metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m75-m76

Crystal structure of di­chlorido­{2,6-bis­­[(3-phenyl-1H-pyrazol-1-yl)meth­yl]pyridine}cobalt(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 20 February 2015; accepted 24 February 2015; online 4 March 2015)

In the title complex, [CoCl2(C25H21N5)], the CoII atom is coordinated by two Cl atoms and two N atoms, provided by a tridentate pyrazolylpyridyl ligand, forming a slightly distorted tetra­hedral geometry [range of angles: 96.51 (10) (chelate ring) to 118.60 (9)°]. The dihedral angle between Cl/Co/Cl and N/Co/N planes is 86.83 (7)°. The chelate ring has the conformation of a distorted boat. The dihedral angle between pyridyl ring and the coordinated pyrazolyl ring is 56.16 (12)°. The uncoordinated pyrazolyl ring is almost perpendicular to the pyridyl ring with the dihedral angle of 87.49 (10)°. In the crystal packing, inter­molecular phenyl-C—H ⋯π(pyrid­yl) inter­actions generate dimeric aggregates. These are connected into a zigzag supra­molecular chain along the c-axis direction via ππ inter­actions [inter-centroid distance between pyridyl and phenyl rings = 3.664 (2) Å].

1. Related literature

For the synthesis of the title compound, see: Reger et al. (2005[Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181-1190.]); Son et al. (2014[Son, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.]). For metal complexes with similar ligands, see: Massoud et al. (2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]); Sharma et al. (2011[Sharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327-332.]); Ojwach et al. (2007[Ojwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851-861.]); Manikandan et al. (2000[Manikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). J. Chem. Soc. Dalton Trans. pp. 2779-2785.], 2001[Manikandan, P., Padmakumar, K., Justin Thomas, K. R., Varghese, B., Onodera, H. & Manoharan, P. T. (2001). Inorg. Chem. 40, 6930-6939.]); Halcrow & Kilner (2002[Halcrow, M. A. & Kilner, C. A. (2002). Acta Cryst. C58, m424-m426.]); Foster et al. (2002[Foster, C. L., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2002). Polyhedron, 21, 1031-1041.]). For the potential applications of the ligand in catalysis, see: Karam et al. (2005[Karam, A. R., Catarí, E. L., López-Linares, F., Agrifoglio, G., Albano, C. L., Díaz-Barrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., González, T., Ortega, H. B. & Joskowics, P. (2005). Appl. Catal. A, 280, 165-173.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CoCl2(C25H21N5)]

  • Mr = 521.3

  • Monoclinic, C 2/c

  • a = 12.9766 (4) Å

  • b = 10.5867 (3) Å

  • c = 33.5943 (9) Å

  • β = 93.2592 (19)°

  • V = 4607.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.1 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.76, Tmax = 0.903

  • 25697 measured reflections

  • 5718 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.072

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.132

  • S = 1.06

  • 5718 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N4 2.041 (3)
Co1—N17 2.109 (3)
Co1—Cl3 2.2030 (11)
Co1—Cl2 2.2499 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.93 2.87 3.806 (4) 180
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For the synthesis of the title compound, see: Reger et al. (2005); Son et al. (2014). For metal complexes with similar ligands, see: Massoud et al. (2013); Sharma et al. (2011); Ojwach et al. (2007); Manikandan et al. (2000, 2001); Halcrow & Kilner (2002); Foster et al. (2002). For the potential applications of the ligand in catalysis, see: Karam et al. (2005).

Experimental top

To a stirred solution of 2,6-pyridinedimethanol (0.28 g, 2.0 mmol) and NaOH (0.8 g, 20 mmol) in tetrahydrofuran (THF)/water (7.5/7.5 ml) was added a solution of p-toluenesulfonyl chloride (0.76 g, 4.0 mmol) in THF (7.5 ml) at 0 °C. After 4 h of stirring, the mixture was poured into 20 ml of water and extracted with methylene chloride three times. The organic layer was washed with saturated aqueous NaCl solution and distilled water, and dried over Na2SO4; the solvent was removed in vacuo to afford 2,6-pyridine-dimethylene-ditosylate (0.788 g, 88%) as a white powder. In a separate flask under a nitrogen atmosphere, a solution of 3-phenyl-1H-pyrazole (0.61 g, 5.34 mmol) in dry THF (10 ml) was added drop-wise to a suspension of NaH (0.13 g, 5.34 mmol) in dry THF (10 ml) at 0 °C. After 15 min of stirring, a solution of 2,6-pyridine-dimethylene-ditosylate (1.20 g, 2.67 mmol) in dry THF (15 ml) was added to this solution; the mixture was stirred overnight, filtered, and the solvent was removed. The crude product was purified by column chromatography on silica gel with ethyl acetate : hexane = 1:1 as eluent to afford 0.41 g (40%) of pure ligand as a white oil.

To a solution of CoCl2 (2.6 mg, 0.02 mmol) in THF (2 ml) was added a solution of the organic ligand (7.8 mg, 0.02 mmol) in THF (2 ml) drop-wise at 40 °C. The solution was stirred vigorously. A deep-blue suspension was formed immediately. The product was isolated as a blue powder by removing the solvent, washed repeatedly with THF followed by diethyl ether, and dried in vacuo. Deep-blue single crystals of the title compound were obtained by slow evaporation of its concentrated solution in dichloromethane at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

For the synthesis of the title compound, see: Reger et al. (2005); Son et al. (2014). For metal complexes with similar ligands, see: Massoud et al. (2013); Sharma et al. (2011); Ojwach et al. (2007); Manikandan et al. (2000, 2001); Halcrow & Kilner (2002); Foster et al. (2002). For the potential applications of the ligand in catalysis, see: Karam et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Dimer formation via C—H···π interactions.
Dichlorido{2,6-bis[(3-phenyl-1H-pyrazol-1-yl)methyl]pyridine}cobalt(II) top
Crystal data top
[CoCl2(C25H21N5)]F(000) = 2136
Mr = 521.3Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4379 reflections
a = 12.9766 (4) Åθ = 2.4–23.4°
b = 10.5867 (3) ŵ = 1.00 mm1
c = 33.5943 (9) ÅT = 296 K
β = 93.2592 (19)°Plate, deep-blue
V = 4607.7 (2) Å30.25 × 0.22 × 0.1 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3751 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1517
Tmin = 0.76, Tmax = 0.903k = 1414
25697 measured reflectionsl = 4444
5718 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.048P)2 + 4.3485P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5718 reflectionsΔρmax = 0.52 e Å3
298 parametersΔρmin = 0.47 e Å3
Crystal data top
[CoCl2(C25H21N5)]V = 4607.7 (2) Å3
Mr = 521.3Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.9766 (4) ŵ = 1.00 mm1
b = 10.5867 (3) ÅT = 296 K
c = 33.5943 (9) Å0.25 × 0.22 × 0.1 mm
β = 93.2592 (19)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3751 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.903Rint = 0.072
25697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
5718 reflectionsΔρmin = 0.47 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.39083 (3)0.22404 (4)0.58917 (2)0.03468 (14)
Cl20.56212 (7)0.23374 (10)0.58231 (3)0.0500 (2)
Cl30.32167 (10)0.40748 (10)0.60338 (3)0.0672 (3)
N40.3229 (2)0.1187 (3)0.54406 (7)0.0331 (6)
N50.2543 (2)0.0299 (3)0.55511 (7)0.0366 (6)
C60.2331 (3)0.0533 (3)0.52567 (10)0.0443 (9)
H60.18870.1220.52660.053*
C70.2884 (3)0.0185 (3)0.49419 (10)0.0436 (9)
H70.28940.0590.46960.052*
C80.3435 (3)0.0901 (3)0.50604 (9)0.0347 (7)
C90.4137 (2)0.1637 (3)0.48268 (9)0.0342 (7)
C100.4601 (3)0.1057 (4)0.45118 (10)0.0475 (9)
H100.44650.0210.44570.057*
C110.5260 (3)0.1714 (4)0.42791 (12)0.0562 (11)
H110.55540.13160.40660.067*
C120.5480 (3)0.2960 (4)0.43629 (11)0.0534 (11)
H120.59530.33940.42160.064*
C130.5003 (3)0.3558 (4)0.46622 (11)0.0509 (10)
H130.5130.44110.4710.061*
C140.4333 (3)0.2909 (4)0.48940 (10)0.0436 (9)
H140.40120.33280.50960.052*
C150.2098 (3)0.0399 (4)0.59390 (9)0.0403 (8)
H15A0.15160.01740.59470.048*
H15B0.18410.12510.59720.048*
C160.2864 (2)0.0096 (3)0.62810 (9)0.0333 (7)
N170.3619 (2)0.0971 (2)0.63560 (7)0.0314 (6)
C180.4258 (2)0.0796 (3)0.66823 (9)0.0330 (7)
C190.4218 (3)0.0281 (4)0.69132 (10)0.0430 (9)
H190.46890.03950.71290.052*
C200.3486 (3)0.1176 (4)0.68232 (11)0.0492 (10)
H200.3460.19110.69740.059*
C210.2784 (3)0.0975 (4)0.65052 (10)0.0438 (9)
H210.22640.1560.64440.053*
C220.4977 (3)0.1871 (3)0.68058 (10)0.0364 (8)
H22A0.50150.24560.65850.044*
H22B0.46960.23240.70260.044*
N230.6008 (2)0.1435 (3)0.69249 (8)0.0363 (6)
C240.6654 (3)0.0790 (3)0.67056 (10)0.0420 (8)
H240.65330.05440.64410.05*
C250.7519 (3)0.0558 (3)0.69398 (10)0.0436 (9)
H250.81050.01220.68710.052*
C260.7342 (3)0.1112 (3)0.73064 (9)0.0352 (7)
N270.6417 (2)0.1659 (3)0.72992 (8)0.0374 (7)
C280.8065 (3)0.1190 (3)0.76634 (10)0.0376 (8)
C290.8786 (3)0.0243 (4)0.77423 (12)0.0503 (9)
H290.88040.04540.75740.06*
C300.9484 (3)0.0329 (4)0.80719 (12)0.0550 (10)
H300.99610.03140.81240.066*
C310.9473 (3)0.1347 (4)0.83167 (11)0.0557 (11)
H310.99540.14130.85320.067*
C320.8750 (3)0.2281 (4)0.82467 (12)0.0586 (11)
H320.8730.29680.84190.07*
C330.8047 (3)0.2202 (4)0.79195 (11)0.0493 (9)
H330.7560.28380.78740.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0414 (3)0.0335 (3)0.0290 (2)0.0090 (2)0.00033 (17)0.00083 (19)
Cl20.0439 (5)0.0617 (6)0.0444 (5)0.0201 (5)0.0022 (4)0.0001 (4)
Cl30.1011 (9)0.0450 (6)0.0563 (6)0.0149 (6)0.0115 (6)0.0023 (5)
N40.0346 (15)0.0383 (16)0.0263 (13)0.0087 (12)0.0011 (11)0.0016 (11)
N50.0377 (16)0.0422 (17)0.0297 (13)0.0109 (13)0.0008 (11)0.0011 (12)
C60.050 (2)0.043 (2)0.0392 (19)0.0181 (18)0.0066 (16)0.0034 (16)
C70.056 (2)0.043 (2)0.0309 (17)0.0089 (18)0.0021 (15)0.0078 (15)
C80.0377 (18)0.039 (2)0.0267 (15)0.0016 (15)0.0035 (13)0.0009 (14)
C90.0342 (18)0.040 (2)0.0279 (15)0.0005 (15)0.0028 (13)0.0022 (14)
C100.057 (2)0.045 (2)0.0408 (19)0.0037 (19)0.0075 (17)0.0028 (17)
C110.059 (3)0.065 (3)0.046 (2)0.011 (2)0.0181 (19)0.003 (2)
C120.045 (2)0.076 (3)0.039 (2)0.006 (2)0.0033 (16)0.017 (2)
C130.061 (3)0.050 (2)0.040 (2)0.018 (2)0.0066 (18)0.0047 (17)
C140.055 (2)0.047 (2)0.0291 (16)0.0053 (18)0.0015 (15)0.0001 (15)
C150.0321 (18)0.056 (2)0.0334 (17)0.0123 (17)0.0030 (13)0.0007 (16)
C160.0312 (17)0.0408 (19)0.0287 (15)0.0066 (15)0.0079 (13)0.0017 (14)
N170.0319 (14)0.0340 (15)0.0284 (13)0.0035 (12)0.0016 (11)0.0011 (11)
C180.0361 (18)0.0368 (19)0.0264 (15)0.0012 (15)0.0028 (13)0.0031 (13)
C190.046 (2)0.050 (2)0.0329 (17)0.0017 (18)0.0001 (15)0.0083 (16)
C200.058 (3)0.041 (2)0.049 (2)0.0077 (19)0.0103 (18)0.0156 (17)
C210.042 (2)0.047 (2)0.0427 (19)0.0185 (17)0.0074 (16)0.0024 (16)
C220.0421 (19)0.0361 (19)0.0301 (16)0.0028 (15)0.0057 (14)0.0019 (13)
N230.0362 (16)0.0415 (17)0.0309 (14)0.0044 (13)0.0016 (11)0.0028 (12)
C240.045 (2)0.045 (2)0.0354 (18)0.0048 (17)0.0015 (15)0.0069 (16)
C250.041 (2)0.043 (2)0.047 (2)0.0017 (17)0.0055 (16)0.0038 (16)
C260.0341 (18)0.0339 (18)0.0375 (17)0.0085 (15)0.0001 (14)0.0033 (14)
N270.0418 (17)0.0408 (17)0.0289 (14)0.0057 (14)0.0035 (12)0.0003 (12)
C280.0342 (19)0.044 (2)0.0345 (17)0.0067 (16)0.0000 (14)0.0042 (15)
C290.047 (2)0.052 (2)0.052 (2)0.0003 (19)0.0010 (18)0.0040 (19)
C300.042 (2)0.064 (3)0.059 (2)0.003 (2)0.0032 (18)0.013 (2)
C310.050 (2)0.073 (3)0.042 (2)0.013 (2)0.0068 (18)0.004 (2)
C320.067 (3)0.061 (3)0.047 (2)0.004 (2)0.0086 (19)0.016 (2)
C330.049 (2)0.046 (2)0.052 (2)0.0038 (19)0.0074 (17)0.0010 (18)
Geometric parameters (Å, º) top
Co1—N42.041 (3)C18—C191.381 (5)
Co1—N172.109 (3)C18—C221.515 (4)
Co1—Cl32.2030 (11)C19—C201.364 (5)
Co1—Cl22.2499 (10)C19—H190.93
N4—C81.354 (4)C20—C211.380 (5)
N4—N51.361 (4)C20—H200.93
N5—C61.341 (4)C21—H210.93
N5—C151.459 (4)C22—N231.450 (4)
C6—C71.362 (5)C22—H22A0.97
C6—H60.93C22—H22B0.97
C7—C81.400 (5)N23—C241.335 (4)
C7—H70.93N23—N271.358 (3)
C8—C91.461 (5)C24—C251.356 (5)
C9—C141.386 (5)C24—H240.93
C9—C101.390 (5)C25—C261.395 (5)
C10—C111.378 (5)C25—H250.93
C10—H100.93C26—N271.331 (4)
C11—C121.376 (6)C26—C281.482 (4)
C11—H110.93C28—C331.375 (5)
C12—C131.366 (6)C28—C291.388 (5)
C12—H120.93C29—C301.393 (5)
C13—C141.383 (5)C29—H290.93
C13—H130.93C30—C311.356 (6)
C14—H140.93C30—H300.93
C15—C161.510 (4)C31—C321.375 (6)
C15—H15A0.97C31—H310.93
C15—H15B0.97C32—C331.390 (5)
C16—N171.361 (4)C32—H320.93
C16—C211.369 (5)C33—H330.93
N17—C181.349 (4)
N4—Co1—N1796.51 (10)C16—N17—Co1116.9 (2)
N4—Co1—Cl3118.60 (9)N17—C18—C19121.9 (3)
N17—Co1—Cl3108.05 (8)N17—C18—C22117.4 (3)
N4—Co1—Cl2109.65 (8)C19—C18—C22120.6 (3)
N17—Co1—Cl2108.85 (8)C20—C19—C18119.8 (3)
Cl3—Co1—Cl2113.51 (5)C20—C19—H19120.1
C8—N4—N5105.7 (2)C18—C19—H19120.1
C8—N4—Co1136.3 (2)C19—C20—C21119.0 (3)
N5—N4—Co1115.88 (18)C19—C20—H20120.5
C6—N5—N4111.2 (3)C21—C20—H20120.5
C6—N5—C15129.2 (3)C16—C21—C20119.1 (3)
N4—N5—C15119.5 (3)C16—C21—H21120.5
N5—C6—C7107.5 (3)C20—C21—H21120.5
N5—C6—H6126.3N23—C22—C18112.4 (3)
C7—C6—H6126.3N23—C22—H22A109.1
C6—C7—C8106.5 (3)C18—C22—H22A109.1
C6—C7—H7126.7N23—C22—H22B109.1
C8—C7—H7126.7C18—C22—H22B109.1
N4—C8—C7109.1 (3)H22A—C22—H22B107.9
N4—C8—C9123.4 (3)C24—N23—N27112.0 (3)
C7—C8—C9127.5 (3)C24—N23—C22127.5 (3)
C14—C9—C10118.0 (3)N27—N23—C22120.4 (3)
C14—C9—C8123.0 (3)N23—C24—C25107.3 (3)
C10—C9—C8118.9 (3)N23—C24—H24126.3
C11—C10—C9121.2 (4)C25—C24—H24126.3
C11—C10—H10119.4C24—C25—C26105.3 (3)
C9—C10—H10119.4C24—C25—H25127.4
C12—C11—C10119.7 (4)C26—C25—H25127.4
C12—C11—H11120.1N27—C26—C25111.1 (3)
C10—C11—H11120.1N27—C26—C28121.2 (3)
C13—C12—C11119.8 (4)C25—C26—C28127.5 (3)
C13—C12—H12120.1C26—N27—N23104.2 (3)
C11—C12—H12120.1C33—C28—C29118.6 (3)
C12—C13—C14120.7 (4)C33—C28—C26121.2 (3)
C12—C13—H13119.7C29—C28—C26120.2 (3)
C14—C13—H13119.7C28—C29—C30120.4 (4)
C13—C14—C9120.4 (3)C28—C29—H29119.8
C13—C14—H14119.8C30—C29—H29119.8
C9—C14—H14119.8C31—C30—C29120.4 (4)
N5—C15—C16112.8 (3)C31—C30—H30119.8
N5—C15—H15A109C29—C30—H30119.8
C16—C15—H15A109C30—C31—C32119.9 (4)
N5—C15—H15B109C30—C31—H31120
C16—C15—H15B109C32—C31—H31120
H15A—C15—H15B107.8C31—C32—C33120.2 (4)
N17—C16—C21122.5 (3)C31—C32—H32119.9
N17—C16—C15115.6 (3)C33—C32—H32119.9
C21—C16—C15121.8 (3)C28—C33—C32120.5 (4)
C18—N17—C16117.4 (3)C28—C33—H33119.7
C18—N17—Co1124.2 (2)C32—C33—H33119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.873.806 (4)180
Symmetry code: (i) x+1, y, z+1.
Selected bond lengths (Å) top
Co1—N42.041 (3)Co1—Cl32.2030 (11)
Co1—N172.109 (3)Co1—Cl22.2499 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.873.806 (4)180
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Financial support from the National Research Foundation of Korea (NRF-2012R1A1A1005839) is gratefully acknowledged.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoster, C. L., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2002). Polyhedron, 21, 1031–1041.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalcrow, M. A. & Kilner, C. A. (2002). Acta Cryst. C58, m424–m426.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaram, A. R., Catarí, E. L., López-Linares, F., Agrifoglio, G., Albano, C. L., Díaz-Barrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., González, T., Ortega, H. B. & Joskowics, P. (2005). Appl. Catal. A, 280, 165–173.  Web of Science CrossRef CAS Google Scholar
First citationManikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). J. Chem. Soc. Dalton Trans. pp. 2779–2785.  Web of Science CSD CrossRef Google Scholar
First citationManikandan, P., Padmakumar, K., Justin Thomas, K. R., Varghese, B., Onodera, H. & Manoharan, P. T. (2001). Inorg. Chem. 40, 6930–6939.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationOjwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327–332.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSon, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m75-m76
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds