research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 350-353

Crystal structure of bis­­(2-{1-[(E)-(4-fluoro­benz­yl)imino]­eth­yl}phenolato-κ2N,O)palladium(II)

CROSSMARK_Color_square_no_text.svg

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bDDH CoRe, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, cInstitute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and dDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hadariah@salam.uitm.edu.my

Edited by J. Simpson, University of Otago, New Zealand (Received 2 February 2015; accepted 3 March 2015; online 11 March 2015)

The asymmetric unit of the title complex, [Pd(C15H13FNO)2], contains one half of the mol­ecule with the PdII cation lying on an inversion centre and is coordinated by the bidentate Schiff base anion. The geometry around the cationic PdII centre is distorted square planar, chelated by the imine N- and phenolate O-donor atoms of the two Schiff base ligands. The N- and O-donor atoms of the two ligands are mutually trans, with Pd—N and Pd—O bond lengths of 2.028 (2) and 1.9770 (18) Å, respectively. The fluoro­phenyl ring is tilted away from the coordination plane and makes a dihedral angle of 66.2 (2)° with the phenolate ring. In the crystal, mol­ecules are linked into chains along the [101] direction by weak C—H⋯O hydrogen bonds. Weak ππ inter­actions with centroid–centroid distances of 4.079 (2) Å stack the mol­ecules along c.

1. Chemical context

Schiff bases represent one of the most widely utilized classes of ligands in coordination chemistry and the chemistry of Schiff bases is still an area of increasing inter­est (Canali & Sherrigton, 1999[Canali, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93.]). The PdII and NiII complexes of Schiff bases have attracted much attention as they play important roles in bioinorganic chemistry and may provide the basis for models of active sites of biological systems (Malik et al., 2013[Malik, S., Ghosh, S., Jain, B., Singh, A. & Bhattacharya, M. (2013). Int. J. Inorg. Chem. pp. 1-6.]) or act as catalysts (Shahnaz et al., 2013[Shahnaz, N., Banik, B. & Das, P. (2013). Tetrahedron Lett. 54, 2886-2889.]). The title compound, [Pd(C15H13FNO)2], is related to the previously reported compound bis­{2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]phen­o­lato-κ2N,O1}nickel(II) (Mohd Tajuddin et al., 2014[Tajuddin, A. M., Bahron, H., Hanafiah, R. M., Ibrahim, N., Fun, H.-K. & Chantrapromma, S. (2014). Acta Cryst. E70, 252-255.]) in terms of the coordination geometry around the central metal. In this article, we report the synthesis of the title Schiff base–PdII complex and its characterization by spectroscopy and elemental analysis. The X-ray structure (Fig. 1[link]), confirms the binding mode of the 4-fluoro­benz­yl(imino­eth­yl)phenolate ligand to the PdII cation.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The labelled atoms are related to the unlabelled atoms of the Schiff base ligands by the symmetry code 1 − x, 2 − y, 2 − z.

The title compound (1) was screened for catalytic activity in the Suzuki cross-coupling reaction between phenyl­boronic acid and iodo­benzene with a catalyst loading of 1 mmol%. The conversion of iodo­benzene was found to occur with a yield of 52%.

2. Structural commentary

The asymmetric unit of (1) contains one-half of the mol­ecule with the PdII cation lying on an inversion centre and the Schiff base anion acting as an N,O bidentate chelate ligand (Fig. 1[link]). The PdII cation binds to the N and the O atoms of two symmetry-related Schiff base ligand such that the N and O atoms are mutually trans. The N2O2 donor sets of the two chelating Schiff base ligands in the equatorial plane around Pd1 adopt a slightly distorted square-planar coordination geometry. The Pd1—N1 and Pd1—O1 distances (Table 1[link]) are typical of square-planar PdII complexes, and compare well with those observed in other closely related PdII complexes (Adrian et al., 2008[Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261-1266.]; Bahron et al., 2014[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Chantrapromma, S. & Fun, H.-K. (2014). Acta Cryst. E70, m289-m290.]; Wan Ibrahim & Shamsuddin, 2012[Wan Ibrahim, W. N. & Shamsuddin, M. (2012). Cryst. Struct. Theor. Appl. 1, 25-29.]). The bite angle of the imino­methyl­phenolate chelate, N1—Pd1—O1 is 88.48 (8)°, which is also similar to that in a related PdII complex (Bahron et al., 2014[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Chantrapromma, S. & Fun, H.-K. (2014). Acta Cryst. E70, m289-m290.]). The ring Pd1/N1/C8/C9/C10/O1 adopts an envelope conformation with Pd1 displaced by 0.270 (2) Å from the plane of the other ring atoms, and with puckering parameters Q = 0.525 (2) Å, θ = 112.8 (3) and φ = 206.9 (3)°. Other bond lengths and angles observed in the structure are also normal. The fluoro­phenyl ring (C1–C6) makes a dihedral angle of 66.2 (2)° with the phenolate ring (C9–C14).

Table 1
Selected geometric parameters (Å, °)

Pd1—O1 1.9770 (18) Pd1—N1 2.028 (2)
       
O1—Pd1—N1 88.48 (8) O1i—Pd1—N1 91.52 (8)
Symmetry code: (i) -x+1, -y+2, -z+2.

3. Supra­molecular features

In the crystal packing of (1), the mol­ecules are linked into chains along the [101] direction by weak C4—H4A⋯O1 inter­actions (Fig. 2[link], Table 2[link]). A weak ππ stacking inter­action occurs between the phenolate rings of adjacent complexes (Fig. 3[link]), with a centroid–centroid distance, Cg4⋯Cg4iii, of 4.079 (2) Å [symmetry code: (iii) = 1 − x, 2 − y, 1 − z; Cg4 is the centroid of the C9–C14 ring]. These combine with the C—H⋯O contacts to generate sheets in the ac plane (Fig. 4[link]). These sheets are further stacked along the b-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1ii 0.93 2.50 3.405 (5) 165
Symmetry code: (ii) -x+2, -y+2, -z+2.
[Figure 2]
Figure 2
Screw chains of mol­ecules of (1) linked by C—H⋯O inter­actions (drawn as dashed lines).
[Figure 3]
Figure 3
ππ contacts for (1) drawn as dotted lines with ring centroids shown as coloured spheres. Cg4 is the centroid of the C9–C14 ring. H atoms are omitted for clarity.
[Figure 4]
Figure 4
The packing of (1) viewed approximately along the b axis showing mol­ecular sheets of the PdII complex. Only H atoms involved in C—H⋯O inter­actions are shown for clarity.

4. Database survey

Six PdII complexes with related Schiff base N2O2 donor sets have been reported (Brunner et al., 2000[Brunner, H., Niemetz, M. & Zabel, M. (2000). Z. Naturforsch. Teil B, 55, 145-154.]; Mehta & Vengurlekar, 2001[Mehta, B. H. & Vengurlekar, V. P. (2001). Asian J. Chem. 13, 939-943.]; Bahron et al., 2011[Bahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m759-m760.], 2014[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Chantrapromma, S. & Fun, H.-K. (2014). Acta Cryst. E70, m289-m290.]; Mohd Tajuddin et al., 2012a[Mohd Tajuddin, A. M., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012a). Adv. Mater. Res. 554-556, 736-740.]; Tsuno et al., 2013[Tsuno, T., Iwabe, H. & Brunner, H. (2013). Inorg. Chim. Acta, 400, 262-266.]). However, only three of these PdII complexes have closely related Schiff base ligands (Bahron et al., 2011[Bahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m759-m760.]; 2014[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Chantrapromma, S. & Fun, H.-K. (2014). Acta Cryst. E70, m289-m290.]; Mohd Tajuddin et al., 2012a[Mohd Tajuddin, A. M., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012a). Adv. Mater. Res. 554-556, 736-740.]).

5. Synthesis and crystallization

The ligand, (E)-2-(1-(4-fluoro­benzyl­imino)­eth­yl)phenol (Mohd Tajuddin et al., 2012b[Mohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Yamin, B. M. (2012b). Malaysian J. Anal. Sci. 16, 79-87.]) (2 mmol, 0.4877 g) was dissolved in CH3CN (30 mL) in a round-bottomed flask. Palladium(II) acetate (1 mmol, 0.2251 g) was dissolved separ­ately in CH3CN (20 mL) and was then added into the flask containing the ligand solution. The mixture was stirred and refluxed for 5 h upon which a turmeric yellow solid was formed. The solid was filtered off, washed with ice-cold CH3CN and air dried at room temperature. The solid product was recrystallized from chloro­form, yielding yellow crystals (yield 48.5%). 1H NMR, 13C NMR and IR spectral bands have been studied and agree well with the structure obtained from the values of the CHN analyses and X-ray structure determination.

Melting point 508–510 K. Analytical data for C30H26F2N2O2Pd: C, 60.97; H, 4.43; N, 4.74%; Found: C, 60.81; H, 4.49; N, 4.66%. IR (KBr, cm−1): 1598 ν(C=N), 1319 ν(C—N), 1216 ν(C—O), 1321 ν(CH3), 556 ν(Pd—N), 450 ν(Pd—O). 1H NMR (300 MHz, CDCl3): δ (p.p.m.) 2.32 (s, 3H, C—CH3), 5.11 (s, 2H, CH2), 6.53–7.46 (ArC). 13C NMR (300 MHz, CDCl3): δ (p.p.m.) 19.5 (C—CH3), 54.2 (CH2), 115.3, 115.6, 121.3, 128.6, 130.2 (ArC), 169.8 (C=N).

The infrared spectrum of (1) exhibits a strong band at 1598 cm−1 assignable to the C=N stretching frequency of the azomethine moiety. Weak bands at 556 and 450 cm−1 attributable to Pd—N and Pd—O vibrations, respectively (Ouf et al., 2010[Ouf, A. E., Ali, M. S., Saad, E. M. & Mostafa, S. I. (2010). J. Mol. Struct. 973, 69-75.]), are due to the participation of the nitro­gen of the azomethine group and the oxygen of the phenolate ring in the complexation of the palladium(II) centre by the Schiff base ligands. From the NMR results, the free 4-fluoro­benz­yl(imino­eth­yl)phenolate ligand shows a multiplet at around 6.80–7.57 p.p.m. assignable to the aromatic protons. A corres­ponding multiplet appears in almost the same position in the spectrum of the PdII complex (compound 1) as that observed by Gupta et al. (2013[Gupta, M., Sihag, S., Varshney, A. K. & Varshney, S. (2013). J. Chem. pp. 1-8.]). Singlets for aliphatic methyl­ene (–CH2) and methyl (–CH3) protons appear at 5.11 and 2.32 p.p.m., respectively. The 13C chemical shift for the imine carbon (C=N) is found at 169.8 p.p.m., agreeing with data reported by Şenol et al. (2011[Şenol, C., Hayvali, Z., Dal, H. & Hökelek, T. (2011). J. Mol. Struct. 997, 53-59.]).

The title compound was screened for catalytic activity in the Suzuki cross-coupling reaction between phenyl­boronic acid with iodo­benzene. The reaction was carried out under nitro­gen at 373 K in di­methyl­acetamide with a catalyst loading of 1 mmol%. The conversion of iodo­benzene was monitored using GC–FID after 24 hours of reaction time. This resulted in a 52% conversion of iodo­benzene in the reaction.

6. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 hydrogen atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula [Pd(C15H13FNO)2]
Mr 590.93
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.5924 (5), 21.9212 (14), 9.3475 (5)
β (°) 124.963 (4)
V3) 1274.97 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.50 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.830
No. of measured, independent and observed [I > 2σ(I)] reflections 38866, 2776, 2720
Rint 0.057
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 1.30
No. of reflections 2776
No. of parameters 170
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Bis(2-{1-[(E)-(4-fluorobenzyl)imino]ethyl}phenolato-κ2N,O)palladium(II) top
Crystal data top
[Pd(C15H13FNO)2]F(000) = 600
Mr = 590.93Dx = 1.539 Mg m3
Monoclinic, P21/cMelting point = 508–510 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5924 (5) ÅCell parameters from 2776 reflections
b = 21.9212 (14) Åθ = 3.2–27.0°
c = 9.3475 (5) ŵ = 0.77 mm1
β = 124.963 (4)°T = 296 K
V = 1274.97 (15) Å3Block, yellow
Z = 20.50 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2776 independent reflections
Radiation source: sealed tube2720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.699, Tmax = 0.830k = 2828
38866 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.0086P)2 + 1.3994P]
where P = (Fo2 + 2Fc2)/3
2776 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50001.00001.00000.03202 (9)
F11.3139 (4)0.77987 (11)1.2186 (5)0.1153 (11)
O10.5384 (3)1.04581 (9)0.8375 (2)0.0462 (5)
N10.4268 (3)0.92521 (9)0.8478 (3)0.0343 (4)
C10.7655 (7)0.78728 (16)1.0865 (7)0.0924 (16)
H1A0.66700.76291.08900.111*
C20.9701 (7)0.76567 (18)1.1567 (8)0.117 (2)
H2A1.01080.72721.20780.140*
C31.1113 (6)0.80149 (15)1.1502 (6)0.0716 (11)
C41.0618 (5)0.85845 (14)1.0834 (4)0.0495 (7)
H4A1.16270.88271.08390.059*
C50.8555 (5)0.87966 (12)1.0140 (4)0.0416 (6)
H50.81840.91880.96700.050*
C60.7048 (5)0.84467 (12)1.0125 (4)0.0411 (6)
C70.4795 (5)0.86633 (12)0.9399 (4)0.0429 (6)
H7A0.37810.83580.85980.051*
H7B0.46290.87021.03490.051*
C80.3497 (4)0.92650 (12)0.6831 (4)0.0382 (6)
C90.2963 (4)0.98338 (13)0.5855 (3)0.0381 (6)
C100.3929 (4)1.03958 (13)0.6678 (3)0.0390 (6)
C110.3352 (6)1.09165 (15)0.5625 (4)0.0527 (7)
H11A0.39711.12890.61470.063*
C120.1898 (6)1.08905 (16)0.3845 (4)0.0578 (8)
H12A0.15541.12430.31810.069*
C130.0945 (5)1.03431 (17)0.3037 (4)0.0551 (8)
H13A0.00521.03260.18330.066*
C140.1479 (5)0.98286 (15)0.4023 (4)0.0482 (7)
H14A0.08440.94610.34680.058*
C150.3123 (6)0.86788 (14)0.5833 (4)0.0566 (8)
H15A0.32800.87560.49000.085*
H15B0.16980.85310.53590.085*
H15C0.41540.83780.66080.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03017 (15)0.03263 (14)0.03135 (14)0.00387 (10)0.01650 (11)0.00210 (11)
F10.0547 (14)0.0598 (14)0.175 (3)0.0194 (11)0.0329 (16)0.0054 (16)
O10.0568 (12)0.0479 (11)0.0349 (10)0.0199 (9)0.0269 (9)0.0048 (8)
N10.0332 (11)0.0332 (10)0.0370 (11)0.0041 (8)0.0203 (9)0.0044 (9)
C10.062 (2)0.0424 (19)0.143 (4)0.0064 (17)0.041 (3)0.027 (2)
C20.066 (3)0.042 (2)0.183 (6)0.0083 (19)0.036 (3)0.038 (3)
C30.0486 (19)0.0420 (17)0.089 (3)0.0076 (15)0.0185 (19)0.0048 (17)
C40.0444 (16)0.0509 (17)0.0489 (17)0.0005 (13)0.0242 (14)0.0016 (13)
C50.0495 (16)0.0367 (13)0.0406 (14)0.0042 (12)0.0269 (13)0.0054 (11)
C60.0476 (15)0.0316 (12)0.0381 (14)0.0029 (11)0.0211 (12)0.0027 (11)
C70.0504 (16)0.0328 (13)0.0514 (16)0.0084 (11)0.0327 (14)0.0041 (12)
C80.0335 (13)0.0426 (14)0.0395 (14)0.0059 (11)0.0215 (12)0.0100 (11)
C90.0350 (13)0.0478 (15)0.0337 (13)0.0014 (11)0.0209 (11)0.0032 (11)
C100.0424 (14)0.0460 (15)0.0363 (14)0.0025 (12)0.0271 (12)0.0016 (11)
C110.067 (2)0.0483 (17)0.0498 (18)0.0012 (15)0.0373 (17)0.0029 (13)
C120.065 (2)0.062 (2)0.0513 (18)0.0141 (16)0.0365 (17)0.0169 (16)
C130.0447 (17)0.079 (2)0.0360 (15)0.0042 (16)0.0197 (13)0.0037 (15)
C140.0422 (15)0.0614 (18)0.0375 (15)0.0046 (13)0.0208 (13)0.0066 (13)
C150.070 (2)0.0485 (17)0.0523 (18)0.0102 (15)0.0360 (17)0.0160 (14)
Geometric parameters (Å, º) top
Pd1—O11.9770 (18)C6—C71.510 (4)
Pd1—O1i1.9770 (18)C7—H7A0.9700
Pd1—N1i2.028 (2)C7—H7B0.9700
Pd1—N12.028 (2)C8—C91.458 (4)
F1—C31.369 (4)C8—C151.516 (4)
O1—C101.321 (3)C9—C141.411 (4)
N1—C81.297 (3)C9—C101.415 (4)
N1—C71.474 (3)C10—C111.403 (4)
C1—C21.378 (6)C11—C121.373 (5)
C1—C61.381 (4)C11—H11A0.9300
C1—H1A0.9300C12—C131.381 (5)
C2—C31.358 (6)C12—H12A0.9300
C2—H2A0.9300C13—C141.363 (5)
C3—C41.349 (5)C13—H13A0.9300
C4—C51.387 (4)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9600
C5—C61.371 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
O1—Pd1—O1i180.00 (10)N1—C7—H7B108.9
O1—Pd1—N1i91.52 (8)C6—C7—H7B108.9
O1i—Pd1—N1i88.48 (8)H7A—C7—H7B107.7
O1—Pd1—N188.48 (8)N1—C8—C9122.4 (2)
O1i—Pd1—N191.52 (8)N1—C8—C15120.7 (3)
N1i—Pd1—N1180.000 (1)C9—C8—C15116.9 (2)
C10—O1—Pd1118.68 (16)C14—C9—C10118.1 (3)
C8—N1—C7120.0 (2)C14—C9—C8119.6 (3)
C8—N1—Pd1124.82 (18)C10—C9—C8122.2 (2)
C7—N1—Pd1115.13 (17)O1—C10—C11117.9 (3)
C2—C1—C6120.9 (4)O1—C10—C9124.0 (2)
C2—C1—H1A119.6C11—C10—C9118.1 (3)
C6—C1—H1A119.6C12—C11—C10121.8 (3)
C3—C2—C1118.9 (4)C12—C11—H11A119.1
C3—C2—H2A120.6C10—C11—H11A119.1
C1—C2—H2A120.6C11—C12—C13120.3 (3)
C4—C3—C2122.6 (3)C11—C12—H12A119.9
C4—C3—F1118.5 (4)C13—C12—H12A119.9
C2—C3—F1118.9 (3)C14—C13—C12119.3 (3)
C3—C4—C5117.8 (3)C14—C13—H13A120.3
C3—C4—H4A121.1C12—C13—H13A120.3
C5—C4—H4A121.1C13—C14—C9122.4 (3)
C6—C5—C4121.9 (3)C13—C14—H14A118.8
C6—C5—H5119.0C9—C14—H14A118.8
C4—C5—H5119.0C8—C15—H15A109.5
C5—C6—C1117.9 (3)C8—C15—H15B109.5
C5—C6—C7123.5 (2)H15A—C15—H15B109.5
C1—C6—C7118.6 (3)C8—C15—H15C109.5
N1—C7—C6113.4 (2)H15A—C15—H15C109.5
N1—C7—H7A108.9H15B—C15—H15C109.5
C6—C7—H7A108.9
N1i—Pd1—O1—C10134.7 (2)Pd1—N1—C8—C93.2 (4)
N1—Pd1—O1—C1045.3 (2)C7—N1—C8—C150.2 (4)
O1—Pd1—N1—C825.1 (2)Pd1—N1—C8—C15176.5 (2)
O1i—Pd1—N1—C8154.9 (2)N1—C8—C9—C14157.8 (3)
O1—Pd1—N1—C7151.39 (18)C15—C8—C9—C1422.6 (4)
O1i—Pd1—N1—C728.61 (18)N1—C8—C9—C1024.0 (4)
C6—C1—C2—C30.8 (9)C15—C8—C9—C10155.6 (3)
C1—C2—C3—C42.6 (9)Pd1—O1—C10—C11141.1 (2)
C1—C2—C3—F1179.5 (5)Pd1—O1—C10—C940.7 (3)
C2—C3—C4—C52.3 (7)C14—C9—C10—O1178.0 (3)
F1—C3—C4—C5179.8 (3)C8—C9—C10—O10.2 (4)
C3—C4—C5—C60.2 (5)C14—C9—C10—C110.2 (4)
C4—C5—C6—C11.4 (5)C8—C9—C10—C11178.4 (3)
C4—C5—C6—C7179.4 (3)O1—C10—C11—C12178.2 (3)
C2—C1—C6—C51.1 (7)C9—C10—C11—C120.2 (5)
C2—C1—C6—C7179.1 (5)C10—C11—C12—C130.4 (5)
C8—N1—C7—C687.6 (3)C11—C12—C13—C140.7 (5)
Pd1—N1—C7—C689.0 (2)C12—C13—C14—C90.8 (5)
C5—C6—C7—N18.3 (4)C10—C9—C14—C130.6 (4)
C1—C6—C7—N1173.7 (3)C8—C9—C14—C13178.8 (3)
C7—N1—C8—C9179.5 (2)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1ii0.932.503.405 (5)165
Symmetry code: (ii) x+2, y+2, z+2.
 

Footnotes

Additional correspondence author, email: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors wish to express their appreciation to the Universiti Teknologi MARA for the research grants Nos. 600-RMI/DANA 5/3/CIFI (1/2014) and 600-RMI/DANA 5/3/PSI (1/2014) and the research facilities. A scholarship from the Universiti Teknologi MARA and the Ministry of Education Malaysia is also gratefully acknowledged.

References

First citationAdrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266.  Web of Science CSD CrossRef CAS Google Scholar
First citationBahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m759–m760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Chantrapromma, S. & Fun, H.-K. (2014). Acta Cryst. E70, m289–m290.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Niemetz, M. & Zabel, M. (2000). Z. Naturforsch. Teil B, 55, 145–154.  CAS Google Scholar
First citationCanali, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85–93.  Web of Science CrossRef CAS Google Scholar
First citationGupta, M., Sihag, S., Varshney, A. K. & Varshney, S. (2013). J. Chem. pp. 1–8.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalik, S., Ghosh, S., Jain, B., Singh, A. & Bhattacharya, M. (2013). Int. J. Inorg. Chem. pp. 1–6.  CrossRef Google Scholar
First citationMehta, B. H. & Vengurlekar, V. P. (2001). Asian J. Chem. 13, 939–943.  CAS Google Scholar
First citationMohd Tajuddin, A. M., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012a). Adv. Mater. Res. 554–556, 736–740.  CrossRef Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Yamin, B. M. (2012b). Malaysian J. Anal. Sci. 16, 79–87.  Google Scholar
First citationTajuddin, A. M., Bahron, H., Hanafiah, R. M., Ibrahim, N., Fun, H.-K. & Chantrapromma, S. (2014). Acta Cryst. E70, 252–255.  CSD CrossRef IUCr Journals Google Scholar
First citationOuf, A. E., Ali, M. S., Saad, E. M. & Mostafa, S. I. (2010). J. Mol. Struct. 973, 69–75.  Web of Science CrossRef CAS Google Scholar
First citationŞenol, C., Hayvali, Z., Dal, H. & Hökelek, T. (2011). J. Mol. Struct. 997, 53–59.  Google Scholar
First citationShahnaz, N., Banik, B. & Das, P. (2013). Tetrahedron Lett. 54, 2886–2889.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuno, T., Iwabe, H. & Brunner, H. (2013). Inorg. Chim. Acta, 400, 262–266.  Web of Science CSD CrossRef CAS Google Scholar
First citationWan Ibrahim, W. N. & Shamsuddin, M. (2012). Cryst. Struct. Theor. Appl. 1, 25–29.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 350-353
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds