research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 427-430

Crystal structure of (E)-2-[(2-hy­dr­oxy-4-meth­­oxy­phen­yl)(phen­yl)methyl­­idene]-N-phenyl­hydrazine-1-carboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 March 2015; accepted 22 March 2015; online 28 March 2015)

The title compound, C21H19N3O3, has an E conformation about the azomethine double bond. The central moiety of the hydrazinecarboxamide moiety [–N—N—C(=O)—N–] has an almost coplanar arrangement [maximum deviation for the C atom = 0.010 (2) Å]. This central moiety is flanked by three aromatic rings and its mean plane makes dihedral angles of 24.7 (1), 72.91 (12) and 34.26 (11) Å, respectively, with the phenolic ring, the phenyl ring attached to the same C atom as the phenolic ring, and the phenyl­hydrazine ring. The adjacent phenolic and phenyl rings are twisted away from each other to reduce steric hindrance and make a dihedral angle of 80.59 (12)°. The phenolic and phenyl­hydrazine rings are inclined to one another by 28.89 (11)°. The rigidity of the mol­ecule is increased by an intra­molecular O—H⋯N hydrogen bond involving the phenolic hydrogen and the azomethine N atom. In the crystal, the carbonyl O atom forms bifurcated hydrogen bonds with the two NH atoms of the hydrazinic group, leading to the formation of chains propagating along [001]. Within the chains there are also C—H⋯O hydrogen bonds present. The chains are linked via C=O⋯π [3.4316 (18) Å] and parallel slipped ππ inter­actions, involving inversion-related benzene rings [centroid–centroid distance = 3.8850 (14) Å; inter-planar distance = 3.3895 (10) Å; slippage = 1.899 Å], forming sheets lying parallel to (100).

1. Chemical context

Semicarbazones are urea derivatives exhibiting a wide spectrum of biological activities (Beraldo & Gambino, 2004[Beraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). They have been found to be associated with anti­tumoral (Afrasiabi et al., 2005[Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526-1531.]), anti­microbial (Siji et al., 2010[Siji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta, 76A, 22-28.]), anti­hypertensive, hypolipidemic, anti­neoplastic, hypnotic and anti­convulsant properties. They can function as excellent ligands to various metal ions (Kala et al., 2007[Kala, U. L., Suma, S., Kurup, M. R. P., Krishnan, S. & John, R. P. (2007). Polyhedron, 26, 1427-1435.]; Aiswarya et al., 2013[Aiswarya, N., Sithambaresan, M., Kurup, M. R. P. & Ng, S. W. (2013). Acta Cryst. E69, m588-m589.]; Kurup et al., 2011[Kurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70-78.]) and can coordinate to metal ions either in the neutral (Siji et al., 2011[Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2011). Transition Met. Chem., 36, 317-424.]) or in the anionic forms (Reena et al., 2008[Reena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 1825-1831.]). Single crystals of aceto­phenone semicarbazones are potential organic non-linear optical (NLO) materials and they have a wide transparency window in the entire visible region, making them ideal candidates for NLO device applications (Vijayan et al., 2001[Vijayan, N., Ramesh Babu, R., Gopalakrishnan, R., Dhanuskodi, S. & Ramasamy, P. (2001). J. Cryst. Growth, 236, 863-867.]). Semicarbazones have been proposed as analytical reagents that can be used in selective and sensitive determination of metal ions (Garg & Jain, 1988[Garg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144-169.]). The crystal structure of the dimethylformamide solvate of the title compound has been reported (Annie et al., 2012[Annie, C. F., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1519-o1520.]).

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the conform­ation about the C7=N1 bond is E, and the central hydrazinecarboxamide moiety [–N1—N2—C14(=O3)—N3–] is almost planar [the maximum deviation is 0.010 (2) Å for atom C14]. This central moiety is flanked by three aromatic rings (C1–C6, C8–C13 and C15–C20) which are inclined to its mean plane by 24.70 (10), 72.91 (12) and 34.26 (11) °, respectively. Rings C1–C6 and C8–C13, attached at the same C atom (C7), are twisted away from each other and make a dihedral angle of 80.59 (12)°. They are inclined to the phenyl­hydrazine ring (C15–C20) by 28.89 (11) and 52.42 (12)°, respectively. In the crystal structure of the dimethylformamide solvate of the title compound (Annie et al., 2012[Annie, C. F., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1519-o1520.]), the two rings attached at the same C atom (C7) are inclined to one another by 88.47 (10)°, while they are inclined to the phenyl­hydrazine ring by 14.42 (10)° for the phenolic ring, and by 82.35 (11)° for the phenyl ring. There is an intra­molecular O—H⋯N hydrogen bond (Fig. 2[link]) involving the phenolic hydrogen and the azomethine atom N1 (Fig. 2[link] and Table 1[link]). This hydrogen bond is also present in the structure of the dimethylformamide solvate of the title compound mentioned above.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N1 0.89 (1) 1.76 (2) 2.563 (2) 149 (3)
N2—H2N⋯O3i 0.87 (1) 2.13 (1) 2.9301 (19) 152 (2)
N3—H3N⋯O3i 0.88 (1) 2.09 (1) 2.935 (2) 161 (2)
C12—H12⋯O2ii 0.93 2.44 3.252 (3) 146
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the hydrogen-bonding inter­actions (dashed lines) in the title compound, forming chains propagating along [001] (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, the carbonyl O atom (O3) acts as the acceptor in bifurcated hydrogen bonds with the NH atoms of atoms N2 and N3 of the hydrazinic group, leading to the formation of chains propagating along [001]; Table 1[link] and Fig. 2[link]. Within the chains there are also C—H⋯O hydrogen bonds present (Table 1[link] and Fig. 2[link]). The chains are linked via C14=O3⋯π inter­actions [distance O3⋯Cgi = 3.4316 (18) Å; angle C14=O3⋯Cg = 95.3 (1)°; Cg is the centroid of the C8–C13 ring; symmetry code: (i) x, −y + [{3\over 2}], z + [{1\over 2}]], as shown in Fig. 3[link]. There are also parallel slipped ππ inter­actions present (Fig. 4[link]), involving inversion-related benzene rings (C15–C20) with a centroid–centroid distance of 3.8850 (14) Å [inter-planar distance = 3.3895 (10) Å; slippage = 1.899 Å]. The result of these inter­actions leads to the formation of sheets lying parallel to (100), as shown in Fig. 5[link].

[Figure 3]
Figure 3
C=O⋯π inter­action in the crystal structure of the title compound.
[Figure 4]
Figure 4
ππ inter­action in the crystal structure of the title compound.
[Figure 5]
Figure 5
A view along the a axis of the formation of the sheets lying parallel to (100) in the crystal structure of the title compound.

4. Synthesis and crystallization

To a warm methano­lic solution (25 ml) of N4-phenyl­semi­carbazide (0.302 g, 2 mmol), a methano­lic solution (25 ml) of 2-hy­droxy-4-meth­oxy­benzo­phenone (0.4566 g, 2 mmol) was added and the resulting solution was boiled under reflux for 2 h, after adding three drops of conc. HCl. On slow evaporation at room temperature, colourless crystals separated out. They were filtered off and washed with methanol and ether. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a solution in methanol (yield: 0.1735 g, 76%; m.p.: 498 K). FT–IR (KBr, cm−1) νmax: 3316 (s, OH), 3249 (m, NH), 3145 (m, NH), 1662 (s, C=O), 1631 (m, C=N), 1059 (m, N–N). 1H NMR (DMSO-d6, δ, p.p.m.): 12.94 (s, 1H, OH), 9.10 (s, 1H, NH), 9.03 (s, 1H, NH), 3.90 (s, 3H, OMe), 6.33–7.672 (m, 13H, Ar-H). ESI mass spectrum, m/z: 362.3 (M+1). Analysis calculated for C21H19N3O3: C, 69.79, H, 5.30, N, 11.63%. Found: C, 69.68, H, 5.72, N, 11.93%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and NH H atoms were located in a difference Fourier map and refined with distances restraints of 0.88 (1) Å. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C21H19N3O3
Mr 361.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.965 (2), 9.9788 (9), 9.3366 (7)
β (°) 90.340 (5)
V3) 1860.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.24 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.955, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 18641, 4268, 2092
Rint 0.057
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.00
No. of reflections 4240
No. of parameters 257
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.19
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(E)-2-[(2-Hydroxy-4-methoxyphenyl)(phenyl)methylidene]-N-phenylhydrazine-1-carboxamide top
Crystal data top
C21H19N3O3F(000) = 760.0
Mr = 361.39Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2338 reflections
a = 19.965 (2) Åθ = 2.9–22.7°
b = 9.9788 (9) ŵ = 0.09 mm1
c = 9.3366 (7) ÅT = 296 K
β = 90.340 (5)°Block, colourless
V = 1860.1 (3) Å30.28 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4268 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and φ scanθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2525
Tmin = 0.955, Tmax = 0.961k = 1212
18641 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0804P]
where P = (Fo2 + 2Fc2)/3
4240 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.17 e Å3
3 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24470 (9)0.62277 (18)0.17814 (16)0.0444 (4)
N20.19511 (9)0.68714 (18)0.10330 (17)0.0469 (5)
O30.14953 (7)0.76718 (14)0.30843 (12)0.0480 (4)
O20.32524 (9)0.62214 (17)0.39293 (14)0.0621 (5)
C140.14865 (10)0.7582 (2)0.17789 (19)0.0394 (5)
N30.10153 (9)0.81374 (18)0.09207 (17)0.0491 (5)
O10.49774 (9)0.31233 (18)0.41036 (17)0.0779 (6)
C70.27941 (10)0.5321 (2)0.11323 (19)0.0415 (5)
C20.40967 (11)0.4616 (2)0.3955 (2)0.0522 (6)
H20.42350.49490.48380.063*
C60.33388 (10)0.4695 (2)0.19314 (19)0.0411 (5)
C10.35550 (11)0.5171 (2)0.32703 (19)0.0436 (5)
C50.36938 (12)0.3632 (2)0.1362 (2)0.0574 (6)
H50.35620.32930.04760.069*
C40.42306 (13)0.3056 (2)0.2043 (2)0.0632 (7)
H40.44520.23320.16350.076*
C150.03853 (11)0.8599 (2)0.1368 (2)0.0435 (5)
C30.44366 (12)0.3566 (2)0.3338 (2)0.0540 (6)
C80.26680 (11)0.4937 (2)0.03890 (19)0.0434 (5)
C200.01559 (12)0.8337 (2)0.0487 (2)0.0545 (6)
H200.00970.78610.03590.065*
C130.30627 (12)0.5462 (2)0.1443 (2)0.0596 (6)
H130.34130.60350.12040.072*
C160.02980 (13)0.9330 (2)0.2607 (2)0.0580 (6)
H160.06630.95340.31920.070*
C90.21564 (14)0.4095 (3)0.0764 (2)0.0700 (8)
H90.18830.37340.00590.084*
C170.03359 (15)0.9754 (3)0.2968 (3)0.0700 (8)
H170.03981.02370.38090.084*
C190.07808 (14)0.8781 (2)0.0864 (3)0.0682 (7)
H190.11440.86080.02650.082*
C110.24422 (16)0.4294 (3)0.3212 (3)0.0796 (9)
H110.23720.40640.41660.096*
C100.20429 (16)0.3776 (3)0.2181 (3)0.0865 (9)
H100.16930.32050.24290.104*
C120.29420 (15)0.5144 (3)0.2855 (2)0.0732 (8)
H120.32070.55160.35680.088*
C210.53543 (18)0.2044 (3)0.3538 (4)0.1201 (14)
H21A0.50740.12650.34590.180*
H21B0.57260.18540.41640.180*
H21C0.55180.22830.26080.180*
C180.08757 (14)0.9475 (3)0.2108 (3)0.0732 (8)
H180.13030.97540.23680.088*
H2N0.1922 (10)0.6792 (19)0.0104 (10)0.050 (6)*
H3N0.1063 (11)0.795 (2)0.0004 (11)0.058 (7)*
H2O0.2911 (10)0.647 (3)0.337 (3)0.107 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0438 (11)0.0557 (11)0.0336 (9)0.0068 (9)0.0022 (8)0.0030 (8)
N20.0493 (12)0.0655 (12)0.0257 (9)0.0148 (10)0.0033 (8)0.0010 (8)
O30.0552 (10)0.0646 (9)0.0241 (7)0.0057 (8)0.0020 (6)0.0009 (6)
O20.0721 (12)0.0777 (11)0.0363 (8)0.0328 (10)0.0091 (8)0.0112 (8)
C140.0411 (13)0.0493 (12)0.0277 (10)0.0010 (10)0.0007 (9)0.0003 (9)
N30.0490 (12)0.0733 (13)0.0249 (9)0.0157 (10)0.0021 (8)0.0011 (8)
O10.0732 (13)0.0986 (14)0.0617 (10)0.0413 (11)0.0122 (9)0.0005 (9)
C70.0430 (13)0.0478 (12)0.0337 (10)0.0016 (10)0.0007 (9)0.0023 (9)
C20.0576 (15)0.0664 (15)0.0326 (11)0.0137 (13)0.0040 (10)0.0012 (10)
C60.0449 (13)0.0450 (12)0.0335 (10)0.0024 (10)0.0007 (9)0.0005 (9)
C10.0487 (14)0.0509 (12)0.0314 (10)0.0094 (11)0.0062 (9)0.0031 (9)
C50.0663 (17)0.0582 (14)0.0476 (12)0.0123 (13)0.0096 (12)0.0118 (11)
C40.0706 (18)0.0619 (16)0.0571 (14)0.0247 (14)0.0020 (13)0.0077 (12)
C150.0489 (14)0.0469 (12)0.0347 (10)0.0093 (11)0.0040 (10)0.0075 (9)
C30.0530 (15)0.0617 (14)0.0473 (13)0.0181 (12)0.0004 (11)0.0072 (11)
C80.0457 (13)0.0489 (12)0.0355 (11)0.0019 (11)0.0007 (10)0.0007 (9)
C200.0558 (16)0.0542 (14)0.0534 (13)0.0072 (12)0.0064 (12)0.0015 (10)
C130.0611 (17)0.0745 (16)0.0432 (12)0.0076 (14)0.0038 (11)0.0028 (11)
C160.0703 (18)0.0616 (15)0.0421 (12)0.0153 (13)0.0028 (11)0.0033 (11)
C90.078 (2)0.0788 (18)0.0527 (14)0.0260 (16)0.0001 (13)0.0057 (13)
C170.079 (2)0.0709 (17)0.0598 (15)0.0280 (16)0.0135 (15)0.0021 (13)
C190.0517 (17)0.0654 (16)0.0873 (19)0.0040 (14)0.0091 (14)0.0015 (15)
C110.094 (2)0.103 (2)0.0423 (14)0.0101 (19)0.0110 (15)0.0219 (14)
C100.095 (2)0.099 (2)0.0659 (18)0.0282 (19)0.0122 (17)0.0209 (16)
C120.083 (2)0.098 (2)0.0383 (13)0.0036 (18)0.0053 (13)0.0006 (13)
C210.116 (3)0.138 (3)0.106 (3)0.086 (3)0.024 (2)0.019 (2)
C180.0589 (18)0.0712 (18)0.090 (2)0.0184 (15)0.0185 (16)0.0137 (16)
Geometric parameters (Å, º) top
N1—C71.293 (2)C15—C161.379 (3)
N1—N21.369 (2)C8—C91.367 (3)
N2—C141.362 (3)C8—C131.368 (3)
N2—H2N0.873 (9)C20—C191.372 (3)
O3—C141.222 (2)C20—H200.9300
O2—C11.359 (2)C13—C121.376 (3)
O2—H2O0.890 (10)C13—H130.9300
C14—N31.351 (2)C16—C171.378 (3)
N3—C151.405 (3)C16—H160.9300
N3—H3N0.881 (9)C9—C101.377 (3)
O1—C31.364 (3)C9—H90.9300
O1—C211.417 (3)C17—C181.369 (3)
C7—C61.456 (3)C17—H170.9300
C7—C81.491 (3)C19—C181.367 (3)
C2—C11.370 (3)C19—H190.9300
C2—C31.376 (3)C11—C121.350 (4)
C2—H20.9300C11—C101.357 (4)
C6—C51.384 (3)C11—H110.9300
C6—C11.403 (3)C10—H100.9300
C5—C41.369 (3)C12—H120.9300
C5—H50.9300C21—H21A0.9600
C4—C31.373 (3)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C15—C201.379 (3)C18—H180.9300
C7—N1—N2118.52 (16)C13—C8—C7119.48 (19)
C14—N2—N1118.42 (15)C19—C20—C15119.8 (2)
C14—N2—H2N120.9 (13)C19—C20—H20120.1
N1—N2—H2N120.6 (13)C15—C20—H20120.1
C1—O2—H2O106.6 (19)C8—C13—C12120.1 (2)
O3—C14—N3124.56 (19)C8—C13—H13119.9
O3—C14—N2122.83 (18)C12—C13—H13119.9
N3—C14—N2112.59 (16)C17—C16—C15119.2 (2)
C14—N3—C15125.39 (17)C17—C16—H16120.4
C14—N3—H3N114.4 (14)C15—C16—H16120.4
C15—N3—H3N117.3 (14)C8—C9—C10120.4 (2)
C3—O1—C21118.1 (2)C8—C9—H9119.8
N1—C7—C6117.45 (17)C10—C9—H9119.8
N1—C7—C8122.56 (18)C18—C17—C16121.0 (2)
C6—C7—C8119.97 (18)C18—C17—H17119.5
C1—C2—C3120.2 (2)C16—C17—H17119.5
C1—C2—H2119.9C18—C19—C20120.8 (2)
C3—C2—H2119.9C18—C19—H19119.6
C5—C6—C1116.52 (19)C20—C19—H19119.6
C5—C6—C7120.98 (18)C12—C11—C10120.0 (2)
C1—C6—C7122.42 (18)C12—C11—H11120.0
O2—C1—C2116.90 (18)C10—C11—H11120.0
O2—C1—C6121.97 (18)C11—C10—C9120.0 (3)
C2—C1—C6121.10 (19)C11—C10—H10120.0
C4—C5—C6123.0 (2)C9—C10—H10120.0
C4—C5—H5118.5C11—C12—C13120.5 (3)
C6—C5—H5118.5C11—C12—H12119.8
C5—C4—C3118.9 (2)C13—C12—H12119.8
C5—C4—H4120.5O1—C21—H21A109.5
C3—C4—H4120.5O1—C21—H21B109.5
C20—C15—C16119.9 (2)H21A—C21—H21B109.5
C20—C15—N3117.38 (19)O1—C21—H21C109.5
C16—C15—N3122.7 (2)H21A—C21—H21C109.5
O1—C3—C4125.0 (2)H21B—C21—H21C109.5
O1—C3—C2114.7 (2)C19—C18—C17119.3 (3)
C4—C3—C2120.3 (2)C19—C18—H18120.4
C9—C8—C13118.92 (19)C17—C18—H18120.4
C9—C8—C7121.58 (19)
C7—N1—N2—C14164.67 (18)C5—C4—C3—O1177.4 (2)
N1—N2—C14—O30.2 (3)C5—C4—C3—C21.7 (4)
N1—N2—C14—N3178.30 (17)C1—C2—C3—O1178.3 (2)
O3—C14—N3—C1517.1 (3)C1—C2—C3—C40.8 (4)
N2—C14—N3—C15161.40 (19)N1—C7—C8—C979.3 (3)
N2—N1—C7—C6177.23 (17)C6—C7—C8—C9102.6 (3)
N2—N1—C7—C80.9 (3)N1—C7—C8—C1399.2 (3)
N1—C7—C6—C5174.0 (2)C6—C7—C8—C1378.9 (3)
C8—C7—C6—C57.8 (3)C16—C15—C20—C191.4 (3)
N1—C7—C6—C19.4 (3)N3—C15—C20—C19179.1 (2)
C8—C7—C6—C1168.75 (19)C9—C8—C13—C120.2 (4)
C3—C2—C1—O2178.7 (2)C7—C8—C13—C12178.4 (2)
C3—C2—C1—C60.5 (3)C20—C15—C16—C172.0 (3)
C5—C6—C1—O2179.1 (2)N3—C15—C16—C17179.6 (2)
C7—C6—C1—O22.4 (3)C13—C8—C9—C100.3 (4)
C5—C6—C1—C21.0 (3)C7—C8—C9—C10178.8 (2)
C7—C6—C1—C2175.72 (19)C15—C16—C17—C180.8 (4)
C1—C6—C5—C40.1 (4)C15—C20—C19—C180.4 (4)
C7—C6—C5—C4176.6 (2)C12—C11—C10—C91.4 (5)
C6—C5—C4—C31.2 (4)C8—C9—C10—C110.3 (4)
C14—N3—C15—C20139.5 (2)C10—C11—C12—C131.8 (4)
C14—N3—C15—C1642.9 (3)C8—C13—C12—C111.2 (4)
C21—O1—C3—C40.9 (4)C20—C19—C18—C171.6 (4)
C21—O1—C3—C2179.9 (2)C16—C17—C18—C190.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.89 (1)1.76 (2)2.563 (2)149 (3)
N2—H2N···O3i0.87 (1)2.13 (1)2.9301 (19)152 (2)
N3—H3N···O3i0.88 (1)2.09 (1)2.935 (2)161 (2)
C12—H12···O2ii0.932.443.252 (3)146
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1.
 

Acknowledgements

CFA is thankful to the University Grants Commission, Bangalore, India, for the award of a Teacher Fellowship under the faculty improvement programme. MRPK is grateful to UGC, New Delhi, India, for a UGC–BSR one-time grant to the Faculty. We also thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements.

References

First citationAfrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAiswarya, N., Sithambaresan, M., Kurup, M. R. P. & Ng, S. W. (2013). Acta Cryst. E69, m588–m589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnnie, C. F., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1519–o1520.  CSD CrossRef IUCr Journals Google Scholar
First citationBeraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  PubMed CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144–169.  CrossRef CAS Google Scholar
First citationKala, U. L., Suma, S., Kurup, M. R. P., Krishnan, S. & John, R. P. (2007). Polyhedron, 26, 1427–1435.  CSD CrossRef CAS Google Scholar
First citationKurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationReena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 1825–1831.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R. & Suma, S. (2011). Transition Met. Chem., 36, 317–424.  CrossRef Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta, 76A, 22–28.  CrossRef CAS Google Scholar
First citationVijayan, N., Ramesh Babu, R., Gopalakrishnan, R., Dhanuskodi, S. & Ramasamy, P. (2001). J. Cryst. Growth, 236, 863–867.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 427-430
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds