metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m93-m94

Crystal structure of bis­­{(Z)-(benzyl­amino)[(5Z)-2-(benzyl­imino-κN)-5-(2-meth­­oxy-2-oxo­ethyl­­idene)-4-oxo­thio­lan-3-yl­­idene]methane­thiol­ato-κS}copper(II)

CROSSMARK_Color_square_no_text.svg

aUral Federal University, Mira 19 Ekaterinburg 620002, Russian Federation, and bI. Postovsky Institute of Organic Synthesis, Kovalevskoy 22 Ekaterinburg 620090, Russian Federation
*Correspondence e-mail: k.l.obydennov@urfu.ru

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife (Received 24 February 2015; accepted 11 March 2015; online 21 March 2015)

The title complex, [Cu(C22H19N2O3S2)2], was obtained from the reaction between (Z)-methyl 2-(5-benzyl­imino-4-benzyl­carbamo­thioyl-3-oxo­thio­lan-2-yl­idene)acetate and Cu(NO3)2. The CuII atom is tetra­coordinated by two N,S-bidentate ligands, forming a highly distorted tetra­hedral environment. The structure displays two intra­molecular N—H⋯O hydrogen bonds.

1. Related literature

For synthesis and applications of thio­amide complexes, see: Jiang et al. (2013[Jiang, Q., He, L.-T., Luo, S.-Z., Yang, Y.-Q., Yang, L., Feng, W. & Yuan, L.-H. (2013). Chin. Chem. Lett. 24, 881-884.]); Zieliński & Jurczak (2005[Zieliński, T. & Jurczak, J. (2005). Tetrahedron, 61, 4081-4089. .]); Arena et al. (2001[Arena, G., Contino, A., Longo, E., Sciotto, D. & Spoto, G. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2287-2291.]); Shamkhy et al. (2013[Shamkhy, E. T., Al-Karkhi, I. H. T. & Jaffar Al-Mulla, E. A. (2013). Res. Chem. Intermed. 39, 2463-2471.]). For the importance of copper in biological systems, see: Siegel (1973[Siegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker.]); Mohan et al. (1998[Mohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem. 10, 50-55.]). For the synthesis of the title compound, see: Obydennov et al. (2013[Obydennov, K. L., Klimareva, E. L., Kosterina, M. F., Slepukhin, P. A. & Morzherin, Yu. Yu. (2013). Tetrahedron Lett. 54, 4876-4879.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C22H19N2O3S2)2]

  • Mr = 910.56

  • Triclinic, [P \overline 1]

  • a = 10.7595 (6) Å

  • b = 11.6318 (5) Å

  • c = 18.8162 (8) Å

  • α = 104.846 (4)°

  • β = 91.038 (4)°

  • γ = 109.119 (4)°

  • V = 2137.25 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 295 K

  • 0.28 × 0.11 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.769, Tmax = 1.000

  • 20682 measured reflections

  • 11592 independent reflections

  • 5788 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 1.01

  • 11592 reflections

  • 534 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—S1 2.2387 (10)
Cu1—S2 2.2341 (8)
Cu1—N2 1.976 (3)
Cu1—N3 1.969 (3)
S2—Cu1—S1 91.69 (3)
N2—Cu1—S1 96.02 (8)
N2—Cu1—S2 144.94 (9)
N3—Cu1—S1 144.11 (9)
N3—Cu1—S2 97.17 (7)
N3—Cu1—N2 96.32 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.87 2.604 (4) 142
N4—H4⋯O4 0.86 1.88 2.612 (3) 141

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

The structure of the title complex, (I), C44H38CuN4O6S4, has triclinic (P1) symmetry. The ligands form two six-membered cycles with the including in the coordination of the N-atoms of the benzyl­amino-groups and S-atoms of the thio­amide moiety (Fig.1). Metallocycles are non-planar, been in the "pseudo-cover" conformation in which Cu-atoms are deviated from the least-squared planes of the atoms S1N2C6C5C7 and C15C23C27N3S2 on the distances 0.697 and 0.548 Å accordingly. The nearest coordination of the central ion is the distorted tetra­hedron (Table 2). Deviations from the ideal in the tetra­hedron geometry are very serious, so the coordination of the Cu2+-ion is may regard also as distorted squared. In this case S-atoms with inter­atomic angle S1Cu1S2 91.7o occupy the cis-positions toward Cu-atom. Due to strong π-conjugation in the metallocycle, the bonds lengths of the 2p-atoms in the metallocycles have the medium magnitude between the thio­enamine and mercaptoenimine configurations, and we can`t make conclusion about dominated form of the ligand in the complex. Most principal elements of the structure which together the central ion ordered the conformation of the ligands are intra­molecular H-bond NH···O between NH-group of the thio­amide moiety and CO-group in the thio­phene moiety, and also polar S···O contact between the S-atom in the thio­phene ring and CO-group of the COOMe-substituent which. This contact fixed COOMe-substituent in the plane of the thio­phene moietiy. No any shortened inter­molecular contacts in the crystal presented.

Synthesis and crystallization top

The title complex was synthesized by the addition of Cu(NO3)2 (1 mmol) to an ethanol - chloro­form solution of (Z)-methyl 2-(5-(benzyl­amino)-4-(benzyl­carbamo­thioyl)-3-oxothien-2(3H)-yl­idene)acetate (2 mmol) (Obydennov et al., 2013). The mixture was stirred for 5 hr. The resulting deep green solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for several days, and dark green prismatic crystals were isolated. M.p. 175-177 °C.

Refinement top

The non-hydrogen atoms were refined in the anisotropic approximation, hydrogen atoms were included in the refinement isotropically in the "riding" model with C—H = 0.93 Å for aryl, 0.96 Å for methine and 0.96 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms. Final results of the refinement: R1 = 0.0577, wR2 = 0.1280 [I>=2σ (I)], R1 = 0.1278, wR2 = 0.1623 (all data), GooF= 1.005, Δρē= 0.55/-0.26 ē/Å3.

Related literature top

For synthesis and applications of thioamide complexes, see: Jiang et al. (2013); Zieliński & Jurczak (2005); Arena et al. (2001); Shamkhy et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For the synthesis of the title compound, see: Obydennov et al. (2013).

Structure description top

The structure of the title complex, (I), C44H38CuN4O6S4, has triclinic (P1) symmetry. The ligands form two six-membered cycles with the including in the coordination of the N-atoms of the benzyl­amino-groups and S-atoms of the thio­amide moiety (Fig.1). Metallocycles are non-planar, been in the "pseudo-cover" conformation in which Cu-atoms are deviated from the least-squared planes of the atoms S1N2C6C5C7 and C15C23C27N3S2 on the distances 0.697 and 0.548 Å accordingly. The nearest coordination of the central ion is the distorted tetra­hedron (Table 2). Deviations from the ideal in the tetra­hedron geometry are very serious, so the coordination of the Cu2+-ion is may regard also as distorted squared. In this case S-atoms with inter­atomic angle S1Cu1S2 91.7o occupy the cis-positions toward Cu-atom. Due to strong π-conjugation in the metallocycle, the bonds lengths of the 2p-atoms in the metallocycles have the medium magnitude between the thio­enamine and mercaptoenimine configurations, and we can`t make conclusion about dominated form of the ligand in the complex. Most principal elements of the structure which together the central ion ordered the conformation of the ligands are intra­molecular H-bond NH···O between NH-group of the thio­amide moiety and CO-group in the thio­phene moiety, and also polar S···O contact between the S-atom in the thio­phene ring and CO-group of the COOMe-substituent which. This contact fixed COOMe-substituent in the plane of the thio­phene moietiy. No any shortened inter­molecular contacts in the crystal presented.

For synthesis and applications of thioamide complexes, see: Jiang et al. (2013); Zieliński & Jurczak (2005); Arena et al. (2001); Shamkhy et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For the synthesis of the title compound, see: Obydennov et al. (2013).

Synthesis and crystallization top

The title complex was synthesized by the addition of Cu(NO3)2 (1 mmol) to an ethanol - chloro­form solution of (Z)-methyl 2-(5-(benzyl­amino)-4-(benzyl­carbamo­thioyl)-3-oxothien-2(3H)-yl­idene)acetate (2 mmol) (Obydennov et al., 2013). The mixture was stirred for 5 hr. The resulting deep green solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for several days, and dark green prismatic crystals were isolated. M.p. 175-177 °C.

Refinement details top

The non-hydrogen atoms were refined in the anisotropic approximation, hydrogen atoms were included in the refinement isotropically in the "riding" model with C—H = 0.93 Å for aryl, 0.96 Å for methine and 0.96 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms. Final results of the refinement: R1 = 0.0577, wR2 = 0.1280 [I>=2σ (I)], R1 = 0.1278, wR2 = 0.1623 (all data), GooF= 1.005, Δρē= 0.55/-0.26 ē/Å3.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Bis{(Z)-(benzylamino)[(5Z)-2-(benzylimino-κN)-5-(2-methoxy-2-oxoethylidene)-4-oxothiolan-3-ylidene]methanethiolato-κS}copper(II) top
Crystal data top
[Cu(C22H19N2O3S2)2]F(000) = 942
Mr = 910.56Dx = 1.415 Mg m3
Triclinic, P1Melting point = 448–450 K
a = 10.7595 (6) ÅMo Kα radiation, λ = 0.7107 Å
b = 11.6318 (5) ÅCell parameters from 4392 reflections
c = 18.8162 (8) Åθ = 2.2–28.9°
α = 104.846 (4)°µ = 0.76 mm1
β = 91.038 (4)°T = 295 K
γ = 109.119 (4)°Plate, brown–green
V = 2137.25 (18) Å30.28 × 0.11 × 0.03 mm
Z = 2
Data collection top
Agilent Xcalibur Eos
diffractometer
11592 independent reflections
Radiation source: Enhance (Mo) X-ray Source5788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 15.9555 pixels mm-1θmax = 30.8°, θmin = 1.9°
ω scansh = 915
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.769, Tmax = 1.000l = 2626
20682 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
11592 reflections(Δ/σ)max = 0.001
534 parametersΔρmax = 0.55 e Å3
18 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(C22H19N2O3S2)2]γ = 109.119 (4)°
Mr = 910.56V = 2137.25 (18) Å3
Triclinic, P1Z = 2
a = 10.7595 (6) ÅMo Kα radiation
b = 11.6318 (5) ŵ = 0.76 mm1
c = 18.8162 (8) ÅT = 295 K
α = 104.846 (4)°0.28 × 0.11 × 0.03 mm
β = 91.038 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
11592 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5788 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1.000Rint = 0.032
20682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05818 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.55 e Å3
11592 reflectionsΔρmin = 0.26 e Å3
534 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40787 (4)0.74099 (3)0.72941 (2)0.05996 (16)
S10.51282 (11)0.79437 (8)0.84313 (6)0.0751 (3)
S20.38829 (9)0.53810 (6)0.71147 (5)0.0575 (2)
S30.40369 (9)0.68404 (6)0.47870 (5)0.0562 (2)
S40.27743 (11)1.08801 (7)0.80003 (5)0.0688 (3)
O10.5766 (3)1.2189 (2)0.94766 (17)0.1086 (11)
O20.1979 (3)1.3090 (2)0.83944 (17)0.0977 (10)
O30.3119 (3)1.4830 (2)0.92986 (17)0.1020 (10)
O40.2511 (3)0.32945 (17)0.46259 (12)0.0670 (7)
O50.3904 (3)0.6636 (2)0.32537 (14)0.0771 (8)
O60.3091 (3)0.4783 (2)0.23764 (14)0.0789 (8)
N10.6358 (3)1.0149 (3)0.93368 (19)0.0833 (10)
H10.64441.09250.95470.100*
N20.3141 (3)0.8641 (2)0.75264 (15)0.0634 (8)
N30.4323 (3)0.7478 (2)0.62691 (15)0.0619 (8)
N40.2820 (3)0.33696 (19)0.60191 (15)0.0540 (7)
H40.25460.29860.55600.065*
C10.2875 (5)1.3650 (3)0.8881 (2)0.0803 (12)
C111.0348 (8)1.2765 (7)1.0241 (5)0.167 (3)
H111.08531.34881.01160.201*
C20.3841 (4)1.3137 (3)0.9089 (2)0.0759 (11)
H20.44811.36370.94850.091*
C30.3868 (4)1.1983 (3)0.87429 (19)0.0652 (10)
C40.4870 (4)1.1502 (3)0.8979 (2)0.0709 (11)
C50.4632 (3)1.0215 (3)0.85765 (18)0.0579 (9)
C60.3552 (4)0.9737 (3)0.80132 (18)0.0560 (8)
C70.5387 (4)0.9518 (3)0.87919 (19)0.0616 (9)
C80.7285 (4)0.9667 (4)0.9613 (3)0.0999 (15)
H8A0.75350.91210.92020.120*
H8B0.68670.91650.99390.120*
C90.8502 (4)1.0727 (4)1.0027 (2)0.0849 (12)
C121.0621 (7)1.2424 (7)1.0856 (5)0.146 (3)
H121.13021.30581.11880.176*
C140.9028 (6)1.0608 (7)1.0646 (3)0.143 (3)
H140.85720.98901.07910.172*
C150.3333 (3)0.4624 (2)0.62032 (17)0.0461 (7)
C131.0132 (8)1.1404 (9)1.1077 (4)0.172 (3)
H131.05021.12531.14790.206*
C100.9071 (6)1.1758 (5)0.9789 (4)0.140 (2)
H100.87061.18580.93670.169*
C160.1912 (4)0.8263 (3)0.7030 (2)0.0810 (13)
H16A0.21300.84510.65640.097*
H16B0.13670.87460.72530.097*
C170.1150 (4)0.6869 (3)0.6886 (2)0.0626 (9)
C180.0831 (4)0.6326 (4)0.7450 (2)0.0837 (12)
H180.10790.68260.79370.100*
C190.0137 (5)0.5034 (5)0.7308 (3)0.0981 (14)
H190.00760.46750.76980.118*
C200.0225 (4)0.4300 (4)0.6599 (3)0.0880 (13)
H200.06790.34350.65010.106*
C210.0076 (4)0.4832 (3)0.6037 (2)0.0821 (12)
H210.01800.43290.55520.099*
C220.0758 (4)0.6110 (3)0.6174 (2)0.0696 (10)
H220.09550.64620.57800.083*
C230.3386 (3)0.5502 (3)0.3077 (2)0.0616 (9)
C240.3035 (3)0.4749 (3)0.35970 (18)0.0539 (8)
H240.25950.38810.34130.065*
C250.3315 (3)0.5246 (2)0.43259 (18)0.0468 (7)
C260.3026 (3)0.4466 (2)0.48604 (17)0.0491 (8)
C270.3422 (3)0.5206 (2)0.56072 (16)0.0440 (7)
C280.3958 (3)0.6539 (2)0.56731 (18)0.0496 (8)
C290.3578 (6)0.5428 (5)0.1827 (3)0.124 (2)
H29A0.36970.48370.13970.185*
H29B0.44100.60900.20230.185*
H29C0.29520.57870.16950.185*
C440.2253 (6)1.5477 (4)0.9119 (3)0.123 (2)
H44A0.23141.55210.86170.185*
H44B0.25191.63190.94470.185*
H44C0.13561.50180.91740.185*
C300.4953 (4)0.8788 (3)0.6213 (2)0.0805 (13)
H30A0.43360.92420.63260.097*
H30B0.51490.87560.57080.097*
C310.6208 (4)0.9498 (3)0.67281 (19)0.0654 (10)
C320.7061 (5)0.8926 (4)0.6841 (3)0.0973 (14)
H320.68630.80670.66130.117*
C330.8238 (6)0.9612 (7)0.7295 (4)0.132 (2)
H330.88300.92130.73690.159*
C340.8531 (7)1.0867 (7)0.7634 (4)0.143 (3)
H340.93191.13260.79410.171*
C350.7679 (7)1.1433 (5)0.7522 (3)0.127 (2)
H350.78791.22910.77520.152*
C360.6503 (5)1.0765 (3)0.7069 (2)0.0904 (14)
H360.59151.11700.69950.108*
C370.2678 (4)0.2582 (2)0.65237 (19)0.0633 (10)
H37A0.21120.27870.68950.076*
H37B0.35370.27310.67730.076*
C380.2073 (4)0.1210 (2)0.60763 (19)0.0555 (9)
C390.2769 (5)0.0647 (3)0.5591 (2)0.0826 (12)
H390.36450.10940.55520.099*
C400.2169 (7)0.0599 (4)0.5151 (3)0.1066 (18)
H400.26310.09790.48100.128*
C410.0899 (7)0.1246 (4)0.5230 (3)0.108 (2)
H410.04950.20740.49390.129*
C420.0218 (5)0.0716 (4)0.5718 (3)0.0971 (16)
H420.06430.11790.57730.117*
C430.0803 (4)0.0518 (3)0.6137 (2)0.0744 (11)
H430.03220.08890.64700.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0769 (3)0.03305 (19)0.0597 (3)0.01695 (19)0.0049 (2)0.00118 (16)
S10.0958 (8)0.0461 (4)0.0716 (6)0.0212 (5)0.0190 (5)0.0024 (4)
S20.0704 (6)0.0339 (4)0.0607 (5)0.0152 (4)0.0009 (4)0.0046 (3)
S30.0655 (6)0.0324 (3)0.0623 (5)0.0100 (3)0.0039 (4)0.0079 (3)
S40.0893 (8)0.0414 (4)0.0684 (6)0.0259 (4)0.0060 (5)0.0005 (4)
O10.110 (3)0.0588 (15)0.116 (2)0.0235 (15)0.044 (2)0.0350 (15)
O20.112 (3)0.0607 (15)0.101 (2)0.0280 (16)0.0212 (19)0.0062 (15)
O30.126 (3)0.0490 (13)0.114 (2)0.0398 (16)0.0192 (19)0.0171 (14)
O40.0852 (18)0.0291 (10)0.0644 (15)0.0005 (10)0.0023 (12)0.0010 (9)
O50.090 (2)0.0573 (14)0.0767 (18)0.0144 (13)0.0028 (14)0.0200 (12)
O60.0743 (19)0.0867 (17)0.0542 (16)0.0073 (14)0.0073 (13)0.0105 (13)
N10.079 (2)0.0547 (16)0.094 (3)0.0169 (16)0.0216 (19)0.0076 (16)
N20.076 (2)0.0408 (13)0.0623 (18)0.0227 (13)0.0179 (15)0.0069 (12)
N30.083 (2)0.0261 (11)0.0617 (17)0.0068 (12)0.0001 (15)0.0037 (11)
N40.0609 (18)0.0276 (11)0.0609 (17)0.0046 (11)0.0007 (13)0.0054 (10)
C10.099 (4)0.0474 (19)0.083 (3)0.023 (2)0.002 (3)0.0006 (19)
C110.151 (6)0.125 (5)0.201 (7)0.028 (4)0.042 (5)0.027 (5)
C20.091 (3)0.0440 (18)0.077 (3)0.0186 (19)0.003 (2)0.0031 (16)
C30.081 (3)0.0397 (16)0.062 (2)0.0153 (17)0.0063 (19)0.0011 (14)
C40.083 (3)0.0433 (17)0.068 (2)0.0154 (18)0.006 (2)0.0075 (16)
C50.059 (2)0.0421 (16)0.059 (2)0.0117 (15)0.0011 (17)0.0008 (14)
C60.069 (2)0.0382 (15)0.054 (2)0.0169 (15)0.0003 (17)0.0045 (13)
C70.062 (2)0.0500 (17)0.057 (2)0.0094 (16)0.0015 (17)0.0006 (15)
C80.078 (3)0.083 (3)0.126 (4)0.019 (2)0.031 (3)0.022 (3)
C90.061 (3)0.093 (3)0.074 (3)0.014 (2)0.003 (2)0.004 (2)
C120.123 (5)0.113 (4)0.153 (6)0.017 (4)0.019 (4)0.018 (4)
C140.085 (4)0.257 (8)0.058 (3)0.053 (4)0.004 (3)0.003 (4)
C150.0424 (18)0.0281 (13)0.0605 (19)0.0082 (12)0.0069 (14)0.0048 (12)
C130.153 (6)0.226 (7)0.114 (5)0.077 (5)0.017 (4)0.003 (5)
C100.116 (5)0.095 (4)0.175 (6)0.017 (4)0.004 (4)0.004 (4)
C160.095 (3)0.0490 (18)0.085 (3)0.0317 (19)0.029 (2)0.0108 (17)
C170.061 (2)0.0516 (18)0.069 (2)0.0272 (16)0.0134 (18)0.0030 (16)
C180.082 (3)0.084 (3)0.068 (3)0.026 (2)0.003 (2)0.005 (2)
C190.075 (3)0.104 (4)0.102 (4)0.008 (3)0.013 (3)0.036 (3)
C200.057 (3)0.062 (2)0.122 (4)0.0059 (19)0.004 (3)0.005 (3)
C210.086 (3)0.062 (2)0.078 (3)0.021 (2)0.013 (2)0.008 (2)
C220.078 (3)0.0512 (19)0.067 (2)0.0195 (18)0.013 (2)0.0004 (16)
C230.051 (2)0.062 (2)0.066 (2)0.0148 (17)0.0035 (17)0.0150 (17)
C240.050 (2)0.0418 (15)0.062 (2)0.0105 (14)0.0005 (16)0.0084 (14)
C250.0395 (18)0.0347 (14)0.061 (2)0.0113 (12)0.0046 (15)0.0066 (13)
C260.0425 (19)0.0360 (14)0.063 (2)0.0111 (13)0.0051 (15)0.0063 (13)
C270.0422 (18)0.0273 (12)0.0555 (18)0.0083 (12)0.0035 (14)0.0043 (12)
C280.046 (2)0.0313 (13)0.062 (2)0.0078 (13)0.0047 (15)0.0050 (13)
C290.139 (5)0.128 (4)0.070 (3)0.000 (4)0.002 (3)0.031 (3)
C440.148 (5)0.069 (3)0.150 (5)0.059 (3)0.024 (4)0.003 (3)
C300.117 (4)0.0311 (15)0.073 (3)0.0042 (18)0.011 (2)0.0094 (15)
C310.086 (3)0.0375 (16)0.060 (2)0.0082 (17)0.0143 (19)0.0073 (14)
C320.084 (4)0.069 (3)0.128 (4)0.019 (3)0.017 (3)0.019 (3)
C330.079 (4)0.151 (5)0.165 (6)0.032 (4)0.014 (4)0.050 (5)
C340.089 (5)0.151 (6)0.113 (5)0.026 (4)0.009 (4)0.004 (4)
C350.119 (5)0.069 (3)0.125 (5)0.022 (3)0.027 (4)0.019 (3)
C360.108 (4)0.0363 (18)0.096 (3)0.001 (2)0.015 (3)0.0032 (18)
C370.077 (3)0.0331 (15)0.068 (2)0.0060 (15)0.0014 (18)0.0117 (14)
C380.063 (2)0.0306 (14)0.064 (2)0.0051 (15)0.0056 (17)0.0134 (14)
C390.095 (3)0.053 (2)0.097 (3)0.024 (2)0.015 (3)0.017 (2)
C400.181 (6)0.061 (3)0.087 (3)0.061 (3)0.009 (3)0.011 (2)
C410.169 (6)0.031 (2)0.097 (4)0.007 (3)0.041 (4)0.012 (2)
C420.097 (4)0.055 (2)0.113 (4)0.013 (2)0.037 (3)0.034 (2)
C430.071 (3)0.0506 (19)0.091 (3)0.0036 (18)0.009 (2)0.0266 (19)
Geometric parameters (Å, º) top
Cu1—S12.2387 (10)C5—C71.439 (5)
Cu1—S22.2341 (8)C8—C91.502 (5)
Cu1—N21.976 (3)C9—C141.344 (7)
Cu1—N31.969 (3)C9—C101.348 (7)
S1—C71.707 (3)C12—C131.308 (10)
S2—C151.707 (3)C14—C131.336 (8)
S3—C251.732 (3)C15—C271.441 (4)
S3—C281.788 (3)C16—C171.508 (5)
S4—C31.737 (4)C17—C181.363 (5)
S4—C61.792 (3)C17—C221.372 (5)
O1—C41.234 (4)C18—C191.393 (6)
O2—C11.201 (5)C19—C201.356 (6)
O3—C11.332 (4)C20—C211.350 (6)
O3—C441.459 (5)C21—C221.377 (5)
O4—C261.244 (3)C23—C241.450 (5)
O5—C231.203 (4)C24—C251.331 (4)
O6—C231.335 (4)C25—C261.492 (4)
O6—C291.437 (5)C26—C271.419 (4)
N1—C71.325 (4)C27—C281.437 (4)
N1—C81.441 (5)C30—C311.502 (5)
N2—C61.295 (4)C31—C321.340 (6)
N2—C161.476 (4)C31—C361.373 (4)
N3—C281.297 (4)C32—C331.385 (7)
N3—C301.484 (4)C33—C341.361 (8)
N4—C151.326 (3)C34—C351.334 (8)
N4—C371.457 (4)C35—C361.382 (8)
C1—C21.449 (6)C37—C381.514 (4)
C11—C121.371 (9)C38—C391.365 (5)
C11—C101.541 (9)C38—C431.364 (5)
C2—C31.343 (4)C39—C401.399 (6)
C3—C41.475 (5)C40—C411.358 (8)
C4—C51.429 (4)C41—C421.338 (7)
C5—C61.419 (5)C42—C431.374 (5)
S2—Cu1—S191.69 (3)N4—C15—C27116.5 (3)
N2—Cu1—S196.02 (8)C27—C15—S2126.54 (19)
N2—Cu1—S2144.94 (9)C12—C13—C14110.7 (8)
N3—Cu1—S1144.11 (9)C9—C10—C11117.7 (7)
N3—Cu1—S297.17 (7)N2—C16—C17110.8 (3)
N3—Cu1—N296.32 (12)C18—C17—C16121.7 (3)
C7—S1—Cu1105.69 (13)C18—C17—C22118.3 (3)
C15—S2—Cu1107.41 (10)C22—C17—C16120.1 (4)
C25—S3—C2892.49 (14)C17—C18—C19120.9 (4)
C3—S4—C691.48 (16)C20—C19—C18119.8 (4)
C1—O3—C44116.2 (3)C21—C20—C19119.7 (4)
C23—O6—C29115.6 (3)C20—C21—C22120.9 (4)
C7—N1—C8126.5 (3)C17—C22—C21120.5 (4)
C6—N2—Cu1126.7 (2)O5—C23—O6123.9 (3)
C6—N2—C16119.7 (3)O5—C23—C24124.1 (3)
C16—N2—Cu1113.34 (19)O6—C23—C24111.9 (3)
C28—N3—Cu1127.4 (2)C25—C24—C23122.9 (3)
C28—N3—C30119.7 (3)C24—C25—S3126.2 (2)
C30—N3—Cu1112.9 (2)C24—C25—C26123.0 (3)
C15—N4—C37126.0 (3)C26—C25—S3110.8 (2)
O2—C1—O3124.4 (4)O4—C26—C25119.7 (3)
O2—C1—C2124.7 (3)O4—C26—C27127.6 (3)
O3—C1—C2110.9 (4)C27—C26—C25112.8 (2)
C12—C11—C10109.2 (7)C26—C27—C15121.4 (2)
C3—C2—C1123.9 (4)C26—C27—C28112.3 (3)
C2—C3—S4126.4 (3)C28—C27—C15126.3 (3)
C2—C3—C4121.8 (3)N3—C28—S3119.8 (2)
C4—C3—S4111.8 (2)N3—C28—C27128.6 (3)
O1—C4—C3120.3 (3)C27—C28—S3111.6 (2)
O1—C4—C5127.8 (4)N3—C30—C31112.4 (3)
C5—C4—C3111.9 (3)C32—C31—C30121.1 (3)
C4—C5—C7120.4 (3)C32—C31—C36119.7 (4)
C6—C5—C4112.6 (3)C36—C31—C30119.2 (4)
C6—C5—C7126.8 (3)C31—C32—C33120.1 (5)
N2—C6—S4120.3 (3)C34—C33—C32120.4 (6)
N2—C6—C5127.7 (3)C35—C34—C33119.4 (6)
C5—C6—S4112.0 (2)C34—C35—C36121.1 (5)
N1—C7—S1116.6 (3)C31—C36—C35119.4 (5)
N1—C7—C5117.0 (3)N4—C37—C38108.1 (3)
C5—C7—S1126.4 (3)C39—C38—C37121.0 (3)
N1—C8—C9111.1 (4)C43—C38—C37120.4 (3)
C14—C9—C8117.5 (5)C43—C38—C39118.6 (3)
C14—C9—C10120.4 (5)C38—C39—C40120.2 (4)
C10—C9—C8122.0 (5)C41—C40—C39118.9 (5)
C13—C12—C11134.0 (8)C42—C41—C40121.5 (4)
C13—C14—C9127.4 (8)C41—C42—C43119.4 (5)
N4—C15—S2116.9 (2)C38—C43—C42121.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.872.604 (4)142
N4—H4···O40.861.882.612 (3)141
Selected geometric parameters (Å, º) top
Cu1—S12.2387 (10)Cu1—N21.976 (3)
Cu1—S22.2341 (8)Cu1—N31.969 (3)
S2—Cu1—S191.69 (3)N3—Cu1—S1144.11 (9)
N2—Cu1—S196.02 (8)N3—Cu1—S297.17 (7)
N2—Cu1—S2144.94 (9)N3—Cu1—N296.32 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.872.604 (4)142
N4—H4···O40.861.882.612 (3)141
 

Acknowledgements

We thank State task Ministry of Education and Science of the Russian Federation No. 4.560.2014-K.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationArena, G., Contino, A., Longo, E., Sciotto, D. & Spoto, G. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2287–2291.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJiang, Q., He, L.-T., Luo, S.-Z., Yang, Y.-Q., Yang, L., Feng, W. & Yuan, L.-H. (2013). Chin. Chem. Lett. 24, 881–884.  CrossRef CAS Google Scholar
First citationMohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem. 10, 50–55.  CAS Google Scholar
First citationObydennov, K. L., Klimareva, E. L., Kosterina, M. F., Slepukhin, P. A. & Morzherin, Yu. Yu. (2013). Tetrahedron Lett. 54, 4876–4879.  CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShamkhy, E. T., Al-Karkhi, I. H. T. & Jaffar Al-Mulla, E. A. (2013). Res. Chem. Intermed. 39, 2463–2471.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZieliński, T. & Jurczak, J. (2005). Tetrahedron, 61, 4081–4089. .  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m93-m94
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds