organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o256-o257

Crystal structure of ethyl 2-cyano-3-[(1-eth­­oxy­ethyl­­idene)amino]-5-(3-meth­­oxy­phen­yl)-7-methyl-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 March 2015; accepted 14 March 2015; online 25 March 2015)

In the title compound, C22H24N4O4S, the central pyrimidine ring adopts a sofa conformation with the ring-junction N atom displaced by 0.2358 (6) Å from the mean plane of the remaining ring atoms. The 3-meth­oxy­phenyl ring, at the chiral C atom opposite the other N atom, is positioned axially and is inclined to the thia­zolo­pyrimidine ring with a dihedral angle of 83.88 (7)°. The thia­zole ring is essentially planar (r.m.s. deviation = 0.0034 Å). In the crystal, pairs of weak C—H⋯O hydrogen bonds link mol­ecules related by twofold rotation axes to form R22(8) rings, which in turn are linked by weak C—H⋯N inter­actions, forming ribbons along [-110]. In addition, ππ stacking inter­actions [centroid—centroid distance = 3.5744 (15) Å] connect the ribbons, forming slabs lying parallel to (001).

1. Related literature

For background and pharmacological properties of pyrimidine and thia­zolo­pyrimidine derivatives, see: Singh et al. (2011[Singh, S., Schober, A., Gebinoga, M. & Alexander Gross, G. (2011). Tetrahedron Lett. 52, 3814-3817.]); Ozair et al. (2010a[Ozair, A., Suroor, A. K., Nadeem, S. & Waquar, A. (2010a). Med. Chem. Res. 19, 1245-1258.],b[Ozair, A., Suroor, A. K., Nadeem, S., Waquar, A., Suraj, P. V. & Sadaf, J. G. (2010b). Eur. J. Med. Chem. 45, 5113-5119.]); Sayed et al. (2010[Sayed, H. H., Morsy, E. M. H. & Kotb, E. R. (2010). Synth. Commun. 40, 2712-2722.]); Zhi et al. (2008[Zhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). Arkivoc, 13, 266-277.]); Mobinikhaledi et al. (2005[Mobinikhaledi, A., Foroughifar, N. & Ghorbani, A. R. (2005). Phosphorus Sulfur Silicon, 180, 1713-1719.]). For related crystal structures, see: Krishnamurthy & Begum (2014[Krishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270-o1271.]); Krishnamurthy et al. (2014[Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187-o1188.]); Nagarajaiah & Begum (2011[Nagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H24N4O4S

  • Mr = 440.51

  • Monoclinic, C 2/c

  • a = 14.371 (3) Å

  • b = 13.368 (3) Å

  • c = 22.771 (6) Å

  • β = 99.325 (5)°

  • V = 4316.9 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.16 × 0.12 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.967, Tmax = 0.971

  • 11002 measured reflections

  • 3793 independent reflections

  • 2882 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.01

  • 3793 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N4i 0.95 2.67 3.396 (4) 134
C21—H21A⋯N2ii 0.99 2.65 3.538 (2) 149
C20—H20B⋯O4iii 0.98 2.68 3.249 (5) 117
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Pyrimidine has been subjected to a variety of structural modifications in order to synthesize derivatives (Singh et al., 2011) with different biological properties, among which, a thiazole ring fused to a pyrimidine ring, viz. a thiazolopyrimidine, has been found to be more active (Ozair et al., 2010a,b; Sayed et al., 2010). Thiazolo[3,2-a]pyrimidine derivatives act as potential enzyme inhibitors and are novel therapeutic entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation of our research interests on thiazolo[3,2-a]pyrimidine derivatives (Krishnamurthy & Begum, 2014; Krishnamurthy et al., 2014), we attempted to synthesize tricyclic thiazolopyrimidine derivatives (Mobinikhaledi et al., 2005). The title compound, an intermediate, was isolated and we report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The 3-methoxy phenyl ring at chiral carbon C5 is positioned axially and exactly bisects the thiazolopyrimidine ring with a dihedral angle of 83.88 (7)°. The pyrimidine ring adopts a flattened sofa conformation with atom N1 displaced by 0.2358 (6) Å from the mean plane of the other five atoms (C5/C6/C7/N2/C9). The carbonyl group of the exocyclic ester at C6 adopts a cis orientation with respect to C6—C7 double bond. The 3-methoxy phenyl ring adopts a syn periplanar conformation with respect to C5—H5 bond of the pyrimidine ring. The thiazole ring is essentially planar (r.m.s. deviation = 0.0034 Å).

In the crystal, pairs of weak C—H···O hydrogen bonds link molecules related by twofold rotation axes to form R22(8) rings, which are in turn linked by weak C—H···N interactions to form ribbons along [110]; Table 1 and Fig. 2. In addition, ππ stacking interactions with a centroid—centroid distance of 3.5744 (15) Å connect the ribbons to form slabs lying parallel to (001); [Cg1···.Cg1i where Cg1 is the centroid of ring S1/N1/C2/C3/C9; symmetry code: (i) -x, y, -z+1/2].

Related literature top

For background and pharmacological properties of pyrimidine and thiazolopyrimidine derivatives, see: Singh et al. (2011); Ozair et al. (2010a,b); Sayed et al. (2010); Zhi et al. (2008); Mobinikhaledi et al. (2005). For related crystal structures, see: Krishnamurthy & Begum (2014); Krishnamurthy et al. (2014); Nagarajaiah & Begum (2011).

Experimental top

A mixture of ethyl 3-amino-2-cyano-5-(3-methoxyphenyl)-7-methyl-5H- thiazolo[3,2 a] pyrimidine-6-carboxylate (1.85 g, 5 mmol) and triethylorthoacetate (2 ml) was heated under reflux in acetic anhydride for 6 h. Excess triethylorthoacetate and acetic anhydride was removed. The residue was treated with petroleum ether. The solid that separated was filtered, washed and recrystallized from petroleum ether by slow evaporation, yielding light-greenish yellow crystals suitable for X-ray diffraction studies (yield 83%; m.p.: 384 K).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation: C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

Pyrimidine has been subjected to a variety of structural modifications in order to synthesize derivatives (Singh et al., 2011) with different biological properties, among which, a thiazole ring fused to a pyrimidine ring, viz. a thiazolopyrimidine, has been found to be more active (Ozair et al., 2010a,b; Sayed et al., 2010). Thiazolo[3,2-a]pyrimidine derivatives act as potential enzyme inhibitors and are novel therapeutic entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation of our research interests on thiazolo[3,2-a]pyrimidine derivatives (Krishnamurthy & Begum, 2014; Krishnamurthy et al., 2014), we attempted to synthesize tricyclic thiazolopyrimidine derivatives (Mobinikhaledi et al., 2005). The title compound, an intermediate, was isolated and we report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The 3-methoxy phenyl ring at chiral carbon C5 is positioned axially and exactly bisects the thiazolopyrimidine ring with a dihedral angle of 83.88 (7)°. The pyrimidine ring adopts a flattened sofa conformation with atom N1 displaced by 0.2358 (6) Å from the mean plane of the other five atoms (C5/C6/C7/N2/C9). The carbonyl group of the exocyclic ester at C6 adopts a cis orientation with respect to C6—C7 double bond. The 3-methoxy phenyl ring adopts a syn periplanar conformation with respect to C5—H5 bond of the pyrimidine ring. The thiazole ring is essentially planar (r.m.s. deviation = 0.0034 Å).

In the crystal, pairs of weak C—H···O hydrogen bonds link molecules related by twofold rotation axes to form R22(8) rings, which are in turn linked by weak C—H···N interactions to form ribbons along [110]; Table 1 and Fig. 2. In addition, ππ stacking interactions with a centroid—centroid distance of 3.5744 (15) Å connect the ribbons to form slabs lying parallel to (001); [Cg1···.Cg1i where Cg1 is the centroid of ring S1/N1/C2/C3/C9; symmetry code: (i) -x, y, -z+1/2].

For background and pharmacological properties of pyrimidine and thiazolopyrimidine derivatives, see: Singh et al. (2011); Ozair et al. (2010a,b); Sayed et al. (2010); Zhi et al. (2008); Mobinikhaledi et al. (2005). For related crystal structures, see: Krishnamurthy & Begum (2014); Krishnamurthy et al. (2014); Nagarajaiah & Begum (2011).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis, showing the intermolecular interactions as dashed lines (see Table 1). H-atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 2-cyano-3-[(1-ethoxyethylidene)amino]-5-(3-methoxyphenyl)-7-methyl-5H-1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C22H24N4O4SF(000) = 1856
Mr = 440.51Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3793 reflections
a = 14.371 (3) Åθ = 1.8–25.0°
b = 13.368 (3) ŵ = 0.19 mm1
c = 22.771 (6) ÅT = 100 K
β = 99.325 (5)°Block, yellow
V = 4316.9 (16) Å30.16 × 0.12 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube2882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1717
Tmin = 0.967, Tmax = 0.971k = 1515
11002 measured reflectionsl = 2719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1696P)2]
where P = (Fo2 + 2Fc2)/3
3793 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C22H24N4O4SV = 4316.9 (16) Å3
Mr = 440.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.371 (3) ŵ = 0.19 mm1
b = 13.368 (3) ÅT = 100 K
c = 22.771 (6) Å0.16 × 0.12 × 0.10 mm
β = 99.325 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2882 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.052
11002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.49 e Å3
3793 reflectionsΔρmin = 0.32 e Å3
285 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13934 (4)0.70794 (4)0.20570 (3)0.0237 (2)
O10.10595 (11)1.16153 (12)0.30234 (7)0.0258 (4)
O20.12547 (12)1.21281 (12)0.21099 (8)0.0309 (5)
O30.33654 (13)1.03011 (15)0.48409 (8)0.0406 (5)
O40.11827 (12)0.80604 (12)0.46167 (7)0.0277 (4)
N10.11799 (13)0.86522 (14)0.26730 (8)0.0204 (5)
N20.13810 (13)0.89673 (15)0.16753 (9)0.0240 (5)
N30.08826 (13)0.80714 (14)0.36078 (9)0.0219 (5)
N40.12362 (15)0.52819 (16)0.33506 (10)0.0319 (5)
C10.11149 (19)1.05852 (19)0.12197 (11)0.0336 (7)
H1A0.10371.12940.13110.050*
H1B0.05511.03460.09570.050*
H1C0.16671.05050.10210.050*
C20.12358 (16)0.69605 (17)0.28022 (11)0.0216 (5)
C30.11295 (15)0.78635 (17)0.30573 (10)0.0200 (5)
C40.0977 (2)1.2676 (2)0.38543 (12)0.0420 (7)
H4A0.03831.23550.39050.063*
H4B0.09781.33710.39920.063*
H4C0.15051.23150.40870.063*
C50.13384 (16)0.96962 (16)0.28873 (10)0.0197 (5)
H50.08400.98780.31280.024*
C60.12340 (16)1.03689 (17)0.23357 (10)0.0211 (5)
C70.12523 (15)0.99914 (18)0.17838 (10)0.0225 (6)
C80.10788 (18)1.26578 (17)0.32076 (11)0.0275 (6)
H8A0.05551.30310.29680.033*
H8B0.16821.29730.31510.033*
C90.13237 (15)0.83739 (18)0.21150 (10)0.0208 (5)
C100.11810 (16)1.14516 (19)0.24543 (11)0.0245 (6)
C110.23017 (16)0.97772 (17)0.32810 (10)0.0216 (5)
C120.31098 (16)0.95397 (16)0.30541 (11)0.0238 (6)
H120.30700.93500.26490.029*
C130.39864 (18)0.95799 (18)0.34235 (12)0.0299 (6)
H130.45430.94250.32670.036*
C140.40474 (18)0.98420 (19)0.40119 (12)0.0329 (7)
H140.46440.98620.42620.039*
C150.32356 (19)1.00781 (19)0.42400 (11)0.0301 (6)
C160.23615 (17)1.00501 (18)0.38753 (10)0.0256 (6)
H160.18071.02170.40310.031*
C170.2546 (2)1.0463 (2)0.51025 (12)0.0491 (8)
H17A0.22341.10800.49430.074*
H17B0.27261.05240.55350.074*
H17C0.21140.98970.50110.074*
C180.12295 (16)0.60302 (18)0.31003 (11)0.0227 (6)
C190.14560 (17)0.79047 (17)0.40873 (11)0.0239 (6)
C200.24524 (17)0.7560 (2)0.41573 (11)0.0318 (6)
H20A0.24850.68500.42670.048*
H20B0.28380.79510.44700.048*
H20C0.26900.76510.37810.048*
C210.01889 (18)0.8272 (2)0.46214 (12)0.0316 (6)
H21A0.00650.86810.42700.038*
H21B0.01220.86590.49830.038*
C220.0361 (2)0.7323 (2)0.46124 (13)0.0427 (7)
H22A0.03060.69460.42500.064*
H22B0.10250.74790.46190.064*
H22C0.01120.69200.49620.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (4)0.0215 (3)0.0222 (4)0.0008 (2)0.0033 (3)0.0006 (2)
O10.0300 (10)0.0192 (9)0.0288 (10)0.0005 (7)0.0063 (8)0.0008 (7)
O20.0403 (11)0.0223 (10)0.0297 (11)0.0001 (8)0.0042 (8)0.0083 (8)
O30.0430 (12)0.0532 (13)0.0230 (11)0.0142 (10)0.0023 (9)0.0023 (9)
O40.0325 (10)0.0313 (10)0.0188 (10)0.0022 (8)0.0031 (8)0.0003 (7)
N10.0228 (11)0.0190 (10)0.0192 (11)0.0003 (8)0.0026 (8)0.0009 (8)
N20.0269 (11)0.0222 (11)0.0228 (12)0.0013 (9)0.0038 (9)0.0004 (9)
N30.0249 (11)0.0218 (11)0.0195 (11)0.0000 (8)0.0049 (9)0.0013 (8)
N40.0347 (13)0.0252 (12)0.0358 (14)0.0007 (10)0.0057 (10)0.0041 (10)
C10.0477 (17)0.0295 (15)0.0225 (14)0.0074 (13)0.0017 (12)0.0030 (11)
C20.0189 (12)0.0208 (13)0.0247 (14)0.0007 (10)0.0024 (10)0.0008 (10)
C30.0145 (12)0.0232 (13)0.0213 (13)0.0011 (10)0.0006 (10)0.0044 (10)
C40.061 (2)0.0289 (15)0.0363 (18)0.0040 (14)0.0081 (15)0.0063 (13)
C50.0239 (13)0.0141 (12)0.0215 (13)0.0001 (9)0.0048 (10)0.0019 (9)
C60.0206 (13)0.0182 (12)0.0240 (14)0.0013 (9)0.0020 (10)0.0040 (10)
C70.0181 (12)0.0257 (13)0.0234 (14)0.0003 (10)0.0019 (10)0.0021 (10)
C80.0292 (14)0.0169 (12)0.0362 (16)0.0005 (11)0.0042 (12)0.0046 (11)
C90.0168 (12)0.0265 (13)0.0181 (13)0.0013 (10)0.0003 (10)0.0015 (10)
C100.0169 (12)0.0290 (14)0.0270 (14)0.0028 (10)0.0017 (10)0.0032 (11)
C110.0263 (13)0.0146 (12)0.0235 (14)0.0010 (10)0.0029 (10)0.0034 (10)
C120.0269 (14)0.0185 (12)0.0252 (14)0.0000 (10)0.0020 (11)0.0014 (10)
C130.0239 (14)0.0252 (14)0.0398 (17)0.0018 (11)0.0028 (12)0.0015 (11)
C140.0306 (15)0.0237 (14)0.0401 (18)0.0022 (11)0.0070 (13)0.0011 (12)
C150.0365 (16)0.0254 (14)0.0262 (15)0.0052 (12)0.0017 (12)0.0003 (11)
C160.0268 (14)0.0257 (14)0.0235 (14)0.0032 (11)0.0015 (11)0.0014 (11)
C170.057 (2)0.065 (2)0.0247 (16)0.0221 (17)0.0049 (14)0.0069 (14)
C180.0241 (13)0.0210 (13)0.0231 (14)0.0013 (10)0.0041 (11)0.0016 (11)
C190.0281 (13)0.0211 (13)0.0220 (14)0.0015 (10)0.0026 (11)0.0019 (10)
C200.0316 (15)0.0353 (15)0.0269 (15)0.0035 (12)0.0005 (12)0.0032 (12)
C210.0371 (16)0.0339 (15)0.0251 (15)0.0042 (12)0.0094 (12)0.0019 (11)
C220.0474 (18)0.0475 (18)0.0355 (17)0.0082 (15)0.0139 (14)0.0015 (14)
Geometric parameters (Å, º) top
S1—C91.740 (2)C5—H51.0000
S1—C21.755 (3)C6—C71.359 (3)
O1—C101.353 (3)C6—C101.476 (3)
O1—C81.454 (3)C8—H8A0.9900
O2—C101.213 (3)C8—H8B0.9900
O3—C151.383 (3)C11—C121.382 (3)
O3—C171.419 (3)C11—C161.391 (3)
O4—C191.343 (3)C12—C131.398 (3)
O4—C211.458 (3)C12—H120.9500
N1—C91.371 (3)C13—C141.374 (4)
N1—C31.380 (3)C13—H130.9500
N1—C51.484 (3)C14—C151.388 (4)
N2—C91.291 (3)C14—H140.9500
N2—C71.409 (3)C15—C161.390 (3)
N3—C191.277 (3)C16—H160.9500
N3—C31.385 (3)C17—H17A0.9800
N4—C181.151 (3)C17—H17B0.9800
C1—C71.496 (3)C17—H17C0.9800
C1—H1A0.9800C19—C201.488 (3)
C1—H1B0.9800C20—H20A0.9800
C1—H1C0.9800C20—H20B0.9800
C2—C31.359 (3)C20—H20C0.9800
C2—C181.418 (3)C21—C221.492 (4)
C4—C81.503 (4)C21—H21A0.9900
C4—H4A0.9800C21—H21B0.9900
C4—H4B0.9800C22—H22A0.9800
C4—H4C0.9800C22—H22B0.9800
C5—C111.526 (3)C22—H22C0.9800
C5—C61.532 (3)
C9—S1—C289.92 (11)O2—C10—C6126.9 (2)
C10—O1—C8115.58 (18)O1—C10—C6110.6 (2)
C15—O3—C17117.4 (2)C12—C11—C16120.0 (2)
C19—O4—C21117.78 (18)C12—C11—C5120.1 (2)
C9—N1—C3114.3 (2)C16—C11—C5119.8 (2)
C9—N1—C5121.45 (19)C11—C12—C13119.7 (2)
C3—N1—C5122.10 (19)C11—C12—H12120.1
C9—N2—C7115.8 (2)C13—C12—H12120.1
C19—N3—C3121.0 (2)C14—C13—C12120.4 (2)
C7—C1—H1A109.5C14—C13—H13119.8
C7—C1—H1B109.5C12—C13—H13119.8
H1A—C1—H1B109.5C13—C14—C15119.9 (2)
C7—C1—H1C109.5C13—C14—H14120.1
H1A—C1—H1C109.5C15—C14—H14120.1
H1B—C1—H1C109.5O3—C15—C14115.6 (2)
C3—C2—C18124.4 (2)O3—C15—C16124.1 (2)
C3—C2—S1111.95 (18)C14—C15—C16120.2 (2)
C18—C2—S1123.66 (18)C15—C16—C11119.7 (2)
C2—C3—N1112.8 (2)C15—C16—H16120.1
C2—C3—N3128.9 (2)C11—C16—H16120.1
N1—C3—N3117.9 (2)O3—C17—H17A109.5
C8—C4—H4A109.5O3—C17—H17B109.5
C8—C4—H4B109.5H17A—C17—H17B109.5
H4A—C4—H4B109.5O3—C17—H17C109.5
C8—C4—H4C109.5H17A—C17—H17C109.5
H4A—C4—H4C109.5H17B—C17—H17C109.5
H4B—C4—H4C109.5N4—C18—C2178.8 (3)
N1—C5—C11109.64 (18)N3—C19—O4119.9 (2)
N1—C5—C6107.05 (18)N3—C19—C20128.5 (2)
C11—C5—C6113.51 (19)O4—C19—C20111.6 (2)
N1—C5—H5108.8C19—C20—H20A109.5
C11—C5—H5108.8C19—C20—H20B109.5
C6—C5—H5108.8H20A—C20—H20B109.5
C7—C6—C10122.9 (2)C19—C20—H20C109.5
C7—C6—C5121.8 (2)H20A—C20—H20C109.5
C10—C6—C5115.2 (2)H20B—C20—H20C109.5
C6—C7—N2123.1 (2)O4—C21—C22110.6 (2)
C6—C7—C1125.3 (2)O4—C21—H21A109.5
N2—C7—C1111.6 (2)C22—C21—H21A109.5
O1—C8—C4107.32 (19)O4—C21—H21B109.5
O1—C8—H8A110.2C22—C21—H21B109.5
C4—C8—H8A110.3H21A—C21—H21B108.1
O1—C8—H8B110.3C21—C22—H22A109.5
C4—C8—H8B110.2C21—C22—H22B109.5
H8A—C8—H8B108.5H22A—C22—H22B109.5
N2—C9—N1126.2 (2)C21—C22—H22C109.5
N2—C9—S1122.74 (18)H22A—C22—H22C109.5
N1—C9—S1111.07 (17)H22B—C22—H22C109.5
O2—C10—O1122.5 (2)
C9—S1—C2—C30.67 (18)C5—N1—C9—S1164.04 (16)
C9—S1—C2—C18178.8 (2)C2—S1—C9—N2179.1 (2)
C18—C2—C3—N1178.9 (2)C2—S1—C9—N10.59 (17)
S1—C2—C3—N10.6 (3)C8—O1—C10—O23.5 (3)
C18—C2—C3—N38.9 (4)C8—O1—C10—C6174.89 (19)
S1—C2—C3—N3171.65 (19)C7—C6—C10—O29.0 (4)
C9—N1—C3—C20.1 (3)C5—C6—C10—O2166.8 (2)
C5—N1—C3—C2163.4 (2)C7—C6—C10—O1172.7 (2)
C9—N1—C3—N3173.04 (18)C5—C6—C10—O111.5 (3)
C5—N1—C3—N323.4 (3)N1—C5—C11—C1259.5 (3)
C19—N3—C3—C271.3 (3)C6—C5—C11—C1260.2 (3)
C19—N3—C3—N1116.8 (2)N1—C5—C11—C16117.8 (2)
C9—N1—C5—C1199.3 (2)C6—C5—C11—C16122.5 (2)
C3—N1—C5—C1163.1 (3)C16—C11—C12—C130.3 (3)
C9—N1—C5—C624.2 (3)C5—C11—C12—C13177.6 (2)
C3—N1—C5—C6173.38 (19)C11—C12—C13—C140.8 (4)
N1—C5—C6—C715.6 (3)C12—C13—C14—C150.6 (4)
C11—C5—C6—C7105.5 (2)C17—O3—C15—C14174.8 (2)
N1—C5—C6—C10168.50 (18)C17—O3—C15—C163.1 (4)
C11—C5—C6—C1070.4 (3)C13—C14—C15—O3178.0 (2)
C10—C6—C7—N2174.6 (2)C13—C14—C15—C160.0 (4)
C5—C6—C7—N21.0 (3)O3—C15—C16—C11177.3 (2)
C10—C6—C7—C17.2 (4)C14—C15—C16—C110.5 (4)
C5—C6—C7—C1177.2 (2)C12—C11—C16—C150.3 (3)
C9—N2—C7—C611.2 (3)C5—C11—C16—C15177.0 (2)
C9—N2—C7—C1167.2 (2)C3—C2—C18—N450 (14)
C10—O1—C8—C4177.4 (2)S1—C2—C18—N4130 (13)
C7—N2—C9—N12.1 (3)C3—N3—C19—O4176.35 (19)
C7—N2—C9—S1176.16 (16)C3—N3—C19—C205.0 (4)
C3—N1—C9—N2178.8 (2)C21—O4—C19—N39.1 (3)
C5—N1—C9—N217.5 (3)C21—O4—C19—C20172.0 (2)
C3—N1—C9—S10.4 (2)C19—O4—C21—C2284.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N4i0.952.673.396 (4)134
C21—H21A···N2ii0.992.653.538 (2)149
C20—H20B···O4iii0.982.683.249 (5)117
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2; (iii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N4i0.952.6683.396 (4)134
C21—H21A···N2ii0.992.6523.538 (2)149
C20—H20B···O4iii0.982.6803.249 (5)117
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

MSK is thankful to the University Grants Commission (UGC), India, for a UGC–BSR meritorious fellowship.

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270–o1271.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187–o1188.  CSD CrossRef IUCr Journals Google Scholar
First citationMobinikhaledi, A., Foroughifar, N. & Ghorbani, A. R. (2005). Phosphorus Sulfur Silicon, 180, 1713–1719.  CrossRef CAS Google Scholar
First citationNagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOzair, A., Suroor, A. K., Nadeem, S. & Waquar, A. (2010a). Med. Chem. Res. 19, 1245–1258.  Google Scholar
First citationOzair, A., Suroor, A. K., Nadeem, S., Waquar, A., Suraj, P. V. & Sadaf, J. G. (2010b). Eur. J. Med. Chem. 45, 5113–5119.  PubMed Google Scholar
First citationSayed, H. H., Morsy, E. M. H. & Kotb, E. R. (2010). Synth. Commun. 40, 2712–2722.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Schober, A., Gebinoga, M. & Alexander Gross, G. (2011). Tetrahedron Lett. 52, 3814–3817.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). Arkivoc, 13, 266–277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o256-o257
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds