research communications
E)-1-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one
of (2aChemistry Department, University of Kinshasa, Kinshasa XI BP 190, Democratic Republic of Congo, bFaculty of Chemical Technology, Hanoi University of Industry, Minh Khai Commune – Tu Liem District, Hanoi, Vietnam, cFaculty of Chemistry, Hanoi University of Science, 334 - Nguyen Trai – Thanh Xuan District, Hanoi, Vietnam, dChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy – Cau Giay, Hanoi, Vietnam, and eChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be
In the title compound, C20H17NO5, the dihedral angle between the mean plane of the dihydroquinoline ring system (r.m.s. deviation = 0.003 Å) and the benzene ring is 1.83 (11)°. The almost planar conformation is a consequence of an intramolecular O—H⋯O hydrogen bond and the E configuration about the central C=C bond. In the O—H⋯O hydrogen bonds generate chains of molecules along the [10-1] direction. These chains are linked via π–π interactions [inter-centroid distances are in the range 3.6410 (16)–3.8663 (17) Å].
Keywords: crystal structure; 4-hydroxy-1,2-dihydroquinolin-2(1H)-one; α,β-unsaturated ketones; hydrogen bonding; π–π interactions.
CCDC reference: 1054894
1. Chemical context
The quinoline ring is an important component of bioactive heterocycles because of its diversity (Larsen et al., 1996; Chen et al., 2001; Roma et al., 2000; Dubé et al., 1998; Billker et al., 1998). Many derivatives containing 4-hydroxy-1,2-dihydroquinolin-2(1H)-one have wide applications in pharmaceuticals, such as anticancer (Hasegawa et al., 1990), anti-inflammatory (Ukrainets et al., 1996) and antiseizure (Rowley et al., 1993). Some α,β-unsaturated are known to have antimalarial, antibacterial and antifungal properties (Katritzky & Rees, 1984). The anticancer ability of some α,β-unsaturated containing a quinoline ring has also been reported (Rezig et al., 2000; Nguyen, 2007). A number of the α,β-unsaturated containing quinoline synthesized by the Claisen–Schmidt reaction have been reported to inhibit antimalarial activity (Domínguez et al., 2001). Moussaoui et al. (2002) also described the synthesis of α,β-unsaturated containing a quinoline ring and claimed cytotoxicity with human leukemia cells. Here we present the synthesis and of an α,β-unsaturated ketone derived from 3-acetyl-4-hydroxy-N-methylquinolin-2(1H)-one and 4-hydroxy-3-methoxybenzaldehyde.
2. Structural Commentary
The molecular structure of the title compound is illustrated in Fig. 1. The whole molecule is almost planar with a maximum deviation from the best plane through all atoms of 0.147 (3) Å for atom C20. The dihydroquinoline and benzene rings make a dihedral angle of 1.83 (11)° between the best planes. The configuration of the C12=C13 bond is E, with a C9—C11—C12—C13 torsion angle of 177.0 (2)°. In addition, intramolecular O2—H2⋯O3 and C12—H12⋯O1 hydrogen bonds assure the observed planarity of the structure (Table 1). Three short intramolecular contacts are observed: H10B⋯O1 (2.18 Å), H5A⋯O4 (2.25 Å) and H13⋯O3 (2.37 Å).
3. Supramolecular features
In the crystal, molecules are connected via O5—H5A⋯O1 hydrogen bonds, forming chains propagating along [10] (Fig. 2 and Table 1). These chains are linked by π–π interactions involving both ring systems (Fig. 3) and C—H⋯O interactions (Table 1). The inter-centroid distances are 3.6410 (16) and 3.8663 (17) Å for π–π interactions involving Cg1⋯Cg2iv and Cg3⋯Cg2v, respectively, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C2/C7–C9, C2–C7 and C14–C19 rings, respectively [symmetry codes: (iv) −x + 1, −y, −z + 2; (v) −x + 2, −y, −z + 2].
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; last update November 2014; Groom & Allen, 2014) for α,β-unsaturated C—CH=CH—C(=O)—O gave 1281 hits of which the majority adopts an E configuration (C—C=C—C torsion angle around 180°) as in the title compound. For only 19 entries this torsion angle is centered around 0°. A search for 1,2-dihydroquinoline derivatives gave 706 hits of which none contains an α,β-unsaturated ketone at the 3-position. The angle between the best planes through the two six-membered rings in these 1,2-dihydroquinoline derivatives is in the range of 0–22.13°. In the title compound, this angle is 1.49 (12)°.
5. Synthesis and crystallization
The precursors 4-hydroxy-6-methyl-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione and 3-acetyl-4-hydroxy-N-methylquinolin-2(1H)-one were prepared in high yield (87.0 and 92.5%, respectively) according to Kappe et al. (1994).
The title compound was synthesized by refluxing a solution of 2.17 g (0.01 mol) of 3-acetyl-4-hydroxy-N-methylquinolin-2(1H)-one, 1.52 g (0.01 mol) of 4-hydroxy-3-methoxybenzaldehyde, 22 ml of chloroform and 5 drops of piperidine (as a catalyst) in a 100 ml flask for 30 h. The precipitate was filtered off and recrystallized from ethanol to obtain the title product as yellow crystals. The yield was 2.03 g (58%); m.p. 505–506 K, Rf 0.7 (CHCl3–C2H5OH = 7:1 v/v).
IR (KBr, cm−1): 3357, 3115 (νOH); 1637 (νC=O); 997 (νCH= trans). 1H NMR (δ p.p.m.; DMSO-d6, Bruker Avance 500 MHz): 8.47 (1H, d, 2J = 16.0 Hz, Hβ), 7.92 (1H, d, 2J = 16.0 Hz, Hα), 3.59 (3H, s CH3-N), 7.33 (1H, t, 3J = 8.0 Hz, C6-H), 7.55 (1H, d, 3J = 8.0 Hz, C5-H), 7.81 (1H, t, 3J = 8.0 Hz, C7-H), 8.13 (1H, d, 3J = 8.0 Hz, C8-H), 3.85 (3H, s, OCH3), 6.89 (2H, d, 3J = 8.0 Hz, C13-H), 7.27 (1H, d, 3J = 8.0 Hz, C12-H), 7.30 (1H, s, C9-H), 9.89 (1H, s, C4-OH). Calculation for C20H17NO5: M = 351 au. Found (by ESI MS, m/z): 351 (M+).
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with stretchable C—H and O—H distances and with Uiso = 1.2Ueq(C) (1.5 times for methyl and hydroxyl groups).
details are summarized in Table 2Supporting information
CCDC reference: 1054894
10.1107/S2056989015005630/rz5152sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015005630/rz5152Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015005630/rz5152Isup3.cml
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H17NO5 | Z = 4 |
Mr = 351.35 | F(000) = 736 |
Monoclinic, P21/n | Dx = 1.404 Mg m−3 |
a = 8.3634 (8) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 22.664 (2) Å | µ = 0.84 mm−1 |
c = 8.8079 (9) Å | T = 100 K |
β = 95.413 (3)° | Block, yellow |
V = 1662.1 (3) Å3 | 0.58 × 0.22 × 0.04 mm |
Bruker SMART 6000 diffractometer | 2881 independent reflections |
Radiation source: fine-focus sealed tube | 1889 reflections with I > 2σ(I) |
Crossed Gοbel mirrors monochromator | Rint = 0.086 |
w\ and φ scans | θmax = 66.6°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→9 |
Tmin = 0.641, Tmax = 0.967 | k = −26→26 |
15707 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0033P] where P = (Fo2 + 2Fc2)/3 |
2881 reflections | (Δ/σ)max < 0.001 |
239 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7024 (3) | −0.04442 (11) | 0.9256 (3) | 0.0415 (6) | |
N1 | 0.7229 (2) | 0.02301 (9) | 1.1896 (2) | 0.0420 (5) | |
O1 | 0.8821 (2) | 0.08925 (8) | 1.0865 (2) | 0.0512 (5) | |
C2 | 0.6258 (3) | −0.06452 (11) | 1.0557 (3) | 0.0413 (6) | |
O2 | 0.6850 (2) | −0.07762 (9) | 0.8038 (2) | 0.0583 (6) | |
H2 | 0.7380 | −0.0633 | 0.7362 | 0.088* | |
C3 | 0.5393 (3) | −0.11726 (12) | 1.0516 (4) | 0.0523 (7) | |
H3 | 0.5284 | −0.1402 | 0.9609 | 0.063* | |
O3 | 0.8460 (2) | −0.00808 (8) | 0.6787 (2) | 0.0546 (5) | |
C4 | 0.4692 (3) | −0.13626 (13) | 1.1794 (4) | 0.0587 (8) | |
H4 | 0.4108 | −0.1723 | 1.1772 | 0.070* | |
O4 | 1.2629 (3) | 0.28691 (9) | 0.7891 (2) | 0.0675 (6) | |
C5 | 0.4853 (3) | −0.10230 (14) | 1.3095 (4) | 0.0620 (8) | |
H5 | 0.4376 | −0.1152 | 1.3973 | 0.074* | |
O5 | 1.3629 (3) | 0.29415 (9) | 0.5092 (3) | 0.0723 (7) | |
H5A | 1.3606 | 0.3205 | 0.5759 | 0.109* | |
C6 | 0.5689 (3) | −0.05015 (13) | 1.3150 (3) | 0.0540 (7) | |
H6 | 0.5789 | −0.0277 | 1.4064 | 0.065* | |
C7 | 0.6394 (3) | −0.02989 (11) | 1.1873 (3) | 0.0421 (6) | |
C8 | 0.8029 (3) | 0.04333 (11) | 1.0694 (3) | 0.0394 (6) | |
C9 | 0.7893 (3) | 0.00803 (10) | 0.9302 (3) | 0.0370 (5) | |
C10 | 0.7290 (4) | 0.06001 (14) | 1.3261 (3) | 0.0635 (8) | |
H10A | 0.6203 | 0.0733 | 1.3420 | 0.095* | |
H10B | 0.7974 | 0.0944 | 1.3128 | 0.095* | |
H10C | 0.7732 | 0.0372 | 1.4148 | 0.095* | |
C11 | 0.8604 (3) | 0.02611 (11) | 0.7932 (3) | 0.0418 (6) | |
C12 | 0.9447 (3) | 0.08179 (11) | 0.7778 (3) | 0.0447 (6) | |
H12 | 0.9507 | 0.1094 | 0.8594 | 0.054* | |
C13 | 1.0134 (3) | 0.09468 (11) | 0.6516 (3) | 0.0429 (6) | |
H13 | 1.0054 | 0.0654 | 0.5741 | 0.051* | |
C14 | 1.0990 (3) | 0.14816 (11) | 0.6180 (3) | 0.0420 (6) | |
C15 | 1.1320 (3) | 0.19255 (11) | 0.7263 (3) | 0.0447 (6) | |
H15 | 1.0944 | 0.1890 | 0.8244 | 0.054* | |
C16 | 1.2192 (3) | 0.24159 (12) | 0.6913 (3) | 0.0480 (7) | |
C17 | 1.2722 (3) | 0.24754 (12) | 0.5466 (4) | 0.0536 (7) | |
C18 | 1.2366 (4) | 0.20473 (12) | 0.4387 (4) | 0.0584 (8) | |
H18 | 1.2714 | 0.2090 | 0.3396 | 0.070* | |
C19 | 1.1502 (3) | 0.15542 (12) | 0.4737 (3) | 0.0524 (7) | |
H19 | 1.1256 | 0.1261 | 0.3981 | 0.063* | |
C20 | 1.2328 (4) | 0.28030 (14) | 0.9429 (4) | 0.0699 (9) | |
H20A | 1.1166 | 0.2782 | 0.9499 | 0.105* | |
H20B | 1.2773 | 0.3141 | 1.0019 | 0.105* | |
H20C | 1.2834 | 0.2439 | 0.9839 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0403 (13) | 0.0349 (13) | 0.0493 (15) | 0.0023 (10) | 0.0045 (11) | −0.0069 (11) |
N1 | 0.0485 (11) | 0.0400 (12) | 0.0372 (12) | 0.0021 (9) | 0.0034 (10) | 0.0010 (8) |
O1 | 0.0626 (11) | 0.0393 (11) | 0.0518 (11) | −0.0104 (9) | 0.0065 (9) | −0.0053 (8) |
C2 | 0.0355 (12) | 0.0364 (14) | 0.0522 (16) | 0.0059 (10) | 0.0046 (11) | 0.0078 (11) |
O2 | 0.0723 (13) | 0.0472 (12) | 0.0584 (13) | −0.0144 (10) | 0.0210 (10) | −0.0155 (9) |
C3 | 0.0465 (15) | 0.0426 (16) | 0.0679 (19) | −0.0003 (12) | 0.0057 (14) | 0.0037 (13) |
O3 | 0.0706 (12) | 0.0439 (11) | 0.0515 (11) | −0.0091 (9) | 0.0171 (10) | −0.0107 (8) |
C4 | 0.0519 (16) | 0.0476 (17) | 0.077 (2) | −0.0073 (13) | 0.0092 (15) | 0.0175 (15) |
O4 | 0.0914 (15) | 0.0506 (13) | 0.0635 (14) | −0.0232 (11) | 0.0223 (12) | −0.0085 (10) |
C5 | 0.0574 (18) | 0.066 (2) | 0.064 (2) | −0.0045 (15) | 0.0134 (16) | 0.0199 (15) |
O5 | 0.0931 (16) | 0.0444 (13) | 0.0869 (18) | −0.0117 (11) | 0.0471 (14) | 0.0035 (10) |
C6 | 0.0532 (15) | 0.0613 (19) | 0.0482 (16) | 0.0000 (13) | 0.0084 (13) | 0.0105 (13) |
C7 | 0.0345 (12) | 0.0436 (15) | 0.0476 (15) | 0.0056 (10) | 0.0016 (11) | 0.0069 (11) |
C8 | 0.0368 (12) | 0.0336 (13) | 0.0475 (15) | 0.0028 (10) | 0.0024 (11) | 0.0029 (10) |
C9 | 0.0355 (12) | 0.0315 (13) | 0.0443 (14) | 0.0040 (10) | 0.0051 (11) | 0.0013 (10) |
C10 | 0.086 (2) | 0.064 (2) | 0.0411 (16) | −0.0142 (17) | 0.0089 (16) | −0.0072 (13) |
C11 | 0.0407 (13) | 0.0374 (14) | 0.0479 (15) | 0.0050 (11) | 0.0068 (12) | −0.0028 (11) |
C12 | 0.0455 (14) | 0.0382 (14) | 0.0519 (16) | −0.0020 (11) | 0.0126 (12) | −0.0035 (11) |
C13 | 0.0425 (13) | 0.0378 (14) | 0.0486 (15) | 0.0030 (11) | 0.0056 (12) | −0.0025 (11) |
C14 | 0.0386 (12) | 0.0382 (14) | 0.0506 (16) | 0.0026 (10) | 0.0108 (12) | 0.0028 (11) |
C15 | 0.0451 (14) | 0.0435 (15) | 0.0470 (15) | −0.0019 (11) | 0.0120 (12) | −0.0001 (11) |
C16 | 0.0495 (15) | 0.0400 (15) | 0.0564 (17) | 0.0009 (11) | 0.0141 (13) | −0.0009 (12) |
C17 | 0.0584 (17) | 0.0380 (15) | 0.068 (2) | 0.0030 (12) | 0.0270 (15) | 0.0101 (13) |
C18 | 0.077 (2) | 0.0479 (17) | 0.0552 (18) | 0.0014 (14) | 0.0308 (16) | 0.0037 (13) |
C19 | 0.0632 (17) | 0.0456 (17) | 0.0508 (17) | 0.0012 (13) | 0.0185 (14) | −0.0033 (12) |
C20 | 0.089 (2) | 0.063 (2) | 0.059 (2) | −0.0198 (18) | 0.0139 (18) | −0.0138 (15) |
C1—C2 | 1.439 (4) | C8—C9 | 1.459 (3) |
C1—O2 | 1.307 (3) | C9—C11 | 1.454 (3) |
C1—C9 | 1.392 (3) | C10—H10A | 0.9800 |
N1—C7 | 1.387 (3) | C10—H10B | 0.9800 |
N1—C8 | 1.384 (3) | C10—H10C | 0.9800 |
N1—C10 | 1.462 (3) | C11—C12 | 1.458 (3) |
O1—C8 | 1.235 (3) | C12—H12 | 0.9500 |
C2—C3 | 1.396 (4) | C12—C13 | 1.331 (4) |
C2—C7 | 1.395 (4) | C13—H13 | 0.9500 |
O2—H2 | 0.8400 | C13—C14 | 1.452 (3) |
C3—H3 | 0.9500 | C14—C15 | 1.396 (4) |
C3—C4 | 1.386 (4) | C14—C19 | 1.389 (4) |
O3—C11 | 1.269 (3) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C15—C16 | 1.380 (4) |
C4—C5 | 1.377 (4) | C16—C17 | 1.395 (4) |
O4—C16 | 1.367 (3) | C17—C18 | 1.371 (4) |
O4—C20 | 1.409 (4) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C18—C19 | 1.381 (4) |
C5—C6 | 1.372 (4) | C19—H19 | 0.9500 |
O5—H5A | 0.8400 | C20—H20A | 0.9800 |
O5—C17 | 1.359 (3) | C20—H20B | 0.9800 |
C6—H6 | 0.9500 | C20—H20C | 0.9800 |
C6—C7 | 1.396 (4) | ||
O2—C1—C2 | 116.6 (2) | H10A—C10—H10B | 109.5 |
O2—C1—C9 | 122.2 (2) | H10A—C10—H10C | 109.5 |
C9—C1—C2 | 121.2 (2) | H10B—C10—H10C | 109.5 |
C7—N1—C10 | 119.1 (2) | O3—C11—C9 | 118.2 (2) |
C8—N1—C7 | 123.7 (2) | O3—C11—C12 | 117.7 (2) |
C8—N1—C10 | 117.2 (2) | C9—C11—C12 | 124.1 (2) |
C3—C2—C1 | 121.3 (3) | C11—C12—H12 | 119.4 |
C7—C2—C1 | 118.4 (2) | C13—C12—C11 | 121.2 (2) |
C7—C2—C3 | 120.3 (2) | C13—C12—H12 | 119.4 |
C1—O2—H2 | 109.5 | C12—C13—H13 | 116.1 |
C2—C3—H3 | 119.9 | C12—C13—C14 | 127.8 (2) |
C4—C3—C2 | 120.2 (3) | C14—C13—H13 | 116.1 |
C4—C3—H3 | 119.9 | C15—C14—C13 | 122.1 (2) |
C3—C4—H4 | 120.4 | C19—C14—C13 | 119.1 (2) |
C5—C4—C3 | 119.1 (3) | C19—C14—C15 | 118.8 (2) |
C5—C4—H4 | 120.4 | C14—C15—H15 | 119.9 |
C16—O4—C20 | 117.7 (2) | C16—C15—C14 | 120.2 (3) |
C4—C5—H5 | 119.3 | C16—C15—H15 | 119.9 |
C6—C5—C4 | 121.4 (3) | O4—C16—C15 | 125.4 (3) |
C6—C5—H5 | 119.3 | O4—C16—C17 | 114.5 (2) |
C17—O5—H5A | 109.5 | C15—C16—C17 | 120.1 (3) |
C5—C6—H6 | 119.7 | O5—C17—C16 | 122.0 (3) |
C5—C6—C7 | 120.5 (3) | O5—C17—C18 | 118.1 (3) |
C7—C6—H6 | 119.7 | C18—C17—C16 | 119.9 (3) |
N1—C7—C2 | 120.0 (2) | C17—C18—H18 | 120.0 |
N1—C7—C6 | 121.5 (3) | C17—C18—C19 | 120.1 (3) |
C2—C7—C6 | 118.5 (3) | C19—C18—H18 | 120.0 |
N1—C8—C9 | 117.1 (2) | C14—C19—H19 | 119.6 |
O1—C8—N1 | 118.6 (2) | C18—C19—C14 | 120.9 (3) |
O1—C8—C9 | 124.3 (2) | C18—C19—H19 | 119.6 |
C1—C9—C8 | 119.5 (2) | O4—C20—H20A | 109.5 |
C1—C9—C11 | 118.0 (2) | O4—C20—H20B | 109.5 |
C11—C9—C8 | 122.5 (2) | O4—C20—H20C | 109.5 |
N1—C10—H10A | 109.5 | H20A—C20—H20B | 109.5 |
N1—C10—H10B | 109.5 | H20A—C20—H20C | 109.5 |
N1—C10—H10C | 109.5 | H20B—C20—H20C | 109.5 |
C1—C2—C3—C4 | 178.7 (2) | C7—C2—C3—C4 | −1.4 (4) |
C1—C2—C7—N1 | 1.1 (3) | C8—N1—C7—C2 | −3.3 (4) |
C1—C2—C7—C6 | −178.3 (2) | C8—N1—C7—C6 | 176.0 (2) |
C1—C9—C11—O3 | −3.2 (3) | C8—C9—C11—O3 | 178.2 (2) |
C1—C9—C11—C12 | 175.5 (2) | C8—C9—C11—C12 | −3.1 (4) |
N1—C8—C9—C1 | −1.9 (3) | C9—C1—C2—C3 | −179.7 (2) |
N1—C8—C9—C11 | 176.7 (2) | C9—C1—C2—C7 | 0.5 (3) |
O1—C8—C9—C1 | 177.2 (2) | C9—C11—C12—C13 | 177.0 (2) |
O1—C8—C9—C11 | −4.2 (4) | C10—N1—C7—C2 | 177.0 (2) |
C2—C1—C9—C8 | −0.1 (3) | C10—N1—C7—C6 | −3.7 (4) |
C2—C1—C9—C11 | −178.7 (2) | C10—N1—C8—O1 | 4.2 (3) |
C2—C3—C4—C5 | 0.4 (4) | C10—N1—C8—C9 | −176.6 (2) |
O2—C1—C2—C3 | 0.8 (4) | C11—C12—C13—C14 | 179.0 (2) |
O2—C1—C2—C7 | −179.0 (2) | C12—C13—C14—C15 | 5.8 (4) |
O2—C1—C9—C8 | 179.5 (2) | C12—C13—C14—C19 | −174.4 (3) |
O2—C1—C9—C11 | 0.8 (4) | C13—C14—C15—C16 | 177.5 (2) |
C3—C2—C7—N1 | −178.8 (2) | C13—C14—C19—C18 | −177.9 (3) |
C3—C2—C7—C6 | 1.9 (4) | C14—C15—C16—O4 | −178.0 (2) |
C3—C4—C5—C6 | 0.1 (5) | C14—C15—C16—C17 | 1.2 (4) |
O3—C11—C12—C13 | −4.3 (4) | C15—C14—C19—C18 | 2.0 (4) |
C4—C5—C6—C7 | 0.4 (4) | C15—C16—C17—O5 | −177.8 (3) |
O4—C16—C17—O5 | 1.5 (4) | C15—C16—C17—C18 | 0.4 (4) |
O4—C16—C17—C18 | 179.7 (3) | C16—C17—C18—C19 | −0.9 (5) |
C5—C6—C7—N1 | 179.3 (2) | C17—C18—C19—C14 | −0.4 (5) |
C5—C6—C7—C2 | −1.4 (4) | C19—C14—C15—C16 | −2.4 (4) |
O5—C17—C18—C19 | 177.4 (3) | C20—O4—C16—C15 | 7.6 (4) |
C7—N1—C8—O1 | −175.6 (2) | C20—O4—C16—C17 | −171.6 (3) |
C7—N1—C8—C9 | 3.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3 | 0.84 | 1.65 | 2.407 (3) | 148 |
O5—H5A···O1i | 0.84 | 2.05 | 2.730 (3) | 137 |
C12—H12···O1 | 0.98 | 2.18 | 2.822 (3) | 124 |
C10—H10C···O3ii | 0.98 | 2.56 | 3.523 (3) | 167 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x, y, z+1. |
Acknowledgements
We thank VLIR–UOS and the Chemistry Department of KU Leuven for support of this work.
References
Billker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. & Morris, H. R. (1998). Nature, 392, 289–292. CAS PubMed Google Scholar
Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L. & Tzeng, C. C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Domínguez, J. N., Charris, J. E., Lobo, G., Gamboa de Domínguez, N., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555–560. Web of Science PubMed Google Scholar
Dubé, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Ethier, D., Falgueyret, J.-P., Friesen, R. W., Girard, M., Girard, Y., Guay, J., Riendeau, D., Tagari, P. & Young, R. (1998). Bioorg. Med. Chem. Lett. 8, 1255–1260. PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hasegawa, S., Masunaga, K., Muto, M. & Hanada, S. (1990). Chem. Abstr. 114, 34897k. Google Scholar
Kappe, T., Aigner, R., Hohengassner, P. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 596–601. CrossRef CAS Google Scholar
Katritzky, A. R. & Rees, C. W. (1984). Compr. Heterocycl. Chem. pp. 25–85 Oxford: Pergamon Press. Google Scholar
Larsen, R. D., Corley, E. G., King, A. O., Carroll, J. D., Davis, P., Verhoeven, T. R., Reider, P. J., Labelle, M., Gauthier, J. Y., Xiang, Y. B. & Zamboni, R. J. (1996). J. Org. Chem. 61, 3398–3405. CrossRef CAS Google Scholar
Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78. CAS Google Scholar
Nguyen, M. T. (2007). Personal communication. Google Scholar
Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. J. (2000). J. Soc. Alger. Chim. 10, 111–120. CAS Google Scholar
Roma, G., Di Braccio, M., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035. Web of Science CrossRef PubMed CAS Google Scholar
Rowley, M., Leeson, P. D., Stevenson, G. I., Moseley, A. M., Stansfield, I., Sanderson, I., Robinson, L., Baker, R., Kemp, J. A., Marshall, G. R., et al. (1993). J. Med. Chem. 36, 3386–3396. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ukrainets, I. V., Taran, S. G., Sidorenko, L. V., Gorokhova, O. V., Ogirenko, A. A., Turov, A. V. & Filimonova, N. I. (1996). Khim. Geterotsikl. Soedin. 8, 1113–1123. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.