organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o231-o232

Crystal structure of 2-{[1-(4-bromo­benz­yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}naph­thalene-1,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 February 2015; accepted 3 March 2015; online 11 March 2015)

In the title compound, C20H14BrN3O3, the benzene ring makes dihedral angles of 71.30 (11) and 68.95 (14)° with the naphthalene ring system and the triazole ring, respectively. The latter two ring systems are coplanar, with a dihedral angle of 2.92 (12)°. The O atoms deviate from the naphthalene ring system by 0.029 (2) and −0.051 (2) Å. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming ribbons parallel to (10-1). The ribbons are linked via C—H⋯O and ππ stacking inter­actions [centroid–centroid distance = 3.4451 (14) Å], forming slabs parallel to the bc plane.

1. Related literature

For some general background and examples of the pharmacological and biological activity of triazole and its derivatives, see, for example: Abu-Orabi et al. (1989[Abu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari'i, F. M. & Al-Sheikh Ali, A. (1989). J. Heterocycl. Chem. 26, 1461-1468.]); Demirbaş et al. (2002[Demirbaş, N., Ugurluoglu, R. & Demirbaş, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2002). Farmaco, 57, 253-257.]). For the biological activity of naphthalene compounds, see, for example: Upadhayaya et al. (2010[Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 2, 1854-1867.]); Rokade & Sayyed (2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H14BrN3O3

  • Mr = 424.25

  • Monoclinic, P 21 /c

  • a = 16.4383 (5) Å

  • b = 13.1684 (4) Å

  • c = 8.2255 (2) Å

  • β = 90.827 (1)°

  • V = 1780.36 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.593, Tmax = 0.652

  • 17010 measured reflections

  • 4415 independent reflections

  • 2887 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.01

  • 4415 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.57 3.251 (3) 131
C13—H13⋯O2i 0.93 2.53 3.277 (3) 138
C11—H11A⋯O2ii 0.97 2.46 3.425 (3) 175
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Triazoles and triazole derivatives play an important role in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition and have many biological applications (Abu-Orabi et al., 1989; Demirbaş et al., 2002; Kritsanida et al., 2002. Naphthalene derivatives has been identified as new range of potent antimicrobials effective against wide range of human pathogens and have diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010).

The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C15-C20) makes dihedral angles of 71.30 (11) and 68.95 (14) ° with the naphthalene ring system and the triazole ring, respectively. The latter two rings are coplanar with a dihedral angle of 2.92 (12) °. Atoms O1 and O2 deviate from the naphthalene ring by 0.029 (2) and -0.051 (2) Å, respectively. Atom Br1 deviates from the benzene ring to which it is attached by -0.028 (1) Å

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons parallel to (101); see Table 1 and Fig. 2. The ribbons are linked by C-H···O hydrogen bonds and ππ stacking interactions [Cg2···Cg3i = 3.4451 (14) Å; Cg2 and Cg3 are the centroids of rings naphthalene rings C1-C5/C10 and C5-C10, respectively; symmetry code: (i) x, -y+1/2, z-1/2], forming slabs parallel to the bc plane (Table 1 and Fig. 3).

Related literature top

For some general background and examples of the pharmacological and biological activity of triazole and its derivatives, see, for example: Abu-Orabi et al. (1989); Demirbaş et al. (2002); Kritsanida et al. (2002). For the biological activity of naphthalene compounds, see, for example: Upadhayaya et al. (2010); Rokade & Sayyed (2009).

Experimental top

The triazole appended lawsone was synthesized in a two step procedure. To a solution of lawsone (0.87 g, 5 mmol) in DMF (20 ml) was added potassium carbonate (1.04 g, 7.5 mmol) and the solution was stirred at room temperature. Propargyl bromide (0.7 mL, 7.5 mmol) was added drop wise and the resulting mixture was allowed to stir overnight. After completion of the reaction, in the mixture was partitioned between DCM and water, and the DCM layer was collected. The aqueous layer was extracted three times with DCM. The combined organic extracts were dried over anhydrous Na2SO4, and concentrated under vacuum to obtain the desired propargyllated lawsone that was later converted to a triazole using click chemistry. Propargyllated lawsone (0.636 g, 3 mmol) was dissolved in 1:1 THF / H2O mixture and triethyl amine (0.7 ml, 5 mmol), sodium azide (0.26 g, 4 mmol), 4-bromobenzyl bromide (0.68 mL, 4 mmol) and cuprous iodide (catalytic amount) were added to this solution. The resulting mixture was allowed to stir overnight at room temperature. Upon completion of the reaction, the mixture was filtered, extract with ethyl acetate, concentrated under vacuum and then subjected to column chromatography to obtain the desired product. The overall yield was 0.61 g (60%). Colourless block-like crystals were obtained on slow evaporation of the solvent.

Refinement top

The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Triazoles and triazole derivatives play an important role in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition and have many biological applications (Abu-Orabi et al., 1989; Demirbaş et al., 2002; Kritsanida et al., 2002. Naphthalene derivatives has been identified as new range of potent antimicrobials effective against wide range of human pathogens and have diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010).

The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C15-C20) makes dihedral angles of 71.30 (11) and 68.95 (14) ° with the naphthalene ring system and the triazole ring, respectively. The latter two rings are coplanar with a dihedral angle of 2.92 (12) °. Atoms O1 and O2 deviate from the naphthalene ring by 0.029 (2) and -0.051 (2) Å, respectively. Atom Br1 deviates from the benzene ring to which it is attached by -0.028 (1) Å

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons parallel to (101); see Table 1 and Fig. 2. The ribbons are linked by C-H···O hydrogen bonds and ππ stacking interactions [Cg2···Cg3i = 3.4451 (14) Å; Cg2 and Cg3 are the centroids of rings naphthalene rings C1-C5/C10 and C5-C10, respectively; symmetry code: (i) x, -y+1/2, z-1/2], forming slabs parallel to the bc plane (Table 1 and Fig. 3).

For some general background and examples of the pharmacological and biological activity of triazole and its derivatives, see, for example: Abu-Orabi et al. (1989); Demirbaş et al. (2002); Kritsanida et al. (2002). For the biological activity of naphthalene compounds, see, for example: Upadhayaya et al. (2010); Rokade & Sayyed (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A perspective view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
2-{[1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione top
Crystal data top
C20H14BrN3O3F(000) = 856
Mr = 424.25Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2887 reflections
a = 16.4383 (5) Åθ = 1.2–28.3°
b = 13.1684 (4) ŵ = 2.34 mm1
c = 8.2255 (2) ÅT = 293 K
β = 90.827 (1)°Block, colourless
V = 1780.36 (9) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4415 independent reflections
Radiation source: fine-focus sealed tube2887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2120
Tmin = 0.593, Tmax = 0.652k = 1617
17010 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.5827P]
where P = (Fo2 + 2Fc2)/3
4415 reflections(Δ/σ)max = 0.003
244 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C20H14BrN3O3V = 1780.36 (9) Å3
Mr = 424.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4383 (5) ŵ = 2.34 mm1
b = 13.1684 (4) ÅT = 293 K
c = 8.2255 (2) Å0.25 × 0.20 × 0.20 mm
β = 90.827 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2887 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.652Rint = 0.031
17010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
4415 reflectionsΔρmin = 0.93 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32817 (17)0.37072 (18)0.0249 (3)0.0477 (6)
H10.34790.43400.00670.057*
C20.25884 (18)0.3640 (2)0.1206 (3)0.0541 (7)
H20.23160.42280.15230.065*
C30.22993 (16)0.2711 (2)0.1692 (3)0.0545 (7)
H30.18380.26730.23560.065*
C40.26908 (16)0.1828 (2)0.1200 (3)0.0487 (6)
H40.24880.12000.15260.058*
C50.33842 (14)0.18813 (17)0.0221 (3)0.0387 (5)
C60.37999 (16)0.09419 (17)0.0346 (3)0.0421 (6)
C70.45299 (16)0.10389 (17)0.1362 (3)0.0421 (6)
H70.48000.04550.17040.051*
C80.48218 (15)0.19489 (17)0.1817 (3)0.0389 (5)
C90.44255 (15)0.29198 (17)0.1280 (3)0.0410 (5)
C100.36854 (15)0.28351 (16)0.0242 (3)0.0385 (5)
C110.59314 (15)0.12805 (17)0.3357 (3)0.0447 (6)
H11A0.61150.08730.24500.054*
H11B0.56060.08560.40600.054*
C120.66411 (15)0.17104 (17)0.4275 (3)0.0415 (5)
C130.68666 (15)0.26868 (17)0.4532 (3)0.0410 (5)
H130.66060.32710.41580.049*
C140.80758 (16)0.3445 (2)0.6053 (3)0.0488 (6)
H14A0.83090.32470.70950.059*
H14B0.77500.40500.62220.059*
C150.87538 (15)0.36917 (18)0.4899 (3)0.0420 (5)
C160.93614 (18)0.2990 (2)0.4612 (4)0.0565 (7)
H160.93450.23590.51160.068*
C170.99932 (18)0.3220 (2)0.3580 (4)0.0628 (8)
H171.04020.27470.33940.075*
C181.00118 (16)0.4152 (2)0.2834 (3)0.0506 (6)
C190.94163 (17)0.4853 (2)0.3095 (3)0.0532 (6)
H190.94330.54820.25830.064*
C200.87863 (17)0.4614 (2)0.4131 (3)0.0494 (6)
H200.83780.50890.43080.059*
N10.71901 (16)0.11000 (16)0.5018 (3)0.0625 (7)
N20.77460 (15)0.16630 (17)0.5737 (3)0.0628 (7)
N30.75486 (12)0.26276 (15)0.5446 (2)0.0428 (5)
O10.47077 (12)0.37334 (12)0.1695 (2)0.0578 (5)
O20.35311 (12)0.01052 (13)0.0017 (2)0.0591 (5)
O30.54657 (11)0.21317 (12)0.2785 (2)0.0480 (4)
Br11.08857 (2)0.44786 (3)0.14393 (4)0.07837 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (16)0.0378 (13)0.0558 (14)0.0009 (12)0.0050 (12)0.0021 (11)
C20.0514 (17)0.0522 (16)0.0586 (15)0.0098 (13)0.0028 (13)0.0060 (12)
C30.0387 (15)0.0711 (19)0.0536 (14)0.0025 (13)0.0001 (12)0.0037 (13)
C40.0466 (15)0.0509 (15)0.0486 (13)0.0089 (12)0.0031 (11)0.0067 (11)
C50.0409 (13)0.0379 (12)0.0375 (11)0.0041 (10)0.0084 (9)0.0056 (9)
C60.0474 (15)0.0329 (12)0.0461 (12)0.0055 (11)0.0056 (11)0.0087 (10)
C70.0456 (15)0.0298 (12)0.0509 (13)0.0017 (10)0.0001 (11)0.0048 (10)
C80.0381 (13)0.0330 (12)0.0458 (12)0.0029 (10)0.0040 (10)0.0041 (9)
C90.0433 (14)0.0319 (12)0.0479 (12)0.0024 (10)0.0071 (10)0.0026 (10)
C100.0407 (13)0.0331 (12)0.0420 (11)0.0008 (10)0.0084 (10)0.0020 (9)
C110.0432 (14)0.0306 (12)0.0602 (14)0.0006 (10)0.0015 (11)0.0038 (10)
C120.0398 (13)0.0341 (12)0.0508 (13)0.0019 (11)0.0037 (10)0.0003 (10)
C130.0390 (13)0.0358 (12)0.0482 (12)0.0036 (10)0.0021 (10)0.0001 (10)
C140.0443 (15)0.0543 (15)0.0478 (13)0.0065 (12)0.0041 (11)0.0056 (11)
C150.0376 (13)0.0474 (14)0.0406 (11)0.0050 (11)0.0091 (10)0.0040 (10)
C160.0542 (17)0.0477 (15)0.0677 (17)0.0023 (13)0.0016 (13)0.0069 (13)
C170.0464 (17)0.0701 (19)0.0719 (18)0.0147 (15)0.0026 (14)0.0014 (16)
C180.0389 (15)0.0725 (18)0.0403 (12)0.0077 (13)0.0046 (11)0.0019 (12)
C190.0519 (17)0.0582 (16)0.0493 (13)0.0001 (14)0.0044 (12)0.0105 (12)
C200.0473 (16)0.0517 (15)0.0492 (13)0.0077 (12)0.0039 (12)0.0016 (11)
N10.0598 (16)0.0377 (12)0.0895 (17)0.0032 (11)0.0182 (13)0.0130 (12)
N20.0595 (15)0.0447 (13)0.0836 (16)0.0032 (12)0.0210 (13)0.0151 (12)
N30.0412 (12)0.0389 (11)0.0481 (11)0.0035 (9)0.0021 (9)0.0019 (9)
O10.0615 (13)0.0288 (9)0.0826 (13)0.0067 (8)0.0128 (10)0.0080 (8)
O20.0655 (13)0.0337 (9)0.0777 (13)0.0108 (9)0.0115 (10)0.0110 (9)
O30.0449 (10)0.0330 (9)0.0657 (11)0.0025 (7)0.0115 (8)0.0047 (8)
Br10.0513 (2)0.1308 (4)0.05317 (19)0.00707 (18)0.00537 (14)0.01042 (17)
Geometric parameters (Å, º) top
C1—C21.379 (4)C11—H11B0.9700
C1—C101.384 (3)C12—N11.348 (3)
C1—H10.9300C12—C131.354 (3)
C2—C31.369 (4)C13—N31.343 (3)
C2—H20.9300C13—H130.9300
C3—C41.386 (4)C14—N31.466 (3)
C3—H30.9300C14—C151.509 (3)
C4—C51.388 (3)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C101.401 (3)C15—C201.371 (3)
C5—C61.485 (3)C15—C161.383 (4)
C6—O21.223 (3)C16—C171.384 (4)
C6—C71.458 (4)C16—H160.9300
C7—C81.342 (3)C17—C181.373 (4)
C7—H70.9300C17—H170.9300
C8—O31.337 (3)C18—C191.364 (4)
C8—C91.498 (3)C18—Br11.901 (3)
C9—O11.215 (3)C19—C201.387 (4)
C9—C101.480 (3)C19—H190.9300
C11—O31.433 (3)C20—H200.9300
C11—C121.492 (3)N1—N21.311 (3)
C11—H11A0.9700N2—N31.332 (3)
C2—C1—C10120.2 (2)N1—C12—C13108.4 (2)
C2—C1—H1119.9N1—C12—C11121.1 (2)
C10—C1—H1119.9C13—C12—C11130.5 (2)
C3—C2—C1120.3 (3)N3—C13—C12104.9 (2)
C3—C2—H2119.8N3—C13—H13127.6
C1—C2—H2119.8C12—C13—H13127.6
C2—C3—C4120.4 (3)N3—C14—C15112.5 (2)
C2—C3—H3119.8N3—C14—H14A109.1
C4—C3—H3119.8C15—C14—H14A109.1
C3—C4—C5120.1 (2)N3—C14—H14B109.1
C3—C4—H4120.0C15—C14—H14B109.1
C5—C4—H4120.0H14A—C14—H14B107.8
C4—C5—C10119.1 (2)C20—C15—C16118.7 (2)
C4—C5—C6120.7 (2)C20—C15—C14120.9 (2)
C10—C5—C6120.1 (2)C16—C15—C14120.4 (2)
O2—C6—C7120.7 (2)C15—C16—C17120.6 (3)
O2—C6—C5120.7 (2)C15—C16—H16119.7
C7—C6—C5118.6 (2)C17—C16—H16119.7
C8—C7—C6121.7 (2)C18—C17—C16119.4 (3)
C8—C7—H7119.1C18—C17—H17120.3
C6—C7—H7119.1C16—C17—H17120.3
O3—C8—C7127.1 (2)C19—C18—C17120.9 (3)
O3—C8—C9111.04 (19)C19—C18—Br1119.5 (2)
C7—C8—C9121.8 (2)C17—C18—Br1119.6 (2)
O1—C9—C10122.4 (2)C18—C19—C20119.2 (3)
O1—C9—C8120.5 (2)C18—C19—H19120.4
C10—C9—C8117.12 (19)C20—C19—H19120.4
C1—C10—C5119.9 (2)C15—C20—C19121.2 (3)
C1—C10—C9119.5 (2)C15—C20—H20119.4
C5—C10—C9120.6 (2)C19—C20—H20119.4
O3—C11—C12106.23 (18)N2—N1—C12108.9 (2)
O3—C11—H11A110.5N1—N2—N3107.0 (2)
C12—C11—H11A110.5N2—N3—C13110.8 (2)
O3—C11—H11B110.5N2—N3—C14119.9 (2)
C12—C11—H11B110.5C13—N3—C14129.3 (2)
H11A—C11—H11B108.7C8—O3—C11117.99 (18)
C10—C1—C2—C30.7 (4)O3—C11—C12—C132.2 (4)
C1—C2—C3—C41.3 (4)N1—C12—C13—N30.5 (3)
C2—C3—C4—C50.6 (4)C11—C12—C13—N3179.7 (2)
C3—C4—C5—C100.8 (4)N3—C14—C15—C20114.2 (3)
C3—C4—C5—C6178.7 (2)N3—C14—C15—C1666.6 (3)
C4—C5—C6—O21.2 (4)C20—C15—C16—C170.6 (4)
C10—C5—C6—O2178.2 (2)C14—C15—C16—C17178.7 (2)
C4—C5—C6—C7179.5 (2)C15—C16—C17—C180.3 (4)
C10—C5—C6—C71.1 (3)C16—C17—C18—C190.1 (4)
O2—C6—C7—C8177.9 (2)C16—C17—C18—Br1179.2 (2)
C5—C6—C7—C81.3 (4)C17—C18—C19—C200.1 (4)
C6—C7—C8—O3177.6 (2)Br1—C18—C19—C20179.1 (2)
C6—C7—C8—C91.3 (4)C16—C15—C20—C190.6 (4)
O3—C8—C9—O11.8 (3)C14—C15—C20—C19178.7 (2)
C7—C8—C9—O1179.2 (2)C18—C19—C20—C150.2 (4)
O3—C8—C9—C10178.0 (2)C13—C12—N1—N20.4 (3)
C7—C8—C9—C101.0 (3)C11—C12—N1—N2179.8 (2)
C2—C1—C10—C50.6 (4)C12—N1—N2—N30.1 (3)
C2—C1—C10—C9179.5 (2)N1—N2—N3—C130.3 (3)
C4—C5—C10—C11.4 (3)N1—N2—N3—C14178.0 (2)
C6—C5—C10—C1178.1 (2)C12—C13—N3—N20.5 (3)
C4—C5—C10—C9179.8 (2)C12—C13—N3—C14177.9 (2)
C6—C5—C10—C90.8 (3)C15—C14—N3—N286.2 (3)
O1—C9—C10—C11.7 (4)C15—C14—N3—C1391.0 (3)
C8—C9—C10—C1178.1 (2)C7—C8—O3—C113.3 (4)
O1—C9—C10—C5179.4 (2)C9—C8—O3—C11177.8 (2)
C8—C9—C10—C50.8 (3)C12—C11—O3—C8175.2 (2)
O3—C11—C12—N1178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.573.251 (3)131
C13—H13···O2i0.932.533.277 (3)138
C11—H11A···O2ii0.972.463.425 (3)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.573.251 (3)131
C13—H13···O2i0.932.533.277 (3)138
C11—H11A···O2ii0.972.463.425 (3)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Jagan, Department of Chemistry, IIT, Chennai, India, for the data collection.

References

First citationAbu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari'i, F. M. & Al-Sheikh Ali, A. (1989). J. Heterocycl. Chem. 26, 1461–1468.  CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbaş, N., Ugurluoglu, R. & Demirbaş, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science PubMed Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 2, 1854–1867.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o231-o232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds