organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl N-(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 23 March 2015; accepted 25 March 2015; online 28 March 2015)

In the title compound, C14H17N3O3, the dihedral angle between the benzene ring and the five-membered di­hydro­pyrazole ring is 52.26 (9)°. The ethyl ester group is approximately planar (r.m.s. deviation 0.0568 Å) and subtends an angle 67.73 (8)° to the pyrazole ring. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. Weaker C—H⋯O contacts link these dimers into a three-dimensional network of mol­ecules stacked along the a-axis direction. Offset ππ stacking inter­actions between the benzene rings [centroid-to-centroid distance = 3.8832 (12) Å] further stabilize the crystal packing.

1. Related literature

For related structures see: Li et al. (2013[Li, Y., Liu, Y., Wang, H., Xiong, X., Wei, P. & Li, F. (2013). Molecules, 18, 877-893.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H17N3O3

  • Mr = 275.30

  • Monoclinic, P 21 /c

  • a = 8.2100 (4) Å

  • b = 11.4137 (6) Å

  • c = 15.1594 (8) Å

  • β = 93.403 (3)°

  • V = 1418.03 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.38 × 0.34 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.983

  • 11712 measured reflections

  • 3098 independent reflections

  • 2368 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.06

  • 3098 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 1.99 2.8223 (17) 164
C10—H10A⋯O1ii 0.96 2.56 3.343 (2) 139
C11—H11B⋯O2iii 0.96 2.66 3.576 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized to examine its DNA binding potential and anti-microbial activity. The crystal structures of two closely related compounds, methyl (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-yl)carbamate and methyl (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methylcarbamate monohydrate have been reported previously (Li et al., 2013).

In (I), the C1—C6 benzene ring and dihydropyrazol-3-one system, O1/N1/N2/N3/C7—C9 are planar with r.m.s. deviations of 0.0037 and 0.0398 Å, respectively. The dihedral angle between the two systems is 53.64 (5)°. The ethyl ester group, C12/C13/C14/O2/O3, is also planar (r.m.s. deviation 0.0568 Å) and subtends an angle 67.73 (8)° to the pyrazole ring. In the crystal structure classical N3—H3A···O1 hydrogen bonds form inversion dimers (Table 1, Fig. 2) with R22(10) ring motifs. Weaker C10–H10A···O1 and C11–H11B···O2 contacts link these dimers into a three dimensional network of molecules stacked along the a axis direction. Offset π···π stacking interactions between the benzene rings with Cg2···Cg2i = 3.8832 (12) Å further stabilise the crystal packing (Cg2 is the centroid of the C1—C6 benzene ring; i = 2 - x, -y, 1 - z).

Related literature top

For related structures see: Li et al. (2013).

Experimental top

4-aminoantipyrene (2 g, 9.84 mmole) was dissolved in 50 ml dimethyl formamide and anhydrous potassium carbonate (0.68 g, 4.92 mmole) was added with continuous stirring over 50 minutes. Ethyl chloroformate (1.3 ml) was added drop-wise with stirring over three minutes at 323 K. TLC monitoring showed the reaction to be complete in almost 4 h. The reaction mixture was then cooled to room temperature and transferred to crushed ice leading to the formation of a precipitate. This was separated by filtration and recrystallized from aqueous ethanol to yield (I) as light yellow plates.

Melting point: 477–479 K.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The title compound (I), (Fig. 1) has been synthesized to examine its DNA binding potential and anti-microbial activity. The crystal structures of two closely related compounds, methyl (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-yl)carbamate and methyl (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methylcarbamate monohydrate have been reported previously (Li et al., 2013).

In (I), the C1—C6 benzene ring and dihydropyrazol-3-one system, O1/N1/N2/N3/C7—C9 are planar with r.m.s. deviations of 0.0037 and 0.0398 Å, respectively. The dihedral angle between the two systems is 53.64 (5)°. The ethyl ester group, C12/C13/C14/O2/O3, is also planar (r.m.s. deviation 0.0568 Å) and subtends an angle 67.73 (8)° to the pyrazole ring. In the crystal structure classical N3—H3A···O1 hydrogen bonds form inversion dimers (Table 1, Fig. 2) with R22(10) ring motifs. Weaker C10–H10A···O1 and C11–H11B···O2 contacts link these dimers into a three dimensional network of molecules stacked along the a axis direction. Offset π···π stacking interactions between the benzene rings with Cg2···Cg2i = 3.8832 (12) Å further stabilise the crystal packing (Cg2 is the centroid of the C1—C6 benzene ring; i = 2 - x, -y, 1 - z).

For related structures see: Li et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, with hydrogen bonds shown as dashed lines.
Ethyl N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamate top
Crystal data top
C14H17N3O3F(000) = 584
Mr = 275.30Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2100 (4) ÅCell parameters from 2368 reflections
b = 11.4137 (6) Åθ = 2.2–27.0°
c = 15.1594 (8) ŵ = 0.09 mm1
β = 93.403 (3)°T = 296 K
V = 1418.03 (13) Å3Plate, light yellow
Z = 40.38 × 0.34 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube2368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1413
Tmin = 0.968, Tmax = 0.983l = 1919
11712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2848P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3098 reflectionsΔρmax = 0.19 e Å3
185 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C14H17N3O3V = 1418.03 (13) Å3
Mr = 275.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2100 (4) ŵ = 0.09 mm1
b = 11.4137 (6) ÅT = 296 K
c = 15.1594 (8) Å0.38 × 0.34 × 0.20 mm
β = 93.403 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2368 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.983Rint = 0.022
11712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3098 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54493 (13)0.33953 (9)0.54004 (6)0.0503 (3)
O20.13321 (16)0.32771 (12)0.33957 (11)0.0819 (5)
O30.09391 (13)0.51504 (10)0.38192 (8)0.0617 (3)
N10.65770 (15)0.23072 (11)0.42996 (8)0.0458 (3)
N20.62265 (16)0.21412 (12)0.33892 (8)0.0510 (3)
N30.34531 (15)0.44615 (11)0.38501 (8)0.0480 (3)
H3A0.37280.51720.39770.058*
C10.72550 (18)0.13738 (13)0.48290 (10)0.0472 (4)
C20.8305 (2)0.16528 (17)0.55395 (11)0.0592 (4)
H20.85950.24280.56530.071*
C30.8922 (3)0.0764 (2)0.60812 (14)0.0791 (6)
H30.96280.09450.65650.095*
C40.8508 (3)0.0376 (2)0.59139 (18)0.0851 (7)
H40.89240.09670.62850.102*
C50.7481 (3)0.06516 (17)0.52008 (19)0.0841 (7)
H50.72160.14310.50850.101*
C60.6830 (2)0.02230 (15)0.46480 (14)0.0639 (5)
H60.61220.00380.41660.077*
C70.55368 (17)0.31534 (12)0.46080 (9)0.0406 (3)
C80.46691 (17)0.35940 (13)0.38352 (9)0.0430 (3)
C90.51590 (19)0.30017 (14)0.31216 (10)0.0487 (4)
C100.4694 (3)0.3221 (2)0.21696 (12)0.0755 (6)
H10A0.46260.24890.18580.113*
H10B0.55020.37090.19210.113*
H10C0.36540.36070.21170.113*
C110.7583 (2)0.17664 (16)0.28711 (12)0.0621 (5)
H11A0.79710.10160.30780.093*
H11B0.84520.23290.29370.093*
H11C0.72170.17090.22590.093*
C120.1866 (2)0.42031 (14)0.36699 (11)0.0528 (4)
C130.0815 (2)0.4956 (2)0.37242 (17)0.0818 (6)
H13A0.11080.46090.31520.098*
H13B0.11450.44240.41790.098*
C140.1628 (3)0.6069 (3)0.3803 (2)0.1237 (11)
H14A0.27860.59460.37980.186*
H14B0.13810.65630.33160.186*
H14C0.12590.64380.43480.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0619 (7)0.0475 (6)0.0425 (6)0.0067 (5)0.0099 (5)0.0044 (4)
O20.0552 (7)0.0589 (9)0.1307 (13)0.0026 (6)0.0010 (8)0.0187 (8)
O30.0453 (6)0.0558 (7)0.0849 (8)0.0115 (5)0.0113 (6)0.0010 (6)
N10.0493 (7)0.0440 (7)0.0445 (7)0.0090 (6)0.0050 (5)0.0052 (5)
N20.0517 (7)0.0558 (8)0.0458 (7)0.0106 (6)0.0067 (6)0.0112 (6)
N30.0459 (7)0.0395 (7)0.0586 (8)0.0054 (5)0.0037 (6)0.0030 (5)
C10.0421 (7)0.0439 (8)0.0568 (9)0.0089 (6)0.0134 (6)0.0019 (7)
C20.0558 (9)0.0613 (11)0.0607 (10)0.0102 (8)0.0043 (8)0.0035 (8)
C30.0691 (12)0.0960 (17)0.0724 (12)0.0247 (12)0.0054 (10)0.0187 (11)
C40.0744 (14)0.0786 (15)0.1049 (17)0.0307 (12)0.0268 (13)0.0369 (13)
C50.0725 (13)0.0453 (11)0.138 (2)0.0119 (10)0.0371 (14)0.0176 (12)
C60.0542 (10)0.0488 (10)0.0901 (13)0.0032 (8)0.0156 (9)0.0036 (9)
C70.0411 (7)0.0350 (7)0.0464 (8)0.0002 (6)0.0086 (6)0.0038 (6)
C80.0423 (7)0.0396 (8)0.0476 (8)0.0030 (6)0.0067 (6)0.0019 (6)
C90.0472 (8)0.0521 (9)0.0470 (8)0.0031 (7)0.0029 (6)0.0056 (6)
C100.0805 (13)0.0979 (16)0.0474 (10)0.0178 (11)0.0019 (9)0.0074 (9)
C110.0611 (10)0.0664 (11)0.0605 (10)0.0110 (9)0.0174 (8)0.0146 (8)
C120.0487 (8)0.0479 (9)0.0622 (10)0.0056 (7)0.0067 (7)0.0021 (7)
C130.0470 (10)0.0869 (15)0.1121 (17)0.0083 (10)0.0091 (10)0.0007 (13)
C140.0581 (13)0.105 (2)0.211 (3)0.0252 (14)0.0337 (17)0.016 (2)
Geometric parameters (Å, º) top
O1—C71.2387 (17)C4—H40.9300
O2—C121.208 (2)C5—C61.390 (3)
O3—C121.3489 (19)C5—H50.9300
O3—C131.456 (2)C6—H60.9300
N1—C71.3886 (18)C7—C81.426 (2)
N1—N21.4057 (17)C8—C91.357 (2)
N1—C11.4269 (19)C9—C101.492 (2)
N2—C91.362 (2)C10—H10A0.9600
N2—C111.4645 (19)C10—H10B0.9600
N3—C121.348 (2)C10—H10C0.9600
N3—C81.4072 (18)C11—H11A0.9600
N3—H3A0.8600C11—H11B0.9600
C1—C21.376 (2)C11—H11C0.9600
C1—C61.383 (2)C13—C141.443 (3)
C2—C31.382 (3)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.365 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.367 (4)C14—H14C0.9600
C12—O3—C13115.20 (15)C9—C8—C7108.79 (13)
C7—N1—N2109.28 (11)N3—C8—C7123.72 (12)
C7—N1—C1123.86 (12)C8—C9—N2109.74 (13)
N2—N1—C1120.12 (12)C8—C9—C10128.08 (15)
C9—N2—N1106.61 (11)N2—C9—C10122.17 (14)
C9—N2—C11123.19 (14)C9—C10—H10A109.5
N1—N2—C11116.61 (13)C9—C10—H10B109.5
C12—N3—C8121.39 (13)H10A—C10—H10B109.5
C12—N3—H3A119.3C9—C10—H10C109.5
C8—N3—H3A119.3H10A—C10—H10C109.5
C2—C1—C6120.94 (16)H10B—C10—H10C109.5
C2—C1—N1118.21 (15)N2—C11—H11A109.5
C6—C1—N1120.81 (15)N2—C11—H11B109.5
C1—C2—C3119.05 (19)H11A—C11—H11B109.5
C1—C2—H2120.5N2—C11—H11C109.5
C3—C2—H2120.5H11A—C11—H11C109.5
C4—C3—C2120.7 (2)H11B—C11—H11C109.5
C4—C3—H3119.6O2—C12—N3125.98 (15)
C2—C3—H3119.6O2—C12—O3124.21 (15)
C3—C4—C5120.1 (2)N3—C12—O3109.79 (14)
C3—C4—H4120.0C14—C13—O3108.53 (19)
C5—C4—H4120.0C14—C13—H13A110.0
C4—C5—C6120.6 (2)O3—C13—H13A110.0
C4—C5—H5119.7C14—C13—H13B110.0
C6—C5—H5119.7O3—C13—H13B110.0
C1—C6—C5118.6 (2)H13A—C13—H13B108.4
C1—C6—H6120.7C13—C14—H14A109.5
C5—C6—H6120.7C13—C14—H14B109.5
O1—C7—N1123.62 (13)H14A—C14—H14B109.5
O1—C7—C8131.54 (13)C13—C14—H14C109.5
N1—C7—C8104.82 (12)H14A—C14—H14C109.5
C9—C8—N3127.41 (14)H14B—C14—H14C109.5
C7—N1—N2—C99.01 (16)C12—N3—C8—C967.6 (2)
C1—N1—N2—C9161.31 (13)C12—N3—C8—C7108.89 (18)
C7—N1—N2—C11151.05 (14)O1—C7—C8—C9177.01 (16)
C1—N1—N2—C1156.66 (19)N1—C7—C8—C91.68 (16)
C7—N1—C1—C264.2 (2)O1—C7—C8—N30.0 (3)
N2—N1—C1—C2147.71 (14)N1—C7—C8—N3178.73 (13)
C7—N1—C1—C6113.91 (17)N3—C8—C9—N2172.97 (14)
N2—N1—C1—C634.2 (2)C7—C8—C9—N23.95 (18)
C6—C1—C2—C30.7 (2)N3—C8—C9—C108.5 (3)
N1—C1—C2—C3177.40 (15)C7—C8—C9—C10174.57 (18)
C1—C2—C3—C40.4 (3)N1—N2—C9—C87.90 (17)
C2—C3—C4—C50.5 (3)C11—N2—C9—C8146.82 (15)
C3—C4—C5—C61.0 (3)N1—N2—C9—C10170.73 (16)
C2—C1—C6—C50.2 (2)C11—N2—C9—C1031.8 (3)
N1—C1—C6—C5177.87 (15)C8—N3—C12—O28.1 (3)
C4—C5—C6—C10.7 (3)C8—N3—C12—O3173.51 (13)
N2—N1—C7—O1172.30 (14)C13—O3—C12—O26.8 (3)
C1—N1—C7—O121.3 (2)C13—O3—C12—N3174.78 (15)
N2—N1—C7—C86.52 (16)C12—O3—C13—C14173.5 (2)
C1—N1—C7—C8157.55 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.861.992.8223 (17)164
C10—H10A···O1ii0.962.563.343 (2)139
C11—H11B···O2iii0.962.663.576 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.861.992.8223 (17)163.6
C10—H10A···O1ii0.962.563.343 (2)139.3
C11—H11B···O2iii0.962.663.576 (2)160.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Liu, Y., Wang, H., Xiong, X., Wei, P. & Li, F. (2013). Molecules, 18, 877–893.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds