organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination and absolute configuration of berkeleydione

CROSSMARK_Color_square_no_text.svg

aDepartment of Biological and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Missoula, Montana 59812, USA
*Correspondence e-mail: andrea.stierle@mso.umt.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 February 2015; accepted 25 February 2015; online 21 March 2015)

The crystal structure of the title compound, berkeleydione [systematic name; (5aS,7R,9S,11R,11aS)-methyl 9-hy­droxy-1,1,5,7,9,11a-hexa­methyl-14-methyl­idene-3,8,10-trioxo-1,3,4,5a,6,7,8,9,10,11,11a,12-dodeca­hydro-7,11-methano­cycloocta­[4,5]cyclo­hepta­[1,2-c]pyran-11-carboxyl­ate], C26H32O7, has been reported previously [Stierle et al. (2004[Stierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049-1052.]). Org. Lett. 6, 1049–1052]. However, the absolute configuration could not be determined from the data collected with Mo Kα radiation and has now been determined by refinement of the Flack parameter with data collected using Cu Kα radiation. It is in agreement with the previous circular dichroism assignment, and the crystal packing is similar to that described previously.

1. Related literature

For further information on the isolation and properties of berkeleydione and related compounds, see: Stierle et al. (2004[Stierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049-1052.], 2011[Stierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273-2277.]). For the previous NMR and circular dichroism structure determination, see: Stierle et al. (2004[Stierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049-1052.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H32O7

  • Mr = 456.51

  • Orthorhombic, P 21 21 21

  • a = 9.1832 (6) Å

  • b = 14.5805 (9) Å

  • c = 17.5148 (11) Å

  • V = 2345.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.1 × 0.1 × 0.1 mm

2.2. Data collection

  • Bruker D8 Venture diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.754

  • 39170 measured reflections

  • 4814 independent reflections

  • 4533 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 4814 reflections

  • 309 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack x determined using 1914 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.07 (7)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

Clear prisms of the title compound were grown by slow evaporation of a solution in water and methanol at 245 K.

Refinement top

All the H atoms were located in difference Fourier maps and the hydroxyl H atom was freely refined. The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.98 - 1.00 Å with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for the other H atoms.

Comment top

The structure of berkeleydione, determined by detailed analysis of MS and NMR data has been reported (Stierle et al., 2004). The X-ray structure was also determined but the absolute configuration could not be determined from the MoKα data collected. The helicity rule of circular dichroism for cisoid homoannular dienes (Stierle et al., 2011) was applied to determine the absolute configuration of berkeleydione. The absolute configuration has now been determined by X-ray by refinement of the Flack parameter with data collected using CuKα radiation. This absolute configuration was shown to be the same as that determined with the helicity rule.

Related literature top

For further information on the isolation and properties of berkeleydione and related compounds, see: Stierle et al. (2004, 2011). For the previous NMR and circular dichroism structure determination, see: Stierle et al. (2004).

Structure description top

The structure of berkeleydione, determined by detailed analysis of MS and NMR data has been reported (Stierle et al., 2004). The X-ray structure was also determined but the absolute configuration could not be determined from the MoKα data collected. The helicity rule of circular dichroism for cisoid homoannular dienes (Stierle et al., 2011) was applied to determine the absolute configuration of berkeleydione. The absolute configuration has now been determined by X-ray by refinement of the Flack parameter with data collected using CuKα radiation. This absolute configuration was shown to be the same as that determined with the helicity rule.

For further information on the isolation and properties of berkeleydione and related compounds, see: Stierle et al. (2004, 2011). For the previous NMR and circular dichroism structure determination, see: Stierle et al. (2004).

Synthesis and crystallization top

Clear prisms of the title compound were grown by slow evaporation of a solution in water and methanol at 245 K.

Refinement details top

All the H atoms were located in difference Fourier maps and the hydroxyl H atom was freely refined. The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.98 - 1.00 Å with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling. Displacement ellipsoides aredrawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
(5aS,7R,9S,11R,11aS)-Methyl 9-hydroxy-1,1,5,7,9,11a-hexamethyl-14-methylidene-3,8,10-trioxo-1,3,4,5a,6,7,8,9,10,11,11a,12-dodecahydro-7,11-methanocycloocta[4,5]cyclohepta[1,2-c]pyran-11-carboxylate top
Crystal data top
C26H32O7Dx = 1.293 Mg m3
Mr = 456.51Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9233 reflections
a = 9.1832 (6) Åθ = 3.9–74.7°
b = 14.5805 (9) ŵ = 0.77 mm1
c = 17.5148 (11) ÅT = 100 K
V = 2345.2 (3) Å3Prism, colourless
Z = 40.1 × 0.1 × 0.1 mm
F(000) = 976
Data collection top
Bruker D8 Venture
diffractometer
4814 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµus4533 reflections with I > 2σ(I)
Double Bounce Multilayer Mirror monochromatorRint = 0.051
Detector resolution: 10.5 pixels mm-1θmax = 74.8°, θmin = 4.0°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1818
Tmin = 0.646, Tmax = 0.754l = 2121
39170 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4814 reflectionsΔρmax = 0.20 e Å3
309 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack x determined using 1914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C26H32O7V = 2345.2 (3) Å3
Mr = 456.51Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.1832 (6) ŵ = 0.77 mm1
b = 14.5805 (9) ÅT = 100 K
c = 17.5148 (11) Å0.1 × 0.1 × 0.1 mm
Data collection top
Bruker D8 Venture
diffractometer
4814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4533 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.754Rint = 0.051
39170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.19 e Å3
4814 reflectionsAbsolute structure: Flack x determined using 1914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
309 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83088 (19)0.23759 (10)0.57687 (9)0.0347 (4)
O20.89494 (17)0.30771 (9)0.47209 (8)0.0285 (3)
O30.8155 (2)0.76251 (12)0.40185 (9)0.0419 (4)
O40.66301 (16)0.56275 (9)0.22151 (8)0.0281 (3)
O50.69193 (19)0.77820 (9)0.23618 (9)0.0317 (3)
O60.26938 (18)0.55485 (13)0.23397 (10)0.0431 (4)
O70.40659 (17)0.65832 (10)0.17368 (9)0.0325 (3)
C10.8103 (2)0.30106 (13)0.53388 (11)0.0263 (4)
C20.6911 (2)0.36998 (14)0.54887 (11)0.0283 (4)
H2A0.71630.40420.59590.034*
H2B0.60000.33590.55930.034*
C30.6607 (2)0.43885 (13)0.48639 (11)0.0242 (4)
C40.5814 (2)0.51480 (14)0.49700 (11)0.0256 (4)
C50.5717 (2)0.58423 (13)0.43178 (11)0.0231 (4)
H5A0.67010.58480.40740.028*
C60.5449 (2)0.68248 (14)0.45934 (11)0.0286 (4)
H6A0.61730.69850.49900.034*
H6B0.44670.68680.48240.034*
C70.5568 (3)0.75115 (14)0.39198 (11)0.0300 (5)
C80.7131 (3)0.74107 (14)0.36265 (12)0.0303 (5)
C90.7363 (2)0.70236 (14)0.28192 (11)0.0267 (4)
C100.6291 (2)0.62327 (12)0.26507 (11)0.0223 (4)
C110.4753 (2)0.62691 (14)0.30026 (11)0.0244 (4)
C120.4637 (2)0.55420 (14)0.36813 (11)0.0252 (4)
C130.5029 (2)0.45512 (14)0.34211 (12)0.0281 (4)
H13A0.44630.41160.37370.034*
H13B0.47000.44750.28860.034*
C140.6610 (2)0.42778 (12)0.34624 (11)0.0256 (4)
H140.71270.41740.30010.031*
C150.7308 (2)0.41761 (12)0.41267 (12)0.0240 (4)
C160.8869 (2)0.38926 (13)0.42057 (11)0.0272 (4)
C170.9756 (3)0.46460 (15)0.45895 (13)0.0324 (5)
H17A0.93260.47920.50870.049*
H17B0.97520.51950.42670.049*
H17C1.07600.44350.46610.049*
C180.9605 (3)0.35696 (16)0.34803 (13)0.0377 (5)
H18A1.05770.33340.36020.057*
H18B0.96920.40840.31230.057*
H18C0.90230.30820.32460.057*
C190.3075 (2)0.55189 (18)0.39963 (13)0.0366 (5)
H19A0.30500.51470.44620.055*
H19B0.24230.52500.36140.055*
H19C0.27570.61450.41140.055*
C200.3701 (2)0.60662 (14)0.23390 (13)0.0290 (4)
C210.8924 (2)0.67381 (16)0.26896 (14)0.0351 (5)
H21A0.90550.65590.21550.053*
H21B0.91590.62180.30220.053*
H21C0.95720.72530.28080.053*
C220.4455 (2)0.72279 (14)0.33273 (11)0.0284 (4)
C230.3275 (3)0.77049 (16)0.31622 (13)0.0399 (5)
H23A0.30830.82640.34220.048*
H23B0.26180.74890.27840.048*
C240.5349 (3)0.84908 (15)0.42152 (14)0.0449 (6)
H24A0.53500.89190.37840.067*
H24B0.61410.86490.45660.067*
H24C0.44150.85310.44840.067*
C250.5110 (3)0.53681 (16)0.57273 (12)0.0339 (5)
H25A0.50360.48080.60340.051*
H25B0.41340.56190.56400.051*
H25C0.57030.58210.60000.051*
C260.3148 (3)0.64775 (18)0.10765 (13)0.0379 (5)
H26A0.35500.68340.06520.057*
H26B0.21660.66980.11950.057*
H26C0.31040.58280.09330.057*
H50.690 (3)0.760 (2)0.1879 (18)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0492 (9)0.0275 (7)0.0272 (7)0.0056 (7)0.0029 (7)0.0036 (6)
O20.0348 (8)0.0230 (6)0.0278 (7)0.0035 (6)0.0013 (6)0.0001 (6)
O30.0490 (10)0.0459 (9)0.0308 (8)0.0174 (8)0.0085 (8)0.0017 (7)
O40.0343 (8)0.0247 (6)0.0252 (7)0.0003 (6)0.0025 (6)0.0005 (6)
O50.0476 (9)0.0231 (6)0.0242 (7)0.0044 (6)0.0031 (7)0.0044 (6)
O60.0364 (9)0.0530 (10)0.0400 (9)0.0150 (8)0.0122 (7)0.0104 (8)
O70.0357 (8)0.0360 (8)0.0258 (7)0.0023 (7)0.0060 (7)0.0046 (6)
C10.0337 (10)0.0222 (8)0.0230 (9)0.0024 (8)0.0059 (8)0.0010 (7)
C20.0351 (11)0.0263 (9)0.0235 (9)0.0014 (8)0.0006 (8)0.0024 (7)
C30.0271 (10)0.0242 (9)0.0213 (9)0.0037 (7)0.0009 (7)0.0016 (7)
C40.0268 (9)0.0282 (9)0.0218 (9)0.0006 (7)0.0022 (8)0.0030 (7)
C50.0247 (10)0.0246 (9)0.0200 (9)0.0011 (7)0.0026 (7)0.0012 (7)
C60.0385 (11)0.0274 (10)0.0200 (9)0.0069 (9)0.0018 (8)0.0002 (8)
C70.0467 (13)0.0212 (9)0.0222 (9)0.0053 (8)0.0017 (9)0.0012 (7)
C80.0443 (13)0.0208 (8)0.0256 (10)0.0071 (8)0.0054 (9)0.0033 (7)
C90.0302 (10)0.0260 (9)0.0240 (9)0.0068 (8)0.0017 (8)0.0043 (8)
C100.0274 (9)0.0214 (8)0.0181 (8)0.0011 (7)0.0015 (7)0.0041 (7)
C110.0254 (9)0.0236 (9)0.0240 (9)0.0004 (7)0.0015 (8)0.0034 (7)
C120.0236 (9)0.0282 (9)0.0239 (9)0.0027 (8)0.0005 (8)0.0057 (7)
C130.0341 (11)0.0235 (9)0.0268 (10)0.0079 (8)0.0064 (8)0.0033 (8)
C140.0376 (11)0.0168 (8)0.0225 (9)0.0007 (8)0.0000 (8)0.0012 (7)
C150.0312 (10)0.0178 (8)0.0229 (9)0.0014 (7)0.0021 (8)0.0001 (7)
C160.0337 (11)0.0229 (9)0.0251 (9)0.0024 (8)0.0024 (8)0.0029 (7)
C170.0297 (10)0.0307 (10)0.0369 (11)0.0045 (8)0.0003 (9)0.0036 (9)
C180.0438 (13)0.0372 (11)0.0322 (11)0.0140 (10)0.0081 (10)0.0020 (9)
C190.0253 (10)0.0499 (13)0.0347 (11)0.0023 (9)0.0043 (9)0.0141 (10)
C200.0286 (10)0.0294 (9)0.0290 (10)0.0027 (8)0.0018 (9)0.0028 (8)
C210.0295 (11)0.0421 (11)0.0337 (11)0.0071 (9)0.0010 (9)0.0067 (9)
C220.0368 (12)0.0259 (9)0.0226 (9)0.0043 (8)0.0030 (8)0.0029 (7)
C230.0466 (14)0.0412 (12)0.0320 (11)0.0167 (11)0.0006 (10)0.0003 (9)
C240.0781 (18)0.0246 (10)0.0319 (12)0.0116 (11)0.0072 (13)0.0039 (9)
C250.0394 (12)0.0370 (11)0.0254 (10)0.0078 (9)0.0084 (9)0.0056 (9)
C260.0374 (12)0.0503 (13)0.0259 (10)0.0068 (10)0.0070 (9)0.0001 (9)
Geometric parameters (Å, º) top
O1—C11.208 (2)C12—C131.557 (3)
O2—C11.336 (3)C12—C191.537 (3)
O2—C161.494 (2)C13—H13A0.9900
O3—C81.206 (3)C13—H13B0.9900
O4—C101.207 (2)C13—C141.507 (3)
O5—C91.425 (2)C14—H140.9500
O5—H50.89 (3)C14—C151.337 (3)
O6—C201.194 (3)C15—C161.498 (3)
O7—C201.339 (3)C16—C171.524 (3)
O7—C261.439 (3)C16—C181.514 (3)
C1—C21.509 (3)C17—H17A0.9800
C2—H2A0.9900C17—H17B0.9800
C2—H2B0.9900C17—H17C0.9800
C2—C31.511 (3)C18—H18A0.9800
C3—C41.338 (3)C18—H18B0.9800
C3—C151.476 (3)C18—H18C0.9800
C4—C51.529 (3)C19—H19A0.9800
C4—C251.510 (3)C19—H19B0.9800
C5—H5A1.0000C19—H19C0.9800
C5—C61.531 (3)C21—H21A0.9800
C5—C121.555 (3)C21—H21B0.9800
C6—H6A0.9900C21—H21C0.9800
C6—H6B0.9900C22—C231.320 (3)
C6—C71.551 (3)C23—H23A0.9500
C7—C81.531 (3)C23—H23B0.9500
C7—C221.514 (3)C24—H24A0.9800
C7—C241.532 (3)C24—H24B0.9800
C8—C91.537 (3)C24—H24C0.9800
C9—C101.545 (3)C25—H25A0.9800
C9—C211.510 (3)C25—H25B0.9800
C10—C111.542 (3)C25—H25C0.9800
C11—C121.596 (3)C26—H26A0.9800
C11—C201.540 (3)C26—H26B0.9800
C11—C221.534 (3)C26—H26C0.9800
C1—O2—C16121.19 (15)C14—C13—H13B108.0
C9—O5—H5107.9 (19)C13—C14—H14118.9
C20—O7—C26115.23 (17)C15—C14—C13122.23 (19)
O1—C1—O2117.99 (19)C15—C14—H14118.9
O1—C1—C2121.03 (19)C3—C15—C16113.24 (17)
O2—C1—C2120.98 (17)C14—C15—C3121.92 (19)
C1—C2—H2A108.1C14—C15—C16124.76 (19)
C1—C2—H2B108.1O2—C16—C15108.84 (16)
C1—C2—C3116.77 (17)O2—C16—C17106.30 (16)
H2A—C2—H2B107.3O2—C16—C18103.70 (15)
C3—C2—H2A108.1C15—C16—C17110.69 (17)
C3—C2—H2B108.1C15—C16—C18115.82 (18)
C4—C3—C2123.34 (18)C18—C16—C17110.82 (19)
C4—C3—C15122.18 (18)C16—C17—H17A109.5
C15—C3—C2114.43 (17)C16—C17—H17B109.5
C3—C4—C5118.42 (17)C16—C17—H17C109.5
C3—C4—C25122.07 (18)H17A—C17—H17B109.5
C25—C4—C5119.37 (17)H17A—C17—H17C109.5
C4—C5—H5A105.8H17B—C17—H17C109.5
C4—C5—C6113.15 (16)C16—C18—H18A109.5
C4—C5—C12112.74 (16)C16—C18—H18B109.5
C6—C5—H5A105.8C16—C18—H18C109.5
C6—C5—C12112.76 (16)H18A—C18—H18B109.5
C12—C5—H5A105.8H18A—C18—H18C109.5
C5—C6—H6A109.5H18B—C18—H18C109.5
C5—C6—H6B109.5C12—C19—H19A109.5
C5—C6—C7110.66 (16)C12—C19—H19B109.5
H6A—C6—H6B108.1C12—C19—H19C109.5
C7—C6—H6A109.5H19A—C19—H19B109.5
C7—C6—H6B109.5H19A—C19—H19C109.5
C8—C7—C6105.02 (17)H19B—C19—H19C109.5
C8—C7—C24109.0 (2)O6—C20—O7123.4 (2)
C22—C7—C6107.30 (18)O6—C20—C11127.3 (2)
C22—C7—C8112.11 (16)O7—C20—C11109.24 (17)
C22—C7—C24113.42 (19)C9—C21—H21A109.5
C24—C7—C6109.61 (17)C9—C21—H21B109.5
O3—C8—C7121.0 (2)C9—C21—H21C109.5
O3—C8—C9120.7 (2)H21A—C21—H21B109.5
C7—C8—C9118.28 (18)H21A—C21—H21C109.5
O5—C9—C8101.10 (16)H21B—C21—H21C109.5
O5—C9—C10106.84 (16)C7—C22—C11112.51 (17)
O5—C9—C21113.64 (17)C23—C22—C7124.1 (2)
C8—C9—C10111.18 (16)C23—C22—C11123.1 (2)
C21—C9—C8111.79 (18)C22—C23—H23A120.0
C21—C9—C10111.75 (17)C22—C23—H23B120.0
O4—C10—C9120.13 (18)H23A—C23—H23B120.0
O4—C10—C11120.94 (17)C7—C24—H24A109.5
C11—C10—C9118.79 (16)C7—C24—H24B109.5
C10—C11—C12109.63 (15)C7—C24—H24C109.5
C20—C11—C10105.44 (16)H24A—C24—H24B109.5
C20—C11—C12113.12 (16)H24A—C24—H24C109.5
C22—C11—C10110.06 (16)H24B—C24—H24C109.5
C22—C11—C12108.50 (16)C4—C25—H25A109.5
C22—C11—C20110.07 (17)C4—C25—H25B109.5
C5—C12—C11107.71 (15)C4—C25—H25C109.5
C5—C12—C13108.88 (16)H25A—C25—H25B109.5
C13—C12—C11112.50 (16)H25A—C25—H25C109.5
C19—C12—C5110.12 (17)H25B—C25—H25C109.5
C19—C12—C11110.13 (17)O7—C26—H26A109.5
C19—C12—C13107.49 (18)O7—C26—H26B109.5
C12—C13—H13A108.0O7—C26—H26C109.5
C12—C13—H13B108.0H26A—C26—H26B109.5
H13A—C13—H13B107.3H26A—C26—H26C109.5
C14—C13—C12117.01 (16)H26B—C26—H26C109.5
C14—C13—H13A108.0
O1—C1—C2—C3171.76 (19)C9—C10—C11—C20131.44 (17)
O2—C1—C2—C37.3 (3)C9—C10—C11—C2212.8 (2)
O3—C8—C9—O5106.8 (2)C10—C11—C12—C564.23 (19)
O3—C8—C9—C10140.1 (2)C10—C11—C12—C1355.8 (2)
O3—C8—C9—C2114.4 (3)C10—C11—C12—C19175.66 (17)
O4—C10—C11—C1277.8 (2)C10—C11—C20—O6133.4 (2)
O4—C10—C11—C2044.2 (2)C10—C11—C20—O747.7 (2)
O4—C10—C11—C22162.91 (17)C10—C11—C22—C757.5 (2)
O5—C9—C10—O499.8 (2)C10—C11—C22—C23129.0 (2)
O5—C9—C10—C1176.0 (2)C11—C12—C13—C1488.1 (2)
C1—O2—C16—C1539.0 (2)C12—C5—C6—C758.2 (2)
C1—O2—C16—C1780.2 (2)C12—C11—C20—O613.6 (3)
C1—O2—C16—C18162.85 (18)C12—C11—C20—O7167.50 (16)
C1—C2—C3—C4165.57 (19)C12—C11—C22—C762.4 (2)
C1—C2—C3—C1512.1 (3)C12—C11—C22—C23111.0 (2)
C2—C3—C4—C5173.63 (18)C12—C13—C14—C1567.9 (2)
C2—C3—C4—C251.9 (3)C13—C14—C15—C34.4 (3)
C2—C3—C15—C14137.95 (19)C13—C14—C15—C16179.03 (17)
C2—C3—C15—C1645.1 (2)C14—C15—C16—O2125.66 (19)
C3—C4—C5—C6152.62 (19)C14—C15—C16—C17117.9 (2)
C3—C4—C5—C1277.9 (2)C14—C15—C16—C189.4 (3)
C3—C15—C16—O257.5 (2)C15—C3—C4—C53.8 (3)
C3—C15—C16—C1759.0 (2)C15—C3—C4—C25179.4 (2)
C3—C15—C16—C18173.82 (17)C16—O2—C1—O1173.54 (18)
C4—C3—C15—C1444.4 (3)C16—O2—C1—C27.3 (3)
C4—C3—C15—C16132.5 (2)C19—C12—C13—C14150.45 (18)
C4—C5—C6—C7172.39 (18)C20—C11—C12—C5178.42 (16)
C4—C5—C12—C11174.52 (16)C20—C11—C12—C1361.6 (2)
C4—C5—C12—C1352.3 (2)C20—C11—C12—C1958.3 (2)
C4—C5—C12—C1965.4 (2)C20—C11—C22—C7173.30 (17)
C5—C6—C7—C861.0 (2)C20—C11—C22—C2313.2 (3)
C5—C6—C7—C2258.4 (2)C21—C9—C10—O425.1 (3)
C5—C6—C7—C24178.0 (2)C21—C9—C10—C11159.17 (17)
C5—C12—C13—C1431.2 (2)C22—C7—C8—O3178.38 (19)
C6—C5—C12—C1155.8 (2)C22—C7—C8—C91.9 (2)
C6—C5—C12—C13178.09 (16)C22—C11—C12—C556.0 (2)
C6—C5—C12—C1964.3 (2)C22—C11—C12—C13175.99 (17)
C6—C7—C8—O365.4 (2)C22—C11—C12—C1964.1 (2)
C6—C7—C8—C9114.26 (18)C22—C11—C20—O6107.9 (3)
C6—C7—C22—C1162.5 (2)C22—C11—C20—O771.0 (2)
C6—C7—C22—C23110.9 (2)C24—C7—C8—O352.0 (3)
C7—C8—C9—O573.5 (2)C24—C7—C8—C9128.35 (18)
C7—C8—C9—C1039.6 (2)C24—C7—C22—C11176.34 (19)
C7—C8—C9—C21165.25 (18)C24—C7—C22—C2310.3 (3)
C8—C7—C22—C1152.3 (2)C25—C4—C5—C623.1 (3)
C8—C7—C22—C23134.3 (2)C25—C4—C5—C12106.4 (2)
C8—C9—C10—O4150.80 (18)C26—O7—C20—O60.2 (3)
C8—C9—C10—C1133.5 (2)C26—O7—C20—C11178.71 (17)
C9—C10—C11—C12106.49 (19)

Experimental details

Crystal data
Chemical formulaC26H32O7
Mr456.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1832 (6), 14.5805 (9), 17.5148 (11)
V3)2345.2 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerBruker D8 Venture
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.646, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
39170, 4814, 4533
Rint0.051
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections4814
No. of parameters309
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19
Absolute structureFlack x determined using 1914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.07 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by grants from the National Science Foundation (NSF)-MRI (CHE-1337908) and the National Institute of Health (NIH) NIGMS P20GM103546.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStierle, D. B., Stierle, A. A., Hobbs, J. D., Stokken, J. & Clardy, J. (2004). Org. Lett. 6, 1049–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStierle, D. B., Stierle, A., Patacini, B., McIntyre, K., Girtsman, T. & Bolstad, E. (2011). J. Nat. Prod. 74, 2273–2277.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds