization of a synthetic peptide containing a β-glycine residue.
The first two glycine residues of the peptide molecule adopt extended conformations while the third glycine residue adopts a helical conformation. βGly(1) adopts torsion angle values φ1 = 146.5° and ψ1 = -155.9°. conformation is observed about the Cβ—Cα bond of the βGly(1) residue. Gly(2) adopts torsion angles φ2 = -61.0° and ψ2 = 151.4° while Gly(3) adopts torsion angle values φ3 = -137.2° and ψ3 = -170.4°. Since the is that of an achiral peptide crystallized in a centrosymmetric the choice of sign for torsion angles is arbitrary. There are no intramolecular hydrogen bonds in the crystal structure.
An analysis of the packing of molecules in the crystal revealed the presence of three intermolecular hydrogen bonds. Molecules related by the symmetry (-x, 1/2 + y, 1/2 - z) associate through hydrogen bonds resulting in columns of hydrogen bonded molecules extending along the crystallographic b-direction. Aggregation also occurs via intermolecular bifurcated hydrogen bonding involving a carbonyl oxygen and two donor NH groups.
The title compound was purchased commercially. Plate-like crystals of the title compound were obtained by slow evaporation from methanol/water solution.
The N-bound H atoms and H-atoms bound to C2A could be located from difference Fourier maps. The remaining C-bound H atoms were fixed geometrically in calculated positions and refined as riding atoms. During
H-atoms attached to aromatic rings were positioned with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) while methylene H-atoms were positioned with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).Insertion of methylene units to the backbone of α-amino acids generates a family of amino acids referred to as ω-amino acids (Cheng et al., 2001; Seebach et al., 2004). β-Amino acids are obtained when a single methylene unit is added to the backbone of an α-amino acid. Compounds containing β-amino acids are ubiquitously found in biological systems (Seebach et al., 2004). The simplest β-amino acid, β-glycine, is a component of co-enzyme A, pantothenic acid and carnosine. β-amino acids have an additional degree of torsional freedom about the Cβ—Cα bond (θ) and this increases the conformational possibilities of formed of β-amino acids.
Interest in β-amino acids has resulted in a considerable body of work on the conformation of formed of β-amino acids (Seebach and Matthews, 1997; Gellman, 1998; Hill et al., 2001; Cheng et al., 2001; Seebach et al., 2004, 2005, 2006). Hybrid sequences containing α-, β- and higher ω-amino acids have also been investigated (Banerjee and Balaram, 1997; Karle et al., 1997; Gopi et al., 2002; Roy and Balaram, 2004; Ananda et al., 2005; Roy et al., 2005; Schmitt et al., 2005, 2006; Sharma et al., 2009; Schramm et al., 2010). Helical structures formed by β-peptides have been observed by several research groups (Seebach et al., 1996, 2005; Appella et al., 1996, 1997).
In case of β-amino acids, information regarding the conformational preferences can only be obtained by crystallographic characterization of synthetic unlike in case of α-amino acids where such information can be gathered from the crystal structures of proteins. This paper presents the crystallographic characterization of a synthetic peptide containing a β-glycine residue.
The first two glycine residues of the peptide molecule adopt extended conformations while the third glycine residue adopts a helical conformation. βGly(1) adopts torsion angle values φ1 = 146.5° and ψ1 = -155.9°. conformation is observed about the Cβ—Cα bond of the βGly(1) residue. Gly(2) adopts torsion angles φ2 = -61.0° and ψ2 = 151.4° while Gly(3) adopts torsion angle values φ3 = -137.2° and ψ3 = -170.4°. Since the is that of an achiral peptide crystallized in a centrosymmetric the choice of sign for torsion angles is arbitrary. There are no intramolecular hydrogen bonds in the crystal structure.
An analysis of the packing of molecules in the crystal revealed the presence of three intermolecular hydrogen bonds. Molecules related by the symmetry (-x, 1/2 + y, 1/2 - z) associate through hydrogen bonds resulting in columns of hydrogen bonded molecules extending along the crystallographic b-direction. Aggregation also occurs via intermolecular bifurcated hydrogen bonding involving a carbonyl oxygen and two donor NH groups.
For comprehensive reviews on β-amino acids and β-peptides, see: Cheng et al. (2001); Seebach et al. (2004). For conformation and structural features of β-peptides, see: Appella et al. (1996, 1997); Seebach & Matthews (1997); Gellman (1998); Hill et al. (2001); Seebach et al. (1996, 2005, 2006). For the conformations of hybrid peptide sequences formed of α-, β- and higher ω-amino acids, see: Banerjee & Balaram (1997); Karle et al. (1997); Gopi et al. (2002); Roy & Balaram (2004); Ananda et al. (2005); Roy et al. (2005); Schmitt et al. (2005, 2006); Sharma et al. (2009); Schramm et al. (2010).
The title compound was purchased commercially. Plate-like crystals of the title compound were obtained by slow evaporation from methanol/water solution.
detailsThe N-bound H atoms and H-atoms bound to C2A could be located from difference Fourier maps. The remaining C-bound H atoms were fixed geometrically in calculated positions and refined as riding atoms. During
H-atoms attached to aromatic rings were positioned with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) while methylene H-atoms were positioned with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Thermal Ellipsoid plot of NCbz-β Gly-Gly-Gly-Obz drawn at 50% probability level. Hydrogen atoms have been omitted for clarity. | |
Fig. 2. A view of the packing of NCbz-βGly-Gly-Gly-Obz as viewed down the b-axis. Intermolecular hydrogen bonds are represented as dotted lines. | |
Fig. 3. Atomic labeling and definition of backbone torsion angles in case of β-residues. |
C22H25N3O6 | Z = 4 |
Mr = 427.45 | F(000) = 904 |
Monoclinic, P21/c | Dx = 1.328 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 24.713 (3) Å | µ = 0.10 mm−1 |
b = 9.6794 (10) Å | T = 293 K |
c = 8.9445 (10) Å | Platy, colourless |
β = 92.257 (5)° | 0.4 × 0.2 × 0.04 mm |
V = 2137.9 (4) Å3 |
Bruker Kappa APEXII CCD diffractometer | 5253 independent reflections |
Radiation source: fine-focus sealed tube | 2790 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scan | θmax = 29.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −32→32 |
Tmin = 0.623, Tmax = 0.746 | k = −12→12 |
17172 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.096 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.326 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1714P)2 + 1.0437P] where P = (Fo2 + 2Fc2)/3 |
5253 reflections | (Δ/σ)max = 0.002 |
300 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
C22H25N3O6 | V = 2137.9 (4) Å3 |
Mr = 427.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 24.713 (3) Å | µ = 0.10 mm−1 |
b = 9.6794 (10) Å | T = 293 K |
c = 8.9445 (10) Å | 0.4 × 0.2 × 0.04 mm |
β = 92.257 (5)° |
Bruker Kappa APEXII CCD diffractometer | 5253 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2790 reflections with I > 2σ(I) |
Tmin = 0.623, Tmax = 0.746 | Rint = 0.031 |
17172 measured reflections |
R[F2 > 2σ(F2)] = 0.096 | 0 restraints |
wR(F2) = 0.326 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.36 e Å−3 |
5253 reflections | Δρmin = −0.48 e Å−3 |
300 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H1 | −0.1225 (17) | 0.939 (5) | 0.538 (4) | 0.076 (13)* | |
H3 | 0.1457 (19) | 0.725 (5) | 0.070 (5) | 0.090 (14)* | |
H2 | 0.0217 (15) | 1.030 (4) | 0.199 (4) | 0.065 (10)* | |
H5 | 0.0956 (12) | 0.980 (3) | 0.076 (3) | 0.049 (8)* | |
H4 | 0.0636 (16) | 0.839 (4) | 0.028 (5) | 0.080 (11)* | |
O1 | 0.00828 (10) | 0.7312 (2) | 0.2548 (3) | 0.0649 (7) | |
O2 | 0.12260 (10) | 0.8556 (2) | 0.3578 (2) | 0.0591 (6) | |
N2 | 0.03006 (12) | 0.9470 (3) | 0.1942 (3) | 0.0547 (7) | |
O08 | −0.19841 (12) | 0.8357 (2) | 0.6131 (3) | 0.0756 (8) | |
C2' | 0.11788 (14) | 0.8269 (3) | 0.2236 (3) | 0.0493 (7) | |
N3 | 0.14819 (13) | 0.7339 (3) | 0.1580 (3) | 0.0570 (7) | |
C2A | 0.07814 (14) | 0.9016 (3) | 0.1194 (3) | 0.0513 (8) | |
C1' | −0.00243 (15) | 0.8557 (3) | 0.2570 (3) | 0.0556 (8) | |
N1 | −0.12109 (16) | 0.8660 (3) | 0.5058 (4) | 0.0796 (11) | |
O0 | −0.15371 (13) | 0.6498 (3) | 0.5322 (3) | 0.0879 (9) | |
O4 | 0.27562 (12) | 0.5598 (3) | 0.2021 (3) | 0.0794 (8) | |
C3A | 0.19058 (15) | 0.6565 (3) | 0.2351 (3) | 0.0618 (9) | |
H3A1 | 0.1777 | 0.5640 | 0.2558 | 0.074* | |
H3A2 | 0.2000 | 0.7008 | 0.3298 | 0.074* | |
C3' | 0.24000 (15) | 0.6480 (3) | 0.1422 (3) | 0.0576 (8) | |
C1A | −0.05199 (16) | 0.9118 (3) | 0.3264 (4) | 0.0690 (10) | |
H1A1 | −0.0438 | 1.0014 | 0.3701 | 0.083* | |
H1A2 | −0.0803 | 0.9244 | 0.2493 | 0.083* | |
O3 | 0.24681 (12) | 0.7125 (3) | 0.0322 (3) | 0.0932 (10) | |
C02 | −0.27765 (19) | 0.9393 (4) | 0.8130 (4) | 0.0769 (11) | |
H02 | −0.2429 | 0.9693 | 0.8405 | 0.092* | |
C41 | 0.37438 (18) | 0.5699 (4) | 0.2075 (4) | 0.0718 (11) | |
C01 | −0.28408 (18) | 0.8251 (4) | 0.7229 (4) | 0.0675 (10) | |
C07 | −0.23646 (18) | 0.7421 (4) | 0.6764 (5) | 0.0773 (11) | |
H07A | −0.2198 | 0.6951 | 0.7623 | 0.093* | |
H07B | −0.2479 | 0.6733 | 0.6030 | 0.093* | |
C0' | −0.15636 (17) | 0.7739 (3) | 0.5494 (4) | 0.0674 (10) | |
C05 | −0.3807 (2) | 0.8538 (5) | 0.7305 (5) | 0.0931 (13) | |
H05 | −0.4155 | 0.8253 | 0.7019 | 0.112* | |
C1B | −0.0713 (2) | 0.8209 (5) | 0.4406 (5) | 0.0958 (16) | |
H1B1 | −0.0435 | 0.8126 | 0.5196 | 0.115* | |
H1B2 | −0.0771 | 0.7298 | 0.3976 | 0.115* | |
C42 | 0.3766 (2) | 0.6760 (5) | 0.3076 (5) | 0.0898 (14) | |
H42 | 0.3455 | 0.7262 | 0.3262 | 0.108* | |
C47 | 0.32398 (19) | 0.5314 (5) | 0.1195 (5) | 0.0872 (13) | |
H47A | 0.3223 | 0.5830 | 0.0264 | 0.105* | |
H47B | 0.3251 | 0.4338 | 0.0950 | 0.105* | |
C04 | −0.3732 (2) | 0.9655 (5) | 0.8217 (6) | 0.0973 (15) | |
H04 | −0.4031 | 1.0124 | 0.8565 | 0.117* | |
C03 | −0.3215 (2) | 1.0095 (5) | 0.8629 (5) | 0.0915 (13) | |
H03 | −0.3165 | 1.0865 | 0.9241 | 0.110* | |
C46 | 0.4205 (2) | 0.4963 (5) | 0.1821 (6) | 0.0921 (13) | |
H46 | 0.4192 | 0.4236 | 0.1140 | 0.110* | |
C06 | −0.3362 (2) | 0.7829 (4) | 0.6806 (5) | 0.0812 (12) | |
H06 | −0.3412 | 0.7067 | 0.6184 | 0.097* | |
C44 | 0.4706 (3) | 0.6345 (6) | 0.3560 (6) | 0.1102 (17) | |
H44 | 0.5030 | 0.6563 | 0.4069 | 0.132* | |
C45 | 0.4691 (2) | 0.5289 (6) | 0.2569 (7) | 0.1087 (16) | |
H45 | 0.5003 | 0.4787 | 0.2391 | 0.130* | |
C43 | 0.4254 (3) | 0.7092 (6) | 0.3820 (6) | 0.1114 (19) | |
H43 | 0.4270 | 0.7824 | 0.4493 | 0.134* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0805 (17) | 0.0314 (10) | 0.0850 (16) | 0.0001 (10) | 0.0296 (13) | 0.0009 (10) |
O2 | 0.0866 (17) | 0.0504 (11) | 0.0408 (10) | 0.0104 (11) | 0.0110 (10) | −0.0026 (8) |
N2 | 0.0747 (19) | 0.0301 (11) | 0.0610 (14) | 0.0063 (12) | 0.0226 (13) | 0.0056 (10) |
O08 | 0.0919 (19) | 0.0478 (12) | 0.0901 (17) | 0.0053 (12) | 0.0418 (15) | −0.0023 (11) |
C2' | 0.073 (2) | 0.0336 (12) | 0.0429 (13) | −0.0043 (13) | 0.0195 (13) | 0.0007 (10) |
N3 | 0.080 (2) | 0.0487 (14) | 0.0428 (13) | 0.0124 (13) | 0.0082 (12) | −0.0041 (11) |
C2A | 0.069 (2) | 0.0389 (13) | 0.0473 (14) | 0.0048 (14) | 0.0177 (14) | 0.0096 (12) |
C1' | 0.073 (2) | 0.0342 (13) | 0.0610 (16) | 0.0038 (14) | 0.0187 (15) | 0.0019 (12) |
N1 | 0.102 (3) | 0.0498 (16) | 0.091 (2) | 0.0121 (17) | 0.053 (2) | 0.0010 (16) |
O0 | 0.109 (2) | 0.0499 (14) | 0.107 (2) | 0.0084 (14) | 0.0342 (18) | −0.0139 (13) |
O4 | 0.0870 (18) | 0.0826 (17) | 0.0705 (14) | 0.0332 (15) | 0.0259 (13) | 0.0257 (13) |
C3A | 0.084 (2) | 0.0523 (17) | 0.0496 (15) | 0.0149 (17) | 0.0118 (15) | 0.0027 (13) |
C3' | 0.076 (2) | 0.0447 (15) | 0.0525 (16) | −0.0003 (15) | 0.0087 (15) | 0.0006 (13) |
C1A | 0.074 (2) | 0.0430 (16) | 0.092 (2) | 0.0066 (16) | 0.0323 (19) | 0.0056 (16) |
O3 | 0.088 (2) | 0.110 (2) | 0.0832 (18) | 0.0185 (17) | 0.0207 (15) | 0.0444 (17) |
C02 | 0.092 (3) | 0.060 (2) | 0.080 (2) | 0.000 (2) | 0.022 (2) | −0.0021 (18) |
C41 | 0.095 (3) | 0.0567 (19) | 0.0655 (19) | 0.0159 (19) | 0.027 (2) | 0.0156 (16) |
C01 | 0.087 (3) | 0.0499 (17) | 0.0670 (19) | −0.0021 (18) | 0.0212 (18) | 0.0065 (15) |
C07 | 0.087 (3) | 0.0515 (18) | 0.095 (3) | 0.0002 (19) | 0.027 (2) | 0.0023 (18) |
C0' | 0.091 (3) | 0.0515 (18) | 0.0609 (18) | 0.0132 (18) | 0.0239 (18) | −0.0045 (14) |
C05 | 0.097 (3) | 0.083 (3) | 0.101 (3) | 0.002 (3) | 0.015 (3) | 0.013 (3) |
C1B | 0.110 (4) | 0.081 (3) | 0.100 (3) | 0.039 (3) | 0.062 (3) | 0.032 (2) |
C42 | 0.113 (4) | 0.071 (2) | 0.088 (3) | 0.011 (3) | 0.034 (3) | 0.003 (2) |
C47 | 0.097 (3) | 0.095 (3) | 0.072 (2) | 0.034 (3) | 0.026 (2) | 0.008 (2) |
C04 | 0.108 (4) | 0.073 (3) | 0.114 (3) | 0.013 (3) | 0.040 (3) | 0.011 (3) |
C03 | 0.115 (4) | 0.065 (2) | 0.097 (3) | 0.000 (3) | 0.038 (3) | −0.009 (2) |
C46 | 0.102 (4) | 0.069 (2) | 0.107 (3) | 0.015 (3) | 0.017 (3) | −0.008 (2) |
C06 | 0.099 (3) | 0.064 (2) | 0.082 (2) | −0.009 (2) | 0.016 (2) | −0.0005 (19) |
C44 | 0.111 (4) | 0.105 (4) | 0.116 (4) | −0.017 (3) | 0.023 (3) | −0.006 (3) |
C45 | 0.094 (4) | 0.092 (3) | 0.140 (4) | 0.012 (3) | 0.011 (3) | −0.014 (3) |
C43 | 0.140 (5) | 0.090 (3) | 0.108 (4) | −0.016 (3) | 0.043 (4) | −0.023 (3) |
O1—C1' | 1.234 (3) | C02—H02 | 0.9300 |
O2—C2' | 1.234 (3) | C41—C42 | 1.362 (6) |
N2—C1' | 1.333 (4) | C41—C46 | 1.371 (6) |
N2—C2A | 1.454 (4) | C41—C47 | 1.495 (6) |
N2—H2 | 0.83 (4) | C01—C06 | 1.389 (6) |
O08—C0' | 1.345 (4) | C01—C07 | 1.497 (5) |
O08—C07 | 1.438 (4) | C07—H07A | 0.9700 |
C2'—N3 | 1.323 (4) | C07—H07B | 0.9700 |
C2'—C2A | 1.511 (5) | C05—C04 | 1.362 (7) |
N3—C3A | 1.441 (4) | C05—C06 | 1.386 (6) |
N3—H3 | 0.79 (5) | C05—H05 | 0.9300 |
C2A—H5 | 0.96 (3) | C1B—H1B1 | 0.9700 |
C2A—H4 | 1.07 (4) | C1B—H1B2 | 0.9700 |
C1'—C1A | 1.496 (5) | C42—C43 | 1.391 (8) |
N1—C0' | 1.317 (5) | C42—H42 | 0.9300 |
N1—C1B | 1.449 (5) | C47—H47A | 0.9700 |
N1—H1 | 0.76 (4) | C47—H47B | 0.9700 |
O0—C0' | 1.214 (4) | C04—C03 | 1.384 (8) |
O4—C3' | 1.324 (4) | C04—H04 | 0.9300 |
O4—C47 | 1.456 (5) | C03—H03 | 0.9300 |
C3A—C3' | 1.506 (5) | C46—C45 | 1.388 (8) |
C3A—H3A1 | 0.9700 | C46—H46 | 0.9300 |
C3A—H3A2 | 0.9700 | C06—H06 | 0.9300 |
C3'—O3 | 1.183 (4) | C44—C45 | 1.352 (7) |
C1A—C1B | 1.444 (5) | C44—C43 | 1.359 (8) |
C1A—H1A1 | 0.9700 | C44—H44 | 0.9300 |
C1A—H1A2 | 0.9700 | C45—H45 | 0.9300 |
C02—C03 | 1.369 (6) | C43—H43 | 0.9300 |
C02—C01 | 1.373 (5) | ||
C1'—N2—C2A | 120.7 (2) | O08—C07—H07A | 110.2 |
C1'—N2—H2 | 118 (3) | C01—C07—H07A | 110.2 |
C2A—N2—H2 | 121 (3) | O08—C07—H07B | 110.2 |
C0'—O08—C07 | 114.5 (3) | C01—C07—H07B | 110.2 |
O2—C2'—N3 | 123.5 (3) | H07A—C07—H07B | 108.5 |
O2—C2'—C2A | 121.8 (3) | O0—C0'—N1 | 126.4 (3) |
N3—C2'—C2A | 114.7 (2) | O0—C0'—O08 | 122.7 (4) |
C2'—N3—C3A | 123.7 (3) | N1—C0'—O08 | 110.9 (3) |
C2'—N3—H3 | 120 (3) | C04—C05—C06 | 119.7 (5) |
C3A—N3—H3 | 116 (3) | C04—C05—H05 | 120.1 |
N2—C2A—C2' | 112.6 (2) | C06—C05—H05 | 120.1 |
N2—C2A—H5 | 109.7 (18) | C1A—C1B—N1 | 114.3 (3) |
C2'—C2A—H5 | 109.6 (18) | C1A—C1B—H1B1 | 108.7 |
N2—C2A—H4 | 105 (2) | N1—C1B—H1B1 | 108.7 |
C2'—C2A—H4 | 113 (2) | C1A—C1B—H1B2 | 108.7 |
H5—C2A—H4 | 106 (3) | N1—C1B—H1B2 | 108.7 |
O1—C1'—N2 | 120.5 (3) | H1B1—C1B—H1B2 | 107.6 |
O1—C1'—C1A | 122.7 (3) | C41—C42—C43 | 120.1 (5) |
N2—C1'—C1A | 116.8 (3) | C41—C42—H42 | 120.0 |
C0'—N1—C1B | 119.8 (3) | C43—C42—H42 | 120.0 |
C0'—N1—H1 | 118 (3) | O4—C47—C41 | 111.7 (3) |
C1B—N1—H1 | 119 (3) | O4—C47—H47A | 109.3 |
C3'—O4—C47 | 117.6 (3) | C41—C47—H47A | 109.3 |
N3—C3A—C3' | 110.8 (3) | O4—C47—H47B | 109.3 |
N3—C3A—H3A1 | 109.5 | C41—C47—H47B | 109.3 |
C3'—C3A—H3A1 | 109.5 | H47A—C47—H47B | 107.9 |
N3—C3A—H3A2 | 109.5 | C03—C04—C05 | 120.4 (5) |
C3'—C3A—H3A2 | 109.5 | C03—C04—H04 | 119.8 |
H3A1—C3A—H3A2 | 108.1 | C05—C04—H04 | 119.8 |
O3—C3'—O4 | 124.2 (3) | C04—C03—C02 | 119.7 (4) |
O3—C3'—C3A | 125.1 (3) | C04—C03—H03 | 120.2 |
O4—C3'—C3A | 110.7 (3) | C02—C03—H03 | 120.2 |
C1B—C1A—C1' | 111.8 (3) | C41—C46—C45 | 120.7 (5) |
C1B—C1A—H1A1 | 109.3 | C41—C46—H46 | 119.7 |
C1'—C1A—H1A1 | 109.3 | C45—C46—H46 | 119.7 |
C1B—C1A—H1A2 | 109.3 | C01—C06—C05 | 120.4 (4) |
C1'—C1A—H1A2 | 109.3 | C01—C06—H06 | 119.8 |
H1A1—C1A—H1A2 | 107.9 | C05—C06—H06 | 119.8 |
C03—C02—C01 | 121.1 (5) | C45—C44—C43 | 120.8 (6) |
C03—C02—H02 | 119.5 | C45—C44—H44 | 119.6 |
C01—C02—H02 | 119.5 | C43—C44—H44 | 119.6 |
C42—C41—C46 | 119.2 (5) | C44—C45—C46 | 119.3 (6) |
C42—C41—C47 | 123.1 (4) | C44—C45—H45 | 120.3 |
C46—C41—C47 | 117.6 (4) | C46—C45—H45 | 120.3 |
C02—C01—C06 | 118.7 (4) | C44—C43—C42 | 119.9 (5) |
C02—C01—C07 | 121.4 (4) | C44—C43—H43 | 120.1 |
C06—C01—C07 | 119.8 (3) | C42—C43—H43 | 120.1 |
O08—C07—C01 | 107.7 (3) | ||
O2—C2'—N3—C3A | −0.8 (5) | C07—O08—C0'—O0 | 7.7 (6) |
C2A—C2'—N3—C3A | 176.5 (3) | C07—O08—C0'—N1 | −174.6 (4) |
C1'—N2—C2A—C2' | −61.0 (4) | C1'—C1A—C1B—N1 | −176.6 (4) |
O2—C2'—C2A—N2 | −31.3 (4) | C0'—N1—C1B—C1A | 146.5 (5) |
N3—C2'—C2A—N2 | 151.4 (3) | C46—C41—C42—C43 | 0.4 (6) |
C2A—N2—C1'—O1 | 1.2 (5) | C47—C41—C42—C43 | −177.8 (4) |
C2A—N2—C1'—C1A | −177.8 (3) | C3'—O4—C47—C41 | 119.7 (4) |
C2'—N3—C3A—C3' | −137.2 (3) | C42—C41—C47—O4 | −31.4 (5) |
C47—O4—C3'—O3 | −5.8 (6) | C46—C41—C47—O4 | 150.4 (4) |
C47—O4—C3'—C3A | 175.3 (3) | C06—C05—C04—C03 | 0.9 (7) |
N3—C3A—C3'—O3 | 10.8 (5) | C05—C04—C03—C02 | −0.8 (7) |
N3—C3A—C3'—O4 | −170.4 (3) | C01—C02—C03—C04 | −0.2 (7) |
O1—C1'—C1A—C1B | 25.1 (6) | C42—C41—C46—C45 | −0.1 (7) |
N2—C1'—C1A—C1B | −155.9 (4) | C47—C41—C46—C45 | 178.2 (4) |
C03—C02—C01—C06 | 1.1 (6) | C02—C01—C06—C05 | −1.0 (6) |
C03—C02—C01—C07 | −175.8 (4) | C07—C01—C06—C05 | 176.0 (4) |
C0'—O08—C07—C01 | −172.3 (3) | C04—C05—C06—C01 | 0.0 (6) |
C02—C01—C07—O08 | −52.3 (5) | C43—C44—C45—C46 | −0.5 (9) |
C06—C01—C07—O08 | 130.8 (4) | C41—C46—C45—C44 | 0.1 (8) |
C1B—N1—C0'—O0 | −5.3 (7) | C45—C44—C43—C42 | 0.9 (9) |
C1B—N1—C0'—O08 | 177.1 (4) | C41—C42—C43—C44 | −0.8 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.83 (4) | 2.13 (4) | 2.951 (3) | 169 (4) |
N3—H3···O2ii | 0.79 (5) | 2.11 (5) | 2.868 (3) | 161 (5) |
N1—H1···O2iii | 0.76 (5) | 2.20 (5) | 2.959 (4) | 176 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.83 (4) | 2.13 (4) | 2.951 (3) | 169 (4) |
N3—H3···O2ii | 0.79 (5) | 2.11 (5) | 2.868 (3) | 161 (5) |
N1—H1···O2iii | 0.76 (5) | 2.20 (5) | 2.959 (4) | 176 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1. |
Acknowledgements
Financial assistances from the Indian Institute of Science, Bangalore, and the Council of Scientific and Industrial Research (CSIR), India, are gratefully acknowledged. The X-ray diffraction facility at the IISc, Bangalore, is acknowledged.
References
Ananda, K., Vasudev, P. G., Sengupta, A., Raja, K. M. P., Shamala, N. & Balaram, P. (2005). J. Am. Chem. Soc. 127, 16668–16674. Web of Science CSD CrossRef PubMed CAS Google Scholar
Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. (1996). J. Am. Chem. Soc. 118, 13071–13072. CSD CrossRef CAS Web of Science Google Scholar
Appella, D. H., Christianson, L. A., Klein, D. A., Powell, D. R., Huang, X., Barchi, J. J. Jr & Gellman, S. H. (1997). Nature, 387, 381–384. CrossRef CAS PubMed Web of Science Google Scholar
Banerjee, A. & Balaram, P. (1997). Curr. Sci. 73, 1067–1077. CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, R. P., Gellman, S. H. & DeGrado, W. F. (2001). Chem. Rev. 101, 3219–3232. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gellman, S. H. (1998). Acc. Chem. Res. 31, 173–180. Web of Science CrossRef CAS Google Scholar
Gopi, H. N., Roy, R. S., Raghothama, S. R., Karle, I. L. & Balaram, P. (2002). Helv. Chim. Acta, 85, 3313–3330. Web of Science CSD CrossRef CAS Google Scholar
Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3893–4012. Web of Science CrossRef PubMed CAS Google Scholar
Karle, I. L., Pramanik, A., Banerjee, A., Bhattacharjya, S. & Balaram, P. (1997). J. Am. Chem. Soc. 119, 9087–9095. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Roy, R. S. & Balaram, P. (2004). J. Pept. Res. 63, 279–289. Web of Science CrossRef PubMed CAS Google Scholar
Roy, R. S., Gopi, H. N., Raghothama, S., Gilardi, R. D., Karle, I. L. & Balaram, P. (2005). Biopolymers, 80, 787–799. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2005). J. Am. Chem. Soc. 127, 13130–13131. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2006). J. Am. Chem. Soc. 128, 4538–4539. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schramm, P., Sharma, G. V. & Hofmann, H. J. (2010). Biopolymers, 94, 279–291. Web of Science CrossRef PubMed CAS Google Scholar
Seebach, D., Beck, A. K. & Bierbaum, D. J. (2004). Chem. Biodivers. 1, 1111–1239. Web of Science CrossRef PubMed CAS Google Scholar
Seebach, D., Hook, D. F. & Glättli, A. (2006). Biopolymers, 84, 23–37. Web of Science CrossRef PubMed CAS Google Scholar
Seebach, D., Mathad, R. I., Kimmerlin, T., Mahajan, Y. R., Bindschädler, P., Rueping, M., Jaun, B., Hilty, C. & Etezady-Esfarjani, T. (2005). Helv. Chim. Acta, 88, 1969–1982. Web of Science CrossRef CAS Google Scholar
Seebach, D. & Matthews, J. L. (1997). Chem. Commun. pp. 2015–2022. CrossRef Web of Science Google Scholar
Seebach, D., Overhand, M., Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U. & Widmer, H. (1996). Helv. Chim. Acta, 79, 913–941. CSD CrossRef CAS Web of Science Google Scholar
Sharma, G. V., Babu, B. S., Ramakrishna, K. V., Nagendar, P., Kunwar, A. C., Schramm, P., Baldauf, C. & Hofmann, H. J. (2009). Chem. Eur. J. 15, 5552–5566. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.