metal-organic compounds
Z)-(benzylamino)[(5Z)-2-(benzylimino-κN)-5-(2-methoxy-2-oxoethylidene)-4-oxothiolan-3-ylidene]methanethiolato-κS}copper(II)
of bis{(aUral Federal University, Mira 19 Ekaterinburg 620002, Russian Federation, and bI. Postovsky Institute of Organic Synthesis, Kovalevskoy 22 Ekaterinburg 620090, Russian Federation
*Correspondence e-mail: k.l.obydennov@urfu.ru
The title complex, [Cu(C22H19N2O3S2)2], was obtained from the reaction between (Z)-methyl 2-(5-benzylimino-4-benzylcarbamothioyl-3-oxothiolan-2-ylidene)acetate and Cu(NO3)2. The CuII atom is tetracoordinated by two N,S-bidentate ligands, forming a highly distorted tetrahedral environment. The structure displays two intramolecular N—H⋯O hydrogen bonds.
Keywords: crystal structure; copper(II) complex; thioamide.
CCDC reference: 1039799
1. Related literature
For synthesis and applications of thioamide complexes, see: Jiang et al. (2013); Zieliński & Jurczak (2005); Arena et al. (2001); Shamkhy et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For the synthesis of the title compound, see: Obydennov et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1039799
10.1107/S2056989015005022/lr2133sup1.cif
contains datablocks I, exp_221. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015005022/lr2133Isup2.hkl
The structure of the title complex, (I), C44H38CuN4O6S4, has triclinic (P1) symmetry. The ligands form two six-membered cycles with the including in the coordination of the N-atoms of the benzylamino-groups and S-atoms of the thioamide moiety (Fig.1). Metallocycles are non-planar, been in the "pseudo-cover" conformation in which Cu-atoms are deviated from the least-squared planes of the atoms S1N2C6C5C7 and C15C23C27N3S2 on the distances 0.697 and 0.548 Å accordingly. The nearest coordination of the central ion is the distorted tetrahedron (Table 2). Deviations from the ideal in the tetrahedron geometry are very serious, so the coordination of the Cu2+-ion is may regard also as distorted squared. In this case S-atoms with interatomic angle S1Cu1S2 91.7o occupy the cis-positions toward Cu-atom. Due to strong π-conjugation in the metallocycle, the bonds lengths of the 2p-atoms in the metallocycles have the medium magnitude between the thioenamine and mercaptoenimine configurations, and we can`t make conclusion about dominated form of the ligand in the complex. Most principal elements of the structure which together the central ion ordered the conformation of the ligands are intramolecular H-bond NH···O between NH-group of the thioamide moiety and CO-group in the thiophene moiety, and also polar S···O contact between the S-atom in the thiophene ring and CO-group of the COOMe-substituent which. This contact fixed COOMe-substituent in the plane of the thiophene moietiy. No any shortened intermolecular contacts in the crystal presented.
The title complex was synthesized by the addition of Cu(NO3)2 (1 mmol) to an ethanol - chloroform solution of (Z)-methyl 2-(5-(benzylamino)-4-(benzylcarbamothioyl)-3-oxothien-2(3H)-ylidene)acetate (2 mmol) (Obydennov et al., 2013). The mixture was stirred for 5 hr. The resulting deep green solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for several days, and dark green prismatic crystals were isolated. M.p. 175-177 °C.
The non-hydrogen atoms were refined in the anisotropic approximation, hydrogen atoms were included in the σ (I)], R1 = 0.1278, wR2 = 0.1623 (all data), GooF= 1.005, Δρē= 0.55/-0.26 ē/Å3.
isotropically in the "riding" model with C—H = 0.93 Å for aryl, 0.96 Å for methine and 0.96 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms. Final results of the R1 = 0.0577, wR2 = 0.1280 [I>=2The structure of the title complex, (I), C44H38CuN4O6S4, has triclinic (P1) symmetry. The ligands form two six-membered cycles with the including in the coordination of the N-atoms of the benzylamino-groups and S-atoms of the thioamide moiety (Fig.1). Metallocycles are non-planar, been in the "pseudo-cover" conformation in which Cu-atoms are deviated from the least-squared planes of the atoms S1N2C6C5C7 and C15C23C27N3S2 on the distances 0.697 and 0.548 Å accordingly. The nearest coordination of the central ion is the distorted tetrahedron (Table 2). Deviations from the ideal in the tetrahedron geometry are very serious, so the coordination of the Cu2+-ion is may regard also as distorted squared. In this case S-atoms with interatomic angle S1Cu1S2 91.7o occupy the cis-positions toward Cu-atom. Due to strong π-conjugation in the metallocycle, the bonds lengths of the 2p-atoms in the metallocycles have the medium magnitude between the thioenamine and mercaptoenimine configurations, and we can`t make conclusion about dominated form of the ligand in the complex. Most principal elements of the structure which together the central ion ordered the conformation of the ligands are intramolecular H-bond NH···O between NH-group of the thioamide moiety and CO-group in the thiophene moiety, and also polar S···O contact between the S-atom in the thiophene ring and CO-group of the COOMe-substituent which. This contact fixed COOMe-substituent in the plane of the thiophene moietiy. No any shortened intermolecular contacts in the crystal presented.
For synthesis and applications of thioamide complexes, see: Jiang et al. (2013); Zieliński & Jurczak (2005); Arena et al. (2001); Shamkhy et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For the synthesis of the title compound, see: Obydennov et al. (2013).
The title complex was synthesized by the addition of Cu(NO3)2 (1 mmol) to an ethanol - chloroform solution of (Z)-methyl 2-(5-(benzylamino)-4-(benzylcarbamothioyl)-3-oxothien-2(3H)-ylidene)acetate (2 mmol) (Obydennov et al., 2013). The mixture was stirred for 5 hr. The resulting deep green solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for several days, and dark green prismatic crystals were isolated. M.p. 175-177 °C.
detailsThe non-hydrogen atoms were refined in the anisotropic approximation, hydrogen atoms were included in the σ (I)], R1 = 0.1278, wR2 = 0.1623 (all data), GooF= 1.005, Δρē= 0.55/-0.26 ē/Å3.
isotropically in the "riding" model with C—H = 0.93 Å for aryl, 0.96 Å for methine and 0.96 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms. Final results of the R1 = 0.0577, wR2 = 0.1280 [I>=2Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. |
[Cu(C22H19N2O3S2)2] | F(000) = 942 |
Mr = 910.56 | Dx = 1.415 Mg m−3 |
Triclinic, P1 | Melting point = 448–450 K |
a = 10.7595 (6) Å | Mo Kα radiation, λ = 0.7107 Å |
b = 11.6318 (5) Å | Cell parameters from 4392 reflections |
c = 18.8162 (8) Å | θ = 2.2–28.9° |
α = 104.846 (4)° | µ = 0.76 mm−1 |
β = 91.038 (4)° | T = 295 K |
γ = 109.119 (4)° | Plate, brown–green |
V = 2137.25 (18) Å3 | 0.28 × 0.11 × 0.03 mm |
Z = 2 |
Agilent Xcalibur Eos diffractometer | 11592 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5788 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 15.9555 pixels mm-1 | θmax = 30.8°, θmin = 1.9° |
ω scans | h = −9→15 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −16→16 |
Tmin = 0.769, Tmax = 1.000 | l = −26→26 |
20682 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0657P)2 + 0.020P] where P = (Fo2 + 2Fc2)/3 |
11592 reflections | (Δ/σ)max = 0.001 |
534 parameters | Δρmax = 0.55 e Å−3 |
18 restraints | Δρmin = −0.26 e Å−3 |
[Cu(C22H19N2O3S2)2] | γ = 109.119 (4)° |
Mr = 910.56 | V = 2137.25 (18) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.7595 (6) Å | Mo Kα radiation |
b = 11.6318 (5) Å | µ = 0.76 mm−1 |
c = 18.8162 (8) Å | T = 295 K |
α = 104.846 (4)° | 0.28 × 0.11 × 0.03 mm |
β = 91.038 (4)° |
Agilent Xcalibur Eos diffractometer | 11592 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 5788 reflections with I > 2σ(I) |
Tmin = 0.769, Tmax = 1.000 | Rint = 0.032 |
20682 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 18 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.55 e Å−3 |
11592 reflections | Δρmin = −0.26 e Å−3 |
534 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.40787 (4) | 0.74099 (3) | 0.72941 (2) | 0.05996 (16) | |
S1 | 0.51282 (11) | 0.79437 (8) | 0.84313 (6) | 0.0751 (3) | |
S2 | 0.38829 (9) | 0.53810 (6) | 0.71147 (5) | 0.0575 (2) | |
S3 | 0.40369 (9) | 0.68404 (6) | 0.47870 (5) | 0.0562 (2) | |
S4 | 0.27743 (11) | 1.08801 (7) | 0.80003 (5) | 0.0688 (3) | |
O1 | 0.5766 (3) | 1.2189 (2) | 0.94766 (17) | 0.1086 (11) | |
O2 | 0.1979 (3) | 1.3090 (2) | 0.83944 (17) | 0.0977 (10) | |
O3 | 0.3119 (3) | 1.4830 (2) | 0.92986 (17) | 0.1020 (10) | |
O4 | 0.2511 (3) | 0.32945 (17) | 0.46259 (12) | 0.0670 (7) | |
O5 | 0.3904 (3) | 0.6636 (2) | 0.32537 (14) | 0.0771 (8) | |
O6 | 0.3091 (3) | 0.4783 (2) | 0.23764 (14) | 0.0789 (8) | |
N1 | 0.6358 (3) | 1.0149 (3) | 0.93368 (19) | 0.0833 (10) | |
H1 | 0.6444 | 1.0925 | 0.9547 | 0.100* | |
N2 | 0.3141 (3) | 0.8641 (2) | 0.75264 (15) | 0.0634 (8) | |
N3 | 0.4323 (3) | 0.7478 (2) | 0.62691 (15) | 0.0619 (8) | |
N4 | 0.2820 (3) | 0.33696 (19) | 0.60191 (15) | 0.0540 (7) | |
H4 | 0.2546 | 0.2986 | 0.5560 | 0.065* | |
C1 | 0.2875 (5) | 1.3650 (3) | 0.8881 (2) | 0.0803 (12) | |
C11 | 1.0348 (8) | 1.2765 (7) | 1.0241 (5) | 0.167 (3) | |
H11 | 1.0853 | 1.3488 | 1.0116 | 0.201* | |
C2 | 0.3841 (4) | 1.3137 (3) | 0.9089 (2) | 0.0759 (11) | |
H2 | 0.4481 | 1.3637 | 0.9485 | 0.091* | |
C3 | 0.3868 (4) | 1.1983 (3) | 0.87429 (19) | 0.0652 (10) | |
C4 | 0.4870 (4) | 1.1502 (3) | 0.8979 (2) | 0.0709 (11) | |
C5 | 0.4632 (3) | 1.0215 (3) | 0.85765 (18) | 0.0579 (9) | |
C6 | 0.3552 (4) | 0.9737 (3) | 0.80132 (18) | 0.0560 (8) | |
C7 | 0.5387 (4) | 0.9518 (3) | 0.87919 (19) | 0.0616 (9) | |
C8 | 0.7285 (4) | 0.9667 (4) | 0.9613 (3) | 0.0999 (15) | |
H8A | 0.7535 | 0.9121 | 0.9202 | 0.120* | |
H8B | 0.6867 | 0.9165 | 0.9939 | 0.120* | |
C9 | 0.8502 (4) | 1.0727 (4) | 1.0027 (2) | 0.0849 (12) | |
C12 | 1.0621 (7) | 1.2424 (7) | 1.0856 (5) | 0.146 (3) | |
H12 | 1.1302 | 1.3058 | 1.1188 | 0.176* | |
C14 | 0.9028 (6) | 1.0608 (7) | 1.0646 (3) | 0.143 (3) | |
H14 | 0.8572 | 0.9890 | 1.0791 | 0.172* | |
C15 | 0.3333 (3) | 0.4624 (2) | 0.62032 (17) | 0.0461 (7) | |
C13 | 1.0132 (8) | 1.1404 (9) | 1.1077 (4) | 0.172 (3) | |
H13 | 1.0502 | 1.1253 | 1.1479 | 0.206* | |
C10 | 0.9071 (6) | 1.1758 (5) | 0.9789 (4) | 0.140 (2) | |
H10 | 0.8706 | 1.1858 | 0.9367 | 0.169* | |
C16 | 0.1912 (4) | 0.8263 (3) | 0.7030 (2) | 0.0810 (13) | |
H16A | 0.2130 | 0.8451 | 0.6564 | 0.097* | |
H16B | 0.1367 | 0.8746 | 0.7253 | 0.097* | |
C17 | 0.1150 (4) | 0.6869 (3) | 0.6886 (2) | 0.0626 (9) | |
C18 | 0.0831 (4) | 0.6326 (4) | 0.7450 (2) | 0.0837 (12) | |
H18 | 0.1079 | 0.6826 | 0.7937 | 0.100* | |
C19 | 0.0137 (5) | 0.5034 (5) | 0.7308 (3) | 0.0981 (14) | |
H19 | −0.0076 | 0.4675 | 0.7698 | 0.118* | |
C20 | −0.0225 (4) | 0.4300 (4) | 0.6599 (3) | 0.0880 (13) | |
H20 | −0.0679 | 0.3435 | 0.6501 | 0.106* | |
C21 | 0.0076 (4) | 0.4832 (3) | 0.6037 (2) | 0.0821 (12) | |
H21 | −0.0180 | 0.4329 | 0.5552 | 0.099* | |
C22 | 0.0758 (4) | 0.6110 (3) | 0.6174 (2) | 0.0696 (10) | |
H22 | 0.0955 | 0.6462 | 0.5780 | 0.083* | |
C23 | 0.3386 (3) | 0.5502 (3) | 0.3077 (2) | 0.0616 (9) | |
C24 | 0.3035 (3) | 0.4749 (3) | 0.35970 (18) | 0.0539 (8) | |
H24 | 0.2595 | 0.3881 | 0.3413 | 0.065* | |
C25 | 0.3315 (3) | 0.5246 (2) | 0.43259 (18) | 0.0468 (7) | |
C26 | 0.3026 (3) | 0.4466 (2) | 0.48604 (17) | 0.0491 (8) | |
C27 | 0.3422 (3) | 0.5206 (2) | 0.56072 (16) | 0.0440 (7) | |
C28 | 0.3958 (3) | 0.6539 (2) | 0.56731 (18) | 0.0496 (8) | |
C29 | 0.3578 (6) | 0.5428 (5) | 0.1827 (3) | 0.124 (2) | |
H29A | 0.3697 | 0.4837 | 0.1397 | 0.185* | |
H29B | 0.4410 | 0.6090 | 0.2023 | 0.185* | |
H29C | 0.2952 | 0.5787 | 0.1695 | 0.185* | |
C44 | 0.2253 (6) | 1.5477 (4) | 0.9119 (3) | 0.123 (2) | |
H44A | 0.2314 | 1.5521 | 0.8617 | 0.185* | |
H44B | 0.2519 | 1.6319 | 0.9447 | 0.185* | |
H44C | 0.1356 | 1.5018 | 0.9174 | 0.185* | |
C30 | 0.4953 (4) | 0.8788 (3) | 0.6213 (2) | 0.0805 (13) | |
H30A | 0.4336 | 0.9242 | 0.6326 | 0.097* | |
H30B | 0.5149 | 0.8756 | 0.5708 | 0.097* | |
C31 | 0.6208 (4) | 0.9498 (3) | 0.67281 (19) | 0.0654 (10) | |
C32 | 0.7061 (5) | 0.8926 (4) | 0.6841 (3) | 0.0973 (14) | |
H32 | 0.6863 | 0.8067 | 0.6613 | 0.117* | |
C33 | 0.8238 (6) | 0.9612 (7) | 0.7295 (4) | 0.132 (2) | |
H33 | 0.8830 | 0.9213 | 0.7369 | 0.159* | |
C34 | 0.8531 (7) | 1.0867 (7) | 0.7634 (4) | 0.143 (3) | |
H34 | 0.9319 | 1.1326 | 0.7941 | 0.171* | |
C35 | 0.7679 (7) | 1.1433 (5) | 0.7522 (3) | 0.127 (2) | |
H35 | 0.7879 | 1.2291 | 0.7752 | 0.152* | |
C36 | 0.6503 (5) | 1.0765 (3) | 0.7069 (2) | 0.0904 (14) | |
H36 | 0.5915 | 1.1170 | 0.6995 | 0.108* | |
C37 | 0.2678 (4) | 0.2582 (2) | 0.65237 (19) | 0.0633 (10) | |
H37A | 0.2112 | 0.2787 | 0.6895 | 0.076* | |
H37B | 0.3537 | 0.2731 | 0.6773 | 0.076* | |
C38 | 0.2073 (4) | 0.1210 (2) | 0.60763 (19) | 0.0555 (9) | |
C39 | 0.2769 (5) | 0.0647 (3) | 0.5591 (2) | 0.0826 (12) | |
H39 | 0.3645 | 0.1094 | 0.5552 | 0.099* | |
C40 | 0.2169 (7) | −0.0599 (4) | 0.5151 (3) | 0.1066 (18) | |
H40 | 0.2631 | −0.0979 | 0.4810 | 0.128* | |
C41 | 0.0899 (7) | −0.1246 (4) | 0.5230 (3) | 0.108 (2) | |
H41 | 0.0495 | −0.2074 | 0.4939 | 0.129* | |
C42 | 0.0218 (5) | −0.0716 (4) | 0.5718 (3) | 0.0971 (16) | |
H42 | −0.0643 | −0.1179 | 0.5773 | 0.117* | |
C43 | 0.0803 (4) | 0.0518 (3) | 0.6137 (2) | 0.0744 (11) | |
H43 | 0.0322 | 0.0889 | 0.6470 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0769 (3) | 0.03305 (19) | 0.0597 (3) | 0.01695 (19) | −0.0049 (2) | −0.00118 (16) |
S1 | 0.0958 (8) | 0.0461 (4) | 0.0716 (6) | 0.0212 (5) | −0.0190 (5) | 0.0024 (4) |
S2 | 0.0704 (6) | 0.0339 (4) | 0.0607 (5) | 0.0152 (4) | 0.0009 (4) | 0.0046 (3) |
S3 | 0.0655 (6) | 0.0324 (3) | 0.0623 (5) | 0.0100 (3) | 0.0039 (4) | 0.0079 (3) |
S4 | 0.0893 (8) | 0.0414 (4) | 0.0684 (6) | 0.0259 (4) | −0.0060 (5) | −0.0005 (4) |
O1 | 0.110 (3) | 0.0588 (15) | 0.116 (2) | 0.0235 (15) | −0.044 (2) | −0.0350 (15) |
O2 | 0.112 (3) | 0.0607 (15) | 0.101 (2) | 0.0280 (16) | −0.0212 (19) | −0.0062 (15) |
O3 | 0.126 (3) | 0.0490 (13) | 0.114 (2) | 0.0398 (16) | −0.0192 (19) | −0.0171 (14) |
O4 | 0.0852 (18) | 0.0291 (10) | 0.0644 (15) | 0.0005 (10) | −0.0023 (12) | 0.0010 (9) |
O5 | 0.090 (2) | 0.0573 (14) | 0.0767 (18) | 0.0144 (13) | 0.0028 (14) | 0.0200 (12) |
O6 | 0.0743 (19) | 0.0867 (17) | 0.0542 (16) | 0.0073 (14) | −0.0073 (13) | 0.0105 (13) |
N1 | 0.079 (2) | 0.0547 (16) | 0.094 (3) | 0.0169 (16) | −0.0216 (19) | −0.0076 (16) |
N2 | 0.076 (2) | 0.0408 (13) | 0.0623 (18) | 0.0227 (13) | −0.0179 (15) | −0.0069 (12) |
N3 | 0.083 (2) | 0.0261 (11) | 0.0617 (17) | 0.0068 (12) | −0.0001 (15) | 0.0037 (11) |
N4 | 0.0609 (18) | 0.0276 (11) | 0.0609 (17) | 0.0046 (11) | 0.0007 (13) | 0.0054 (10) |
C1 | 0.099 (4) | 0.0474 (19) | 0.083 (3) | 0.023 (2) | 0.002 (3) | 0.0006 (19) |
C11 | 0.151 (6) | 0.125 (5) | 0.201 (7) | 0.028 (4) | 0.042 (5) | 0.027 (5) |
C2 | 0.091 (3) | 0.0440 (18) | 0.077 (3) | 0.0186 (19) | −0.003 (2) | −0.0031 (16) |
C3 | 0.081 (3) | 0.0397 (16) | 0.062 (2) | 0.0153 (17) | 0.0063 (19) | −0.0011 (14) |
C4 | 0.083 (3) | 0.0433 (17) | 0.068 (2) | 0.0154 (18) | −0.006 (2) | −0.0075 (16) |
C5 | 0.059 (2) | 0.0421 (16) | 0.059 (2) | 0.0117 (15) | 0.0011 (17) | −0.0008 (14) |
C6 | 0.069 (2) | 0.0382 (15) | 0.054 (2) | 0.0169 (15) | 0.0003 (17) | 0.0045 (13) |
C7 | 0.062 (2) | 0.0500 (17) | 0.057 (2) | 0.0094 (16) | 0.0015 (17) | 0.0006 (15) |
C8 | 0.078 (3) | 0.083 (3) | 0.126 (4) | 0.019 (2) | −0.031 (3) | 0.022 (3) |
C9 | 0.061 (3) | 0.093 (3) | 0.074 (3) | 0.014 (2) | −0.003 (2) | −0.004 (2) |
C12 | 0.123 (5) | 0.113 (4) | 0.153 (6) | 0.017 (4) | 0.019 (4) | −0.018 (4) |
C14 | 0.085 (4) | 0.257 (8) | 0.058 (3) | 0.053 (4) | −0.004 (3) | 0.003 (4) |
C15 | 0.0424 (18) | 0.0281 (13) | 0.0605 (19) | 0.0082 (12) | 0.0069 (14) | 0.0048 (12) |
C13 | 0.153 (6) | 0.226 (7) | 0.114 (5) | 0.077 (5) | −0.017 (4) | −0.003 (5) |
C10 | 0.116 (5) | 0.095 (4) | 0.175 (6) | 0.017 (4) | 0.004 (4) | 0.004 (4) |
C16 | 0.095 (3) | 0.0490 (18) | 0.085 (3) | 0.0317 (19) | −0.029 (2) | −0.0108 (17) |
C17 | 0.061 (2) | 0.0516 (18) | 0.069 (2) | 0.0272 (16) | −0.0134 (18) | −0.0030 (16) |
C18 | 0.082 (3) | 0.084 (3) | 0.068 (3) | 0.026 (2) | −0.003 (2) | −0.005 (2) |
C19 | 0.075 (3) | 0.104 (4) | 0.102 (4) | 0.008 (3) | 0.013 (3) | 0.036 (3) |
C20 | 0.057 (3) | 0.062 (2) | 0.122 (4) | 0.0059 (19) | −0.004 (3) | 0.005 (3) |
C21 | 0.086 (3) | 0.062 (2) | 0.078 (3) | 0.021 (2) | −0.013 (2) | −0.008 (2) |
C22 | 0.078 (3) | 0.0512 (19) | 0.067 (2) | 0.0195 (18) | −0.013 (2) | 0.0004 (16) |
C23 | 0.051 (2) | 0.062 (2) | 0.066 (2) | 0.0148 (17) | −0.0035 (17) | 0.0150 (17) |
C24 | 0.050 (2) | 0.0418 (15) | 0.062 (2) | 0.0105 (14) | 0.0005 (16) | 0.0084 (14) |
C25 | 0.0395 (18) | 0.0347 (14) | 0.061 (2) | 0.0113 (12) | 0.0046 (15) | 0.0066 (13) |
C26 | 0.0425 (19) | 0.0360 (14) | 0.063 (2) | 0.0111 (13) | 0.0051 (15) | 0.0063 (13) |
C27 | 0.0422 (18) | 0.0273 (12) | 0.0555 (18) | 0.0083 (12) | 0.0035 (14) | 0.0043 (12) |
C28 | 0.046 (2) | 0.0313 (13) | 0.062 (2) | 0.0078 (13) | 0.0047 (15) | 0.0050 (13) |
C29 | 0.139 (5) | 0.128 (4) | 0.070 (3) | 0.000 (4) | 0.002 (3) | 0.031 (3) |
C44 | 0.148 (5) | 0.069 (3) | 0.150 (5) | 0.059 (3) | −0.024 (4) | −0.003 (3) |
C30 | 0.117 (4) | 0.0311 (15) | 0.073 (3) | 0.0042 (18) | −0.011 (2) | 0.0094 (15) |
C31 | 0.086 (3) | 0.0375 (16) | 0.060 (2) | 0.0082 (17) | 0.0143 (19) | 0.0073 (14) |
C32 | 0.084 (4) | 0.069 (3) | 0.128 (4) | 0.019 (3) | 0.017 (3) | 0.019 (3) |
C33 | 0.079 (4) | 0.151 (5) | 0.165 (6) | 0.032 (4) | 0.014 (4) | 0.050 (5) |
C34 | 0.089 (5) | 0.151 (6) | 0.113 (5) | −0.026 (4) | 0.009 (4) | −0.004 (4) |
C35 | 0.119 (5) | 0.069 (3) | 0.125 (5) | −0.022 (3) | 0.027 (4) | −0.019 (3) |
C36 | 0.108 (4) | 0.0363 (18) | 0.096 (3) | 0.001 (2) | 0.015 (3) | −0.0032 (18) |
C37 | 0.077 (3) | 0.0331 (15) | 0.068 (2) | 0.0060 (15) | −0.0014 (18) | 0.0117 (14) |
C38 | 0.063 (2) | 0.0306 (14) | 0.064 (2) | 0.0051 (15) | −0.0056 (17) | 0.0134 (14) |
C39 | 0.095 (3) | 0.053 (2) | 0.097 (3) | 0.024 (2) | 0.015 (3) | 0.017 (2) |
C40 | 0.181 (6) | 0.061 (3) | 0.087 (3) | 0.061 (3) | 0.009 (3) | 0.011 (2) |
C41 | 0.169 (6) | 0.031 (2) | 0.097 (4) | 0.007 (3) | −0.041 (4) | 0.012 (2) |
C42 | 0.097 (4) | 0.055 (2) | 0.113 (4) | −0.013 (2) | −0.037 (3) | 0.034 (2) |
C43 | 0.071 (3) | 0.0506 (19) | 0.091 (3) | 0.0036 (18) | −0.009 (2) | 0.0266 (19) |
Cu1—S1 | 2.2387 (10) | C5—C7 | 1.439 (5) |
Cu1—S2 | 2.2341 (8) | C8—C9 | 1.502 (5) |
Cu1—N2 | 1.976 (3) | C9—C14 | 1.344 (7) |
Cu1—N3 | 1.969 (3) | C9—C10 | 1.348 (7) |
S1—C7 | 1.707 (3) | C12—C13 | 1.308 (10) |
S2—C15 | 1.707 (3) | C14—C13 | 1.336 (8) |
S3—C25 | 1.732 (3) | C15—C27 | 1.441 (4) |
S3—C28 | 1.788 (3) | C16—C17 | 1.508 (5) |
S4—C3 | 1.737 (4) | C17—C18 | 1.363 (5) |
S4—C6 | 1.792 (3) | C17—C22 | 1.372 (5) |
O1—C4 | 1.234 (4) | C18—C19 | 1.393 (6) |
O2—C1 | 1.201 (5) | C19—C20 | 1.356 (6) |
O3—C1 | 1.332 (4) | C20—C21 | 1.350 (6) |
O3—C44 | 1.459 (5) | C21—C22 | 1.377 (5) |
O4—C26 | 1.244 (3) | C23—C24 | 1.450 (5) |
O5—C23 | 1.203 (4) | C24—C25 | 1.331 (4) |
O6—C23 | 1.335 (4) | C25—C26 | 1.492 (4) |
O6—C29 | 1.437 (5) | C26—C27 | 1.419 (4) |
N1—C7 | 1.325 (4) | C27—C28 | 1.437 (4) |
N1—C8 | 1.441 (5) | C30—C31 | 1.502 (5) |
N2—C6 | 1.295 (4) | C31—C32 | 1.340 (6) |
N2—C16 | 1.476 (4) | C31—C36 | 1.373 (4) |
N3—C28 | 1.297 (4) | C32—C33 | 1.385 (7) |
N3—C30 | 1.484 (4) | C33—C34 | 1.361 (8) |
N4—C15 | 1.326 (3) | C34—C35 | 1.334 (8) |
N4—C37 | 1.457 (4) | C35—C36 | 1.382 (8) |
C1—C2 | 1.449 (6) | C37—C38 | 1.514 (4) |
C11—C12 | 1.371 (9) | C38—C39 | 1.365 (5) |
C11—C10 | 1.541 (9) | C38—C43 | 1.364 (5) |
C2—C3 | 1.343 (4) | C39—C40 | 1.399 (6) |
C3—C4 | 1.475 (5) | C40—C41 | 1.358 (8) |
C4—C5 | 1.429 (4) | C41—C42 | 1.338 (7) |
C5—C6 | 1.419 (5) | C42—C43 | 1.374 (5) |
S2—Cu1—S1 | 91.69 (3) | N4—C15—C27 | 116.5 (3) |
N2—Cu1—S1 | 96.02 (8) | C27—C15—S2 | 126.54 (19) |
N2—Cu1—S2 | 144.94 (9) | C12—C13—C14 | 110.7 (8) |
N3—Cu1—S1 | 144.11 (9) | C9—C10—C11 | 117.7 (7) |
N3—Cu1—S2 | 97.17 (7) | N2—C16—C17 | 110.8 (3) |
N3—Cu1—N2 | 96.32 (12) | C18—C17—C16 | 121.7 (3) |
C7—S1—Cu1 | 105.69 (13) | C18—C17—C22 | 118.3 (3) |
C15—S2—Cu1 | 107.41 (10) | C22—C17—C16 | 120.1 (4) |
C25—S3—C28 | 92.49 (14) | C17—C18—C19 | 120.9 (4) |
C3—S4—C6 | 91.48 (16) | C20—C19—C18 | 119.8 (4) |
C1—O3—C44 | 116.2 (3) | C21—C20—C19 | 119.7 (4) |
C23—O6—C29 | 115.6 (3) | C20—C21—C22 | 120.9 (4) |
C7—N1—C8 | 126.5 (3) | C17—C22—C21 | 120.5 (4) |
C6—N2—Cu1 | 126.7 (2) | O5—C23—O6 | 123.9 (3) |
C6—N2—C16 | 119.7 (3) | O5—C23—C24 | 124.1 (3) |
C16—N2—Cu1 | 113.34 (19) | O6—C23—C24 | 111.9 (3) |
C28—N3—Cu1 | 127.4 (2) | C25—C24—C23 | 122.9 (3) |
C28—N3—C30 | 119.7 (3) | C24—C25—S3 | 126.2 (2) |
C30—N3—Cu1 | 112.9 (2) | C24—C25—C26 | 123.0 (3) |
C15—N4—C37 | 126.0 (3) | C26—C25—S3 | 110.8 (2) |
O2—C1—O3 | 124.4 (4) | O4—C26—C25 | 119.7 (3) |
O2—C1—C2 | 124.7 (3) | O4—C26—C27 | 127.6 (3) |
O3—C1—C2 | 110.9 (4) | C27—C26—C25 | 112.8 (2) |
C12—C11—C10 | 109.2 (7) | C26—C27—C15 | 121.4 (2) |
C3—C2—C1 | 123.9 (4) | C26—C27—C28 | 112.3 (3) |
C2—C3—S4 | 126.4 (3) | C28—C27—C15 | 126.3 (3) |
C2—C3—C4 | 121.8 (3) | N3—C28—S3 | 119.8 (2) |
C4—C3—S4 | 111.8 (2) | N3—C28—C27 | 128.6 (3) |
O1—C4—C3 | 120.3 (3) | C27—C28—S3 | 111.6 (2) |
O1—C4—C5 | 127.8 (4) | N3—C30—C31 | 112.4 (3) |
C5—C4—C3 | 111.9 (3) | C32—C31—C30 | 121.1 (3) |
C4—C5—C7 | 120.4 (3) | C32—C31—C36 | 119.7 (4) |
C6—C5—C4 | 112.6 (3) | C36—C31—C30 | 119.2 (4) |
C6—C5—C7 | 126.8 (3) | C31—C32—C33 | 120.1 (5) |
N2—C6—S4 | 120.3 (3) | C34—C33—C32 | 120.4 (6) |
N2—C6—C5 | 127.7 (3) | C35—C34—C33 | 119.4 (6) |
C5—C6—S4 | 112.0 (2) | C34—C35—C36 | 121.1 (5) |
N1—C7—S1 | 116.6 (3) | C31—C36—C35 | 119.4 (5) |
N1—C7—C5 | 117.0 (3) | N4—C37—C38 | 108.1 (3) |
C5—C7—S1 | 126.4 (3) | C39—C38—C37 | 121.0 (3) |
N1—C8—C9 | 111.1 (4) | C43—C38—C37 | 120.4 (3) |
C14—C9—C8 | 117.5 (5) | C43—C38—C39 | 118.6 (3) |
C14—C9—C10 | 120.4 (5) | C38—C39—C40 | 120.2 (4) |
C10—C9—C8 | 122.0 (5) | C41—C40—C39 | 118.9 (5) |
C13—C12—C11 | 134.0 (8) | C42—C41—C40 | 121.5 (4) |
C13—C14—C9 | 127.4 (8) | C41—C42—C43 | 119.4 (5) |
N4—C15—S2 | 116.9 (2) | C38—C43—C42 | 121.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.87 | 2.604 (4) | 142 |
N4—H4···O4 | 0.86 | 1.88 | 2.612 (3) | 141 |
Cu1—S1 | 2.2387 (10) | Cu1—N2 | 1.976 (3) |
Cu1—S2 | 2.2341 (8) | Cu1—N3 | 1.969 (3) |
S2—Cu1—S1 | 91.69 (3) | N3—Cu1—S1 | 144.11 (9) |
N2—Cu1—S1 | 96.02 (8) | N3—Cu1—S2 | 97.17 (7) |
N2—Cu1—S2 | 144.94 (9) | N3—Cu1—N2 | 96.32 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.87 | 2.604 (4) | 142 |
N4—H4···O4 | 0.86 | 1.88 | 2.612 (3) | 141 |
Acknowledgements
We thank State task Ministry of Education and Science of the Russian Federation No. 4.560.2014-K.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Arena, G., Contino, A., Longo, E., Sciotto, D. & Spoto, G. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2287–2291. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jiang, Q., He, L.-T., Luo, S.-Z., Yang, Y.-Q., Yang, L., Feng, W. & Yuan, L.-H. (2013). Chin. Chem. Lett. 24, 881–884. CrossRef CAS Google Scholar
Mohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem. 10, 50–55. CAS Google Scholar
Obydennov, K. L., Klimareva, E. L., Kosterina, M. F., Slepukhin, P. A. & Morzherin, Yu. Yu. (2013). Tetrahedron Lett. 54, 4876–4879. CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shamkhy, E. T., Al-Karkhi, I. H. T. & Jaffar Al-Mulla, E. A. (2013). Res. Chem. Intermed. 39, 2463–2471. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zieliński, T. & Jurczak, J. (2005). Tetrahedron, 61, 4081–4089. . Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.