research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 418-420

Crystal structure of (E)-N-(3,3-di­phenyl­allyl­­idene)-9-ethyl-9H-carbazol-3-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamilnadu, India, and bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: drgtnarayanan@rediffmail.com, smurugavel27@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 March 2015; accepted 22 March 2015; online 28 March 2015)

In the title compound, C29H24N2, the C=N bond of the central imine group adopts an E conformation. The dihedral angles between the mean plane of the essentially planar carbazole ring system [r.m.s. deviation = 0.039 (2) Å] and the two phenyl rings of the 3,3-di­phenyl­allyl­idene unit are 75.9 (1) and 64.6 (1)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular network.

1. Chemical context

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and mol­ecular electronics. It has been reported that carbazole derivatives possess various biological activities, such as anti­tumor (Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]), anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). Carbazole derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronic devices such as colour displays, organic semiconductor lasers and solar cells (Friend et al., 1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121-128.]). These compounds are thermally and photochemically stable, which makes them useful materials for technological applications. For instance, the carbazole ring is easily funtion­alized and covalently linked to other mol­ecules (Díaz et al., 2002[Díaz, J. L., Villacampa, B., López-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]). This enables its use as a convenient building block for the design and synthesis of mol­ecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). Against this background, and in order to obtain detailed information on mol­ecular conformations in the solid state, X-ray studies of the title compound have been carried out.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The C15=N2 bond of the central imine group adopts an E conformation. The carbazole ring system (N1/C1–C12) is essentially planar [maximum deviation = 0.039 (2) Å for atom C9]. The phenyl rings C18–C23 and C24–C29 of the (3,3-di­phenyl­allyl­idene) unit are oriented at dihedral angles of 75.9 (1) and 64.6 (1)°, respectively, to the mean plane of the carbazole ring system. The dihedral angle between the two phenyl rings is 76.1 (1)°. The sum of the bond angles around atom N1 (359.7°) of the pyrrole ring is in accordance with sp2 hybridization. The geometric parameters of the title mol­ecule agree well with those reported for similar structures (Murugavel et al., 2009[Murugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139-o140.]; Archana et al., 2011[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by six inter­molecular C—H⋯π inter­actions, forming a three-dimensional supra­molecular network (Table 1[link] and Fig. 2[link]). Four of these inter­actions involves a benzene H atom of the carbazole ring system and a benzene ring of an adjacent mol­ecule, viz. C7—H7⋯Cg1i, C11—H11⋯Cg3ii, C20—H20⋯Cg4iv, and C29—H29⋯Cg3v. The other two involve a benzene H atom of the carbazole ring system and the pyrrole ring of an adjacent mol­ecule (C8—H8⋯Cg2i), and a methyl­ene H atom of the ethyl group and a benzene ring of an adjacent mol­ecule (C13—H13ACg1iii); see Table 1[link] and Fig. 2[link] for full details.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C3/C4/C9–C12, N1/C1–C4, C18–C23 and C1/C2/C5–C8, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.93 2.92 3.647 (2) 136
C8—H8⋯Cg2i 0.93 2.98 3.777 (2) 145
C11—H11⋯Cg3ii 0.93 2.85 3.551 (2) 133
C13—H13ACg1iii 0.97 3.00 3.749 (2) 135
C20—H20⋯Cg4iv 0.93 2.62 3.498 (2) 157
C29—H29⋯Cg3v 0.93 2.87 3.796 (3) 175
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) x-1, y, z; (v) -x, -y+1, -z.
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound, showing the inter­molecular C—H⋯π inter­actions (see Table 1[link] for details), forming a three-dimensional supra­molecular network. H atoms not involved in these inter­actions have been omitted for clarity.

4. Synthesis and crystallization

A 25 ml round-bottom flask was charged with 9-ethyl-9H-carbazol-3-amine (1 mmol), 3,3-di­phenyl­acryl­aldehyde (1 mmol) and sulfated SnO2-Bi2O3-fly ash catalyst (20 mg) in water (15 ml) and the mixture was refluxed at 363 K for 1h. On completion of the reaction (monitored by TLC with ethyl acetate and hexane as an eluent 20%) the mixture was cooled to ambient temperature. Di­chloro­methane (20 ml) was then added to separate the organic and aqueous layers. The organic layer was filtered, dried on anhydrous Na2SO4 and the solvent removed using a rotary evaporator. The crude product obtained was purified by column chromatography on silica gel (200 mesh) with hexane and ethyl acetate (4:1) as eluent, to afford the title compound in good yield (93%). Red crystals suitable for X-ray diffraction analysis were obtained after recrystallization in CH2Cl2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and constrained to ride on their parent atom with C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C29H24N2
Mr 400.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 13.6502 (17), 8.7616 (13), 18.224 (2)
β (°) 92.234 (11)
V3) 2177.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.23 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.984, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 9709, 4982, 3066
Rint 0.047
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.150, 1.03
No. of reflections 4982
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia (2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia (2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-N-(3,3-Diphenylallylidene)-9-ethyl-9H-carbazol-3-amine top
Crystal data top
C29H24N2F(000) = 848
Mr = 400.50Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5927 reflections
a = 13.6502 (17) Åθ = 2.8–29.3°
b = 8.7616 (13) ŵ = 0.07 mm1
c = 18.224 (2) ÅT = 293 K
β = 92.234 (11)°Block, red
V = 2177.9 (5) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4982 independent reflections
Radiation source: fine-focus sealed tube3066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1518
Tmin = 0.984, Tmax = 0.989k = 1111
9709 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
4982 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.5899 (2)1.3222 (3)0.14013 (13)0.0822 (7)
H14A0.61921.41320.12150.123*
H14B0.61441.30410.18940.123*
H14C0.52001.33460.13990.123*
N20.19996 (10)0.8129 (2)0.10030 (8)0.0516 (4)
C100.29431 (12)0.8778 (2)0.09957 (9)0.0454 (4)
C90.36711 (12)0.8093 (2)0.14234 (9)0.0449 (4)
H90.35380.72260.16960.054*
C40.47794 (13)1.0054 (2)0.10553 (9)0.0462 (4)
C30.46026 (12)0.8713 (2)0.14420 (9)0.0427 (4)
N10.57338 (11)1.04985 (18)0.11800 (8)0.0530 (4)
C120.40455 (14)1.0746 (2)0.06391 (10)0.0530 (5)
H120.41661.16360.03800.064*
C110.31382 (14)1.0100 (2)0.06153 (10)0.0518 (5)
H110.26361.05600.03360.062*
C190.16510 (13)0.7140 (2)0.04772 (10)0.0533 (5)
H190.13690.76910.08670.064*
C150.14631 (13)0.8153 (2)0.04164 (10)0.0529 (5)
H150.17140.85480.00110.063*
C20.55154 (13)0.8316 (2)0.18155 (9)0.0455 (4)
C180.11167 (13)0.6882 (2)0.01430 (10)0.0471 (4)
C10.61869 (13)0.9460 (2)0.16451 (10)0.0510 (5)
C160.04842 (13)0.7586 (3)0.04026 (10)0.0553 (5)
H160.02300.73190.08510.066*
C230.15719 (14)0.6089 (2)0.07131 (11)0.0588 (5)
H230.12350.59110.11390.071*
C200.25842 (14)0.6598 (3)0.05254 (12)0.0614 (6)
H200.29300.67720.09470.074*
C240.02709 (12)0.7604 (2)0.09425 (9)0.0477 (5)
C130.61468 (15)1.1902 (2)0.09293 (11)0.0614 (5)
H13A0.59061.20990.04300.074*
H13B0.68541.18000.09230.074*
C80.58185 (14)0.7119 (2)0.22603 (10)0.0550 (5)
H80.53850.63430.23740.066*
C290.10181 (14)0.6715 (3)0.11811 (11)0.0592 (5)
H290.13140.60110.08620.071*
C280.13409 (15)0.6844 (3)0.18854 (13)0.0714 (7)
H280.18460.62200.20370.086*
C50.71384 (14)0.9426 (3)0.19254 (11)0.0666 (6)
H50.75801.01940.18170.080*
C220.25053 (16)0.5561 (3)0.06653 (13)0.0688 (6)
H220.28000.50340.10580.083*
C250.01406 (15)0.8636 (3)0.14288 (11)0.0639 (6)
H250.06550.92490.12840.077*
C210.30082 (16)0.5802 (3)0.00460 (13)0.0675 (6)
H210.36410.54230.00120.081*
C270.09292 (18)0.7869 (3)0.23570 (12)0.0767 (7)
H270.11450.79520.28330.092*
C60.74105 (16)0.8237 (3)0.23656 (12)0.0746 (7)
H60.80500.81960.25600.089*
C260.01946 (18)0.8779 (3)0.21270 (12)0.0784 (7)
H260.00830.95030.24450.094*
C70.67657 (16)0.7091 (3)0.25318 (11)0.0699 (6)
H70.69770.62890.28320.084*
C170.00988 (13)0.7403 (2)0.01930 (9)0.0478 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.116 (2)0.0536 (15)0.0788 (15)0.0230 (14)0.0288 (14)0.0040 (12)
N20.0456 (9)0.0658 (12)0.0433 (8)0.0018 (8)0.0019 (7)0.0031 (8)
C100.0456 (10)0.0533 (12)0.0372 (9)0.0019 (8)0.0004 (7)0.0053 (8)
C90.0533 (11)0.0435 (11)0.0377 (9)0.0022 (8)0.0017 (8)0.0005 (8)
C40.0522 (11)0.0419 (11)0.0444 (9)0.0002 (8)0.0019 (8)0.0038 (8)
C30.0499 (10)0.0401 (10)0.0380 (9)0.0004 (8)0.0001 (7)0.0022 (8)
N10.0532 (9)0.0478 (10)0.0578 (9)0.0083 (8)0.0017 (7)0.0004 (8)
C120.0614 (12)0.0441 (12)0.0535 (11)0.0019 (9)0.0023 (9)0.0054 (9)
C110.0568 (11)0.0526 (12)0.0455 (10)0.0101 (9)0.0034 (8)0.0013 (9)
C190.0526 (11)0.0567 (13)0.0504 (10)0.0044 (9)0.0021 (8)0.0045 (9)
C150.0484 (10)0.0683 (14)0.0418 (10)0.0015 (9)0.0006 (8)0.0023 (9)
C20.0482 (10)0.0488 (11)0.0393 (9)0.0001 (8)0.0002 (7)0.0041 (8)
C180.0471 (10)0.0461 (11)0.0474 (10)0.0048 (8)0.0057 (8)0.0054 (8)
C10.0532 (11)0.0524 (12)0.0472 (10)0.0032 (9)0.0009 (8)0.0064 (9)
C160.0472 (10)0.0735 (15)0.0451 (10)0.0008 (10)0.0007 (8)0.0036 (10)
C230.0559 (12)0.0603 (14)0.0596 (12)0.0007 (10)0.0046 (9)0.0024 (10)
C200.0531 (12)0.0642 (15)0.0671 (13)0.0050 (10)0.0057 (10)0.0154 (11)
C240.0446 (10)0.0522 (12)0.0459 (10)0.0039 (9)0.0039 (8)0.0050 (9)
C130.0704 (13)0.0566 (14)0.0584 (12)0.0141 (11)0.0164 (10)0.0004 (10)
C80.0571 (11)0.0621 (14)0.0456 (10)0.0048 (10)0.0005 (8)0.0032 (9)
C290.0545 (12)0.0603 (14)0.0626 (12)0.0056 (10)0.0008 (9)0.0078 (10)
C280.0530 (12)0.0880 (19)0.0741 (15)0.0027 (12)0.0132 (11)0.0268 (14)
C50.0539 (12)0.0804 (17)0.0649 (13)0.0121 (11)0.0057 (10)0.0085 (12)
C220.0697 (14)0.0616 (15)0.0738 (14)0.0076 (11)0.0155 (12)0.0035 (12)
C250.0635 (13)0.0712 (15)0.0568 (12)0.0143 (11)0.0012 (10)0.0049 (11)
C210.0553 (12)0.0585 (15)0.0879 (16)0.0069 (10)0.0070 (12)0.0194 (13)
C270.0734 (15)0.108 (2)0.0490 (12)0.0204 (15)0.0074 (11)0.0124 (13)
C60.0600 (13)0.101 (2)0.0610 (13)0.0021 (13)0.0172 (11)0.0034 (14)
C260.0879 (17)0.092 (2)0.0542 (13)0.0018 (15)0.0057 (12)0.0154 (13)
C70.0667 (14)0.0886 (18)0.0534 (12)0.0103 (13)0.0094 (10)0.0095 (12)
C170.0488 (10)0.0488 (12)0.0454 (10)0.0066 (9)0.0037 (8)0.0012 (9)
Geometric parameters (Å, º) top
C14—C131.488 (3)C18—C231.378 (3)
N2—C151.272 (2)C18—C171.469 (2)
N2—C101.408 (2)C1—C51.377 (3)
C10—C91.376 (2)C16—C171.330 (2)
C10—C111.381 (3)C23—C221.361 (3)
C9—C31.382 (2)C20—C211.364 (3)
C4—N11.370 (2)C24—C291.367 (3)
C4—C121.374 (2)C24—C251.371 (3)
C4—C31.396 (3)C24—C171.485 (2)
C3—C21.439 (2)C8—C71.367 (3)
N1—C11.374 (2)C29—C281.378 (3)
N1—C131.435 (2)C28—C271.351 (3)
C12—C111.361 (3)C5—C61.358 (3)
C19—C201.365 (3)C22—C211.360 (3)
C19—C181.387 (3)C25—C261.375 (3)
C15—C161.425 (2)C27—C261.360 (3)
C2—C81.379 (3)C6—C71.377 (3)
C2—C11.401 (3)
C15—N2—C10118.81 (16)N1—C1—C5129.66 (19)
C9—C10—C11120.03 (17)N1—C1—C2109.14 (15)
C9—C10—N2117.33 (17)C5—C1—C2121.20 (19)
C11—C10—N2122.53 (16)C17—C16—C15125.96 (18)
C10—C9—C3119.10 (17)C22—C23—C18121.2 (2)
N1—C4—C12129.36 (18)C21—C20—C19119.9 (2)
N1—C4—C3109.73 (15)C29—C24—C25117.50 (18)
C12—C4—C3120.90 (17)C29—C24—C17120.63 (17)
C9—C3—C4119.69 (16)C25—C24—C17121.82 (17)
C9—C3—C2134.08 (17)N1—C13—C14112.39 (17)
C4—C3—C2106.19 (16)C7—C8—C2119.0 (2)
C4—N1—C1108.43 (15)C24—C29—C28121.3 (2)
C4—N1—C13125.00 (17)C27—C28—C29120.4 (2)
C1—N1—C13126.23 (16)C6—C5—C1117.9 (2)
C11—C12—C4118.49 (18)C21—C22—C23120.3 (2)
C12—C11—C10121.74 (17)C24—C25—C26121.0 (2)
C20—C19—C18121.14 (19)C22—C21—C20120.0 (2)
N2—C15—C16121.17 (18)C28—C27—C26119.2 (2)
C8—C2—C1119.35 (17)C5—C6—C7121.8 (2)
C8—C2—C3134.14 (18)C27—C26—C25120.5 (2)
C1—C2—C3106.50 (16)C8—C7—C6120.7 (2)
C23—C18—C19117.43 (18)C16—C17—C18121.61 (17)
C23—C18—C17120.66 (17)C16—C17—C24121.49 (17)
C19—C18—C17121.91 (16)C18—C17—C24116.75 (15)
C15—N2—C10—C9145.48 (18)N2—C15—C16—C17172.1 (2)
C15—N2—C10—C1138.4 (3)C19—C18—C23—C220.9 (3)
C11—C10—C9—C32.6 (3)C17—C18—C23—C22178.05 (19)
N2—C10—C9—C3178.80 (15)C18—C19—C20—C210.7 (3)
C10—C9—C3—C42.9 (2)C4—N1—C13—C1479.5 (2)
C10—C9—C3—C2179.98 (18)C1—N1—C13—C1493.1 (2)
N1—C4—C3—C9177.03 (15)C1—C2—C8—C70.8 (3)
C12—C4—C3—C91.8 (3)C3—C2—C8—C7180.0 (2)
N1—C4—C3—C20.8 (2)C25—C24—C29—C280.5 (3)
C12—C4—C3—C2179.66 (16)C17—C24—C29—C28177.20 (19)
C12—C4—N1—C1178.78 (19)C24—C29—C28—C270.7 (3)
C3—C4—N1—C10.1 (2)N1—C1—C5—C6178.4 (2)
C12—C4—N1—C135.1 (3)C2—C1—C5—C60.8 (3)
C3—C4—N1—C13173.63 (17)C18—C23—C22—C210.4 (3)
N1—C4—C12—C11178.20 (17)C29—C24—C25—C260.6 (3)
C3—C4—C12—C110.4 (3)C17—C24—C25—C26178.3 (2)
C4—C12—C11—C100.1 (3)C23—C22—C21—C201.2 (3)
C9—C10—C11—C121.2 (3)C19—C20—C21—C220.6 (3)
N2—C10—C11—C12177.20 (17)C29—C28—C27—C260.3 (3)
C10—N2—C15—C16176.66 (18)C1—C5—C6—C70.0 (3)
C9—C3—C2—C84.6 (3)C28—C27—C26—C251.4 (4)
C4—C3—C2—C8178.0 (2)C24—C25—C26—C271.6 (4)
C9—C3—C2—C1176.15 (19)C2—C8—C7—C60.0 (3)
C4—C3—C2—C11.23 (19)C5—C6—C7—C80.5 (4)
C20—C19—C18—C231.4 (3)C15—C16—C17—C18176.78 (19)
C20—C19—C18—C17177.52 (18)C15—C16—C17—C247.9 (3)
C4—N1—C1—C5179.9 (2)C23—C18—C17—C16152.0 (2)
C13—N1—C1—C56.3 (3)C19—C18—C17—C1626.9 (3)
C4—N1—C1—C20.8 (2)C23—C18—C17—C2423.6 (3)
C13—N1—C1—C2174.34 (17)C19—C18—C17—C24157.54 (18)
C8—C2—C1—N1178.13 (16)C29—C24—C17—C1659.9 (3)
C3—C2—C1—N11.2 (2)C25—C24—C17—C16122.5 (2)
C8—C2—C1—C51.3 (3)C29—C24—C17—C18115.7 (2)
C3—C2—C1—C5179.36 (17)C25—C24—C17—C1861.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C3/C4/C9–C12, N1/C1–C4, C18–C23 and C1/C2/C5–C8, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.932.923.647 (2)136
C8—H8···Cg2i0.932.983.777 (2)145
C11—H11···Cg3ii0.932.853.551 (2)133
C13—H13A···Cg1iii0.973.003.749 (2)135
C20—H20···Cg4iv0.932.623.498 (2)157
C29—H29···Cg3v0.932.873.796 (3)175
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x1, y, z; (v) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge Professor M. Periasamy, School of Chemistry, University of Hyderabad, for providing laboratory facilities and the UGC Networking Resource Centre, School of Chemistry, University of Hyderabad, for providing characterization facilities.

References

First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationDíaz, J. L., Villacampa, B., López-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139–o140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 418-420
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds