organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o246-o247

Crystal structure of 2,2-di­methyl-N-(pyridin-3-yl)propanamide

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 March 2015; accepted 14 March 2015; online 21 March 2015)

In the title compound, C10H14N2O, the pyridine ring is inclined to the mean plane of the amide moiety [N—C(=O)C] by 17.60 (8)°. There is an intra­molecular C—H⋯O hydrogen bond present involving the carbonyl O atom. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains propagating along [100]. The tert-butyl group is disordered over two sets of sites with a refined occupancy ratio of 0.758 (12):0.242 (12).

1. Related literature

For related biologically active pyridine derivatives, see: de Candia et al. (2013[Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696-8711.]); Thorat et al. (2013[Thorat, S. A., Kang, D. W., Ryu, H. C., Kim, H. S., Kim, H. S., Ann, J., Ha, T., Kim, S.-E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589-602.]); Abdel-Megeed et al. (2012[Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252-2258.]). For pyridine ring-system modifications, see: El-Hiti et al. (2015[El-Hiti, G. A., Smith, K. & Hegazy, A. S. (2015). Heterocycles, 91, 479-504.]); Smith et al. (2012[Smith, K., El-Hiti, G. A., Fekri, A. & Alshammari, M. B. (2012). Heterocycles, 86, 391-410.], 2013[Smith, K., El-Hiti, G. A., Alshammari, M. B. & Fekri, A. (2013). Synthesis, 45, 3426-3434.]); Londregan et al. (2009[Londregan, A. T., Storer, G., Wooten, C., Yang, X. & Warmus, J. (2009). Tetrahedron Lett. 50, 1986-1988.]); Joule & Mills (2000[Joule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers.]); Turner (1983[Turner, J. A. (1983). J. Org. Chem. 48, 3401-3408.]). For the crystal structures of related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351-o352.]); Seidler et al. (2011[Seidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.]); Koch et al. (2008[Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.]); Mazik et al. (2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H14N2O

  • Mr = 178.23

  • Orthorhombic, P b c a

  • a = 11.2453 (3) Å

  • b = 10.5272 (3) Å

  • c = 17.5339 (6) Å

  • V = 2075.69 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.06 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.840, Tmax = 1.000

  • 7164 measured reflections

  • 2065 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.127

  • S = 1.05

  • 2065 reflections

  • 153 parameters

  • 114 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.25 2.8263 (18) 119
N1—H1⋯N2i 0.86 2.17 3.0012 (15) 164
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Introduction top

Pyridine derivatives are inter­esting compounds (Joule & Mills, 2000) since they show a range of biological activities (Thorat et al., 2013) such as anti­coagulant (de Candia et al., 2013) and anti­microbial (Abdel-Megeed et al., 2012) properties. Various simple and efficient processes have been developed for modification of the pyridine ring system (El-Hiti et al., 2015; Smith et al., 2013, Smith et al., 2012, Londregan et al., 2009; Turner, 1983). The X-ray crystal structures of related compounds have been reported (El-Hiti et al., 2014; Seidler et al., 2011; Koch et al., 2008; Mazik et al., 2004).

Experimental top

The title compound was obtained in 73% yield from the reaction of 3-amino­pyridine with pivaloyl chloride in the presence of tri­ethyl­amine in di­chloro­methane at 273 K for 15 min and then at room temperature for 2 h (Turner, 1983). Crystallization from a mixture of ethyl acetate and hexane gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were identical with those reported previously (Turner, 1983)

Refinement top

The N- and C-bound H atoms were included in calculated positions and refined as riding: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The t-butyl group is disordered over two sites and was refined with bond length constraints to give a refined occupancy ratio of 0.758 (12):0.242 (12).

Results and discussion top

The molecular structure of the title compound is illustrated in Fig. 1. The pyridine ring is inclined to the mean plane of the amide moiety [N1—C6( O1)—C7] by 17.60 (8) °. There is an intra­molecular C—H···O hydrogen bond present involving the carbonyl O atom (Table 1).

In the crystal, molecules are linked via N—H···N hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2.

Related literature top

For related biologically active pyridine derivatives, see: de Candia et al. (2013); Thorat et al. (2013); Abdel-Megeed et al. (2012). For pyridine ring-system modifications, see: El-Hiti et al. (2015); Smith et al. (2012, 2013); Londregan et al. (2009); Joule & Mills (2000); Turner (1983). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Seidler et al. (2011); Koch et al. (2008); Mazik et al. (2004).

Structure description top

Pyridine derivatives are inter­esting compounds (Joule & Mills, 2000) since they show a range of biological activities (Thorat et al., 2013) such as anti­coagulant (de Candia et al., 2013) and anti­microbial (Abdel-Megeed et al., 2012) properties. Various simple and efficient processes have been developed for modification of the pyridine ring system (El-Hiti et al., 2015; Smith et al., 2013, Smith et al., 2012, Londregan et al., 2009; Turner, 1983). The X-ray crystal structures of related compounds have been reported (El-Hiti et al., 2014; Seidler et al., 2011; Koch et al., 2008; Mazik et al., 2004).

The title compound was obtained in 73% yield from the reaction of 3-amino­pyridine with pivaloyl chloride in the presence of tri­ethyl­amine in di­chloro­methane at 273 K for 15 min and then at room temperature for 2 h (Turner, 1983). Crystallization from a mixture of ethyl acetate and hexane gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were identical with those reported previously (Turner, 1983)

The molecular structure of the title compound is illustrated in Fig. 1. The pyridine ring is inclined to the mean plane of the amide moiety [N1—C6( O1)—C7] by 17.60 (8) °. There is an intra­molecular C—H···O hydrogen bond present involving the carbonyl O atom (Table 1).

In the crystal, molecules are linked via N—H···N hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2.

For related biologically active pyridine derivatives, see: de Candia et al. (2013); Thorat et al. (2013); Abdel-Megeed et al. (2012). For pyridine ring-system modifications, see: El-Hiti et al. (2015); Smith et al. (2012, 2013); Londregan et al. (2009); Joule & Mills (2000); Turner (1983). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Seidler et al. (2011); Koch et al. (2008); Mazik et al. (2004).

Refinement details top

The N- and C-bound H atoms were included in calculated positions and refined as riding: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The t-butyl group is disordered over two sites and was refined with bond length constraints to give a refined occupancy ratio of 0.758 (12):0.242 (12).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered t-butyl group is shown.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis, with the N—H···N interactions shown as dashed lines (see Table 1 for details). The minor component of the disordered t-butyl group has been omitted for clarity.
2,2-Dimethyl-N-(pyridin-3-yl)propanamide top
Crystal data top
C10H14N2ODx = 1.141 Mg m3
Mr = 178.23Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3061 reflections
a = 11.2453 (3) Åθ = 5.0–73.4°
b = 10.5272 (3) ŵ = 0.60 mm1
c = 17.5339 (6) ÅT = 293 K
V = 2075.69 (11) Å3Plate, colourless
Z = 80.23 × 0.19 × 0.06 mm
F(000) = 768
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2065 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1722 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
ω scansθmax = 73.8°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 148
Tmin = 0.840, Tmax = 1.000k = 1312
7164 measured reflectionsl = 2021
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2387P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
2065 reflectionsΔρmin = 0.16 e Å3
153 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
114 restraintsExtinction coefficient: 0.0016 (4)
Crystal data top
C10H14N2OV = 2075.69 (11) Å3
Mr = 178.23Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.2453 (3) ŵ = 0.60 mm1
b = 10.5272 (3) ÅT = 293 K
c = 17.5339 (6) Å0.23 × 0.19 × 0.06 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2065 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1722 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1.000Rint = 0.017
7164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041114 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2065 reflectionsΔρmin = 0.16 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.72804 (10)0.10403 (12)0.27358 (7)0.0490 (3)
C20.61380 (11)0.14128 (14)0.25328 (8)0.0585 (4)
H20.58220.21400.27560.070*
C30.59204 (13)0.02662 (15)0.17123 (8)0.0663 (4)
H30.54520.07220.13710.080*
C40.70473 (13)0.06915 (16)0.18680 (9)0.0702 (4)
H40.73440.14140.16300.084*
C50.77323 (12)0.00301 (14)0.23832 (8)0.0619 (4)
H50.84990.03030.24940.074*
C60.76123 (12)0.24951 (14)0.38234 (8)0.0585 (3)
C70.85629 (13)0.29549 (15)0.43884 (9)0.0671 (4)
C80.9594 (3)0.3605 (4)0.3935 (2)0.0798 (10)0.758 (12)
H8A0.92770.42780.36270.120*0.758 (12)
H8B0.99740.29880.36130.120*0.758 (12)
H8C1.01650.39470.42870.120*0.758 (12)
C90.9077 (5)0.1835 (4)0.4813 (4)0.0838 (11)0.758 (12)
H9A0.96800.21250.51590.126*0.758 (12)
H9B0.94210.12500.44550.126*0.758 (12)
H9C0.84580.14170.50940.126*0.758 (12)
C100.8023 (4)0.3941 (7)0.4916 (4)0.1205 (18)0.758 (12)
H10A0.73650.35740.51860.181*0.758 (12)
H10B0.77510.46530.46210.181*0.758 (12)
H10C0.86130.42220.52740.181*0.758 (12)
C8A0.9208 (16)0.4067 (14)0.4095 (8)0.108 (4)0.242 (12)
H8D0.95340.38730.36020.162*0.242 (12)
H8E0.98410.42810.44390.162*0.242 (12)
H8F0.86720.47720.40520.162*0.242 (12)
C9A0.9385 (16)0.1880 (15)0.4658 (11)0.089 (4)0.242 (12)
H9D0.89200.11370.47660.133*0.242 (12)
H9E0.97960.21420.51110.133*0.242 (12)
H9F0.99530.16900.42650.133*0.242 (12)
C10A0.7832 (11)0.3342 (17)0.5131 (6)0.098 (4)0.242 (12)
H10D0.72110.39240.49930.147*0.242 (12)
H10E0.83550.37390.54910.147*0.242 (12)
H10F0.74880.25950.53550.147*0.242 (12)
N10.79882 (8)0.16796 (11)0.32735 (6)0.0543 (3)
H10.87410.15390.32520.065*
N20.54740 (9)0.07752 (13)0.20320 (7)0.0650 (3)
O10.65818 (9)0.28385 (14)0.38687 (7)0.0885 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (6)0.0624 (7)0.0478 (6)0.0007 (5)0.0006 (5)0.0031 (5)
C20.0400 (6)0.0715 (8)0.0640 (7)0.0064 (6)0.0046 (5)0.0063 (6)
C30.0529 (7)0.0841 (9)0.0617 (8)0.0037 (7)0.0065 (6)0.0111 (7)
C40.0630 (9)0.0778 (9)0.0697 (9)0.0116 (7)0.0067 (7)0.0172 (7)
C50.0450 (7)0.0766 (8)0.0641 (8)0.0130 (6)0.0051 (6)0.0078 (6)
C60.0461 (7)0.0715 (8)0.0579 (7)0.0057 (6)0.0020 (6)0.0039 (6)
C70.0620 (8)0.0739 (8)0.0653 (8)0.0024 (7)0.0092 (6)0.0103 (7)
C80.0716 (17)0.0753 (17)0.0926 (19)0.0182 (13)0.0135 (13)0.0017 (14)
C90.089 (3)0.101 (2)0.062 (2)0.0202 (16)0.0235 (18)0.0146 (16)
C100.098 (2)0.134 (4)0.129 (4)0.002 (3)0.004 (2)0.073 (3)
C8A0.129 (8)0.107 (7)0.087 (6)0.026 (6)0.027 (6)0.000 (6)
C9A0.080 (7)0.116 (7)0.071 (7)0.008 (6)0.023 (5)0.011 (5)
C10A0.102 (6)0.115 (8)0.076 (5)0.013 (6)0.026 (4)0.046 (5)
N10.0341 (5)0.0708 (7)0.0581 (6)0.0041 (4)0.0035 (4)0.0056 (5)
N20.0408 (6)0.0867 (8)0.0676 (7)0.0032 (5)0.0078 (5)0.0079 (6)
O10.0543 (6)0.1273 (10)0.0838 (8)0.0235 (6)0.0048 (5)0.0356 (7)
Geometric parameters (Å, º) top
C1—C51.3820 (19)C8—H8A0.9600
C1—C21.3895 (17)C8—H8B0.9600
C1—N11.4054 (16)C8—H8C0.9600
C2—N21.3339 (18)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—N21.3297 (19)C9—H9C0.9600
C3—C41.372 (2)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.376 (2)C10—H10C0.9600
C4—H40.9300C8A—H8D0.9600
C5—H50.9300C8A—H8E0.9600
C6—O11.2165 (17)C8A—H8F0.9600
C6—N11.3585 (17)C9A—H9D0.9600
C6—C71.5356 (19)C9A—H9E0.9600
C7—C8A1.470 (7)C9A—H9F0.9600
C7—C91.510 (4)C10A—H10D0.9600
C7—C101.517 (4)C10A—H10E0.9600
C7—C9A1.536 (8)C10A—H10F0.9600
C7—C81.563 (3)N1—H10.8600
C7—C10A1.593 (7)
C5—C1—C2117.09 (12)H8B—C8—H8C109.5
C5—C1—N1118.83 (10)C7—C9—H9A109.5
C2—C1—N1124.07 (11)C7—C9—H9B109.5
N2—C2—C1122.97 (12)H9A—C9—H9B109.5
N2—C2—H2118.5C7—C9—H9C109.5
C1—C2—H2118.5H9A—C9—H9C109.5
N2—C3—C4122.28 (13)H9B—C9—H9C109.5
N2—C3—H3118.9C7—C10—H10A109.5
C4—C3—H3118.9C7—C10—H10B109.5
C3—C4—C5118.86 (14)H10A—C10—H10B109.5
C3—C4—H4120.6C7—C10—H10C109.5
C5—C4—H4120.6H10A—C10—H10C109.5
C4—C5—C1120.02 (12)H10B—C10—H10C109.5
C4—C5—H5120.0C7—C8A—H8D109.5
C1—C5—H5120.0C7—C8A—H8E109.5
O1—C6—N1122.04 (13)H8D—C8A—H8E109.5
O1—C6—C7121.83 (13)C7—C8A—H8F109.5
N1—C6—C7116.13 (11)H8D—C8A—H8F109.5
C9—C7—C10112.8 (3)H8E—C8A—H8F109.5
C8A—C7—C6111.6 (5)C7—C9A—H9D109.5
C9—C7—C6109.8 (3)C7—C9A—H9E109.5
C10—C7—C6109.3 (2)H9D—C9A—H9E109.5
C8A—C7—C9A113.4 (7)C7—C9A—H9F109.5
C6—C7—C9A112.7 (9)H9D—C9A—H9F109.5
C9—C7—C8107.9 (2)H9E—C9A—H9F109.5
C10—C7—C8107.9 (2)C7—C10A—H10D109.5
C6—C7—C8109.05 (17)C7—C10A—H10E109.5
C8A—C7—C10A109.7 (5)H10D—C10A—H10E109.5
C6—C7—C10A104.4 (5)C7—C10A—H10F109.5
C9A—C7—C10A104.3 (6)H10D—C10A—H10F109.5
C7—C8—H8A109.5H10E—C10A—H10F109.5
C7—C8—H8B109.5C6—N1—C1127.05 (10)
H8A—C8—H8B109.5C6—N1—H1116.5
C7—C8—H8C109.5C1—N1—H1116.5
H8A—C8—H8C109.5C3—N2—C2118.76 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.252.8263 (18)119
N1—H1···N2i0.862.173.0012 (15)164
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.252.8263 (18)119
N1—H1···N2i0.862.173.0012 (15)164
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research, and to Cardiff University for continued support.

References

First citationAbdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252–2258.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCandia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696–8711.  Web of Science PubMed Google Scholar
First citationEl-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Smith, K. & Hegazy, A. S. (2015). Heterocycles, 91, 479–504.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers.  Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLondregan, A. T., Storer, G., Wooten, C., Yang, X. & Warmus, J. (2009). Tetrahedron Lett. 50, 1986–1988.  CrossRef CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A., Alshammari, M. B. & Fekri, A. (2013). Synthesis, 45, 3426–3434.  Web of Science CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A., Fekri, A. & Alshammari, M. B. (2012). Heterocycles, 86, 391–410.  Web of Science CrossRef CAS Google Scholar
First citationThorat, S. A., Kang, D. W., Ryu, H. C., Kim, H. S., Kim, H. S., Ann, J., Ha, T., Kim, S.-E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589–602.  CrossRef CAS PubMed Google Scholar
First citationTurner, J. A. (1983). J. Org. Chem. 48, 3401–3408.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o246-o247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds