metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m85-m86

Crystal structure of aqua­bis­­[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]zinc dinitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 1 March 2015; accepted 5 March 2015; online 14 March 2015)

The cation of the complex title salt, [Zn(C13H11N3)2(H2O)](NO3)2, lies about a twofold rotation axis, which passes through the ZnII atom and the O atom of the aqua ligand. The ZnII atom adopts a distorted trigonal–bipyramidal geometry defined by two N atoms in axial positions [angle = 166.24 (7)°], and two N and one O atom in the equatorial plane [range of angles: 115.17 (7)–122.42 (3)°]. The dihedral angle between the imidazole and aniline rings is 23.86 (5)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional network.

1. Related literature

For the synthesis of the title complex and derivatives, see: Esparza-Ruiz et al. (2011[Esparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090-2098.]); Eltayeb et al. (2011[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062-m1063.]). For background to benz­imidazoles and their applications, see: Chassaing et al. (2008[Chassaing, C., Berger, M., Heckeroth, A., Ilg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111-1114.]); Podunavac-Kuzmonovic et al. (1999[Podunavac-Kuzmonovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381-388.]); Sánchez-Guadarrama et al. (2009[Sánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204-1213.]); Xue et al. (2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C13H11N3)2(H2O)](NO3)2

  • Mr = 625.9

  • Monoclinic, C 2/c

  • a = 16.2892 (9) Å

  • b = 15.0782 (8) Å

  • c = 11.6840 (6) Å

  • β = 110.0178 (8)°

  • V = 2696.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.726

  • 13558 measured reflections

  • 3347 independent reflections

  • 3007 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.078

  • S = 1.06

  • 3347 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O21i 0.74 (2) 2.51 (2) 3.248 (2) 173 (2)
N9—H9⋯O22i 0.74 (2) 2.37 (2) 2.944 (2) 134.7 (19)
N17—H17A⋯O20ii 0.86 (2) 2.14 (2) 2.9937 (17) 169 (2)
O18—H18⋯O20 0.77 (2) 1.92 (2) 2.6897 (14) 175 (2)
O18—H18⋯O22 0.77 (2) 2.50 (2) 3.0345 (16) 128 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

The heterocycles azole and benzazole have been of inter­est in several important functions in biological systems (Esparza-Ruiz et al., 2011; Eltayeb et al., 2011). benzimidazole compounds show a variety of biological properties such as inhibitory activities against enteroviruses and anti­bacterials (Xue et al., 2011; Chassaing et al., 2008; Sánchez-Guadarrama et al., 2009). Transition metal complexes with benzimidazole derivatives have been studied as models of some important biological molecules (Podunavac-Kuzmonovic et al., 1999). Motivated by these studies, the title complex has been synthesized and characterized by X-ray crystallography.

In the title complex, the ZnII atom lies on a two-fold axis and is coordinated by one O atom and four N atoms of two bidentate imidazole­aniline ligands, forming a distorted trigonal bipyrdmidal geometry. The axial Zn1—N17 bond distance of 2.2147 (17) Å is longer than the equatorial Zn1—N2 distance of 2.0421 (11) Å. The N17—Zn1—N17i axial angle is 166.24 (7)°, and the angles of two N and one O atom in the equatorial plane is within the range of 115.17 (7) and 122.42 (3)°. The dihedral angle between the imidazole and aniline rings in the coordinated bidentate ligand is 23.86 (5)°. In the crystal, inter­molecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network.

Synthesis and crystallization top

To a stirred solution of 2-(2-amino­phenyl)-1H-benzimidazole (0.188 g, 0.9 mmol) in EtOH (20 ml) was added a solution of zinc nitrate hexahydrate (0.089 g, 0.3 mmol) in EtOH (10 mL) at 60 °. After 24 h of reflux, the color of solution turned yellow. The product was isolated as a pale yellow powder by removing the solvent. Yellow single crystals of the title complex were obtained from its methanol solution by slow evaporation of the solvent at room temperature within several days.

Refinement top

H atoms on NH, NH2, and OH2 groups were located in a difference Fourier map and refined freely [refined N—H distances = 0.74 (2)–0.87 (2), O—H = 0.77 (2)Å]. Other H atoms were positioned geometrically and refined using riding model, with d(C—H) = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Related literature top

For the synthesis of the title complex and derivatives, see: Esparza-Ruiz et al. (2011); Eltayeb et al. (2011). For background to benzimidazoles and their applications, see: Chassaing et al. (2008); Podunavac-Kuzmonovic et al. (1999); Sánchez-Guadarrama et al. (2009); Xue et al. (2011).

Structure description top

The heterocycles azole and benzazole have been of inter­est in several important functions in biological systems (Esparza-Ruiz et al., 2011; Eltayeb et al., 2011). benzimidazole compounds show a variety of biological properties such as inhibitory activities against enteroviruses and anti­bacterials (Xue et al., 2011; Chassaing et al., 2008; Sánchez-Guadarrama et al., 2009). Transition metal complexes with benzimidazole derivatives have been studied as models of some important biological molecules (Podunavac-Kuzmonovic et al., 1999). Motivated by these studies, the title complex has been synthesized and characterized by X-ray crystallography.

In the title complex, the ZnII atom lies on a two-fold axis and is coordinated by one O atom and four N atoms of two bidentate imidazole­aniline ligands, forming a distorted trigonal bipyrdmidal geometry. The axial Zn1—N17 bond distance of 2.2147 (17) Å is longer than the equatorial Zn1—N2 distance of 2.0421 (11) Å. The N17—Zn1—N17i axial angle is 166.24 (7)°, and the angles of two N and one O atom in the equatorial plane is within the range of 115.17 (7) and 122.42 (3)°. The dihedral angle between the imidazole and aniline rings in the coordinated bidentate ligand is 23.86 (5)°. In the crystal, inter­molecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network.

For the synthesis of the title complex and derivatives, see: Esparza-Ruiz et al. (2011); Eltayeb et al. (2011). For background to benzimidazoles and their applications, see: Chassaing et al. (2008); Podunavac-Kuzmonovic et al. (1999); Sánchez-Guadarrama et al. (2009); Xue et al. (2011).

Synthesis and crystallization top

To a stirred solution of 2-(2-amino­phenyl)-1H-benzimidazole (0.188 g, 0.9 mmol) in EtOH (20 ml) was added a solution of zinc nitrate hexahydrate (0.089 g, 0.3 mmol) in EtOH (10 mL) at 60 °. After 24 h of reflux, the color of solution turned yellow. The product was isolated as a pale yellow powder by removing the solvent. Yellow single crystals of the title complex were obtained from its methanol solution by slow evaporation of the solvent at room temperature within several days.

Refinement details top

H atoms on NH, NH2, and OH2 groups were located in a difference Fourier map and refined freely [refined N—H distances = 0.74 (2)–0.87 (2), O—H = 0.77 (2)Å]. Other H atoms were positioned geometrically and refined using riding model, with d(C—H) = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing the atom-numbering scheme and 30% probability ellipsoids. [Symmetry code: (i): -x + 1, y, -z + 1/2]
[Figure 2] Fig. 2. Part of the crystal structure of the title complex, showing the 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).
Aquabis[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]zinc dinitrate top
Crystal data top
[Zn(C13H11N3)2(H2O)](NO3)2F(000) = 1288
Mr = 625.9Dx = 1.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6738 reflections
a = 16.2892 (9) Åθ = 2.7–28.0°
b = 15.0782 (8) ŵ = 0.97 mm1
c = 11.6840 (6) ÅT = 296 K
β = 110.0178 (8)°Block, yellow
V = 2696.4 (2) Å30.21 × 0.2 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3007 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2121
Tmin = 0.546, Tmax = 0.726k = 1920
13558 measured reflectionsl = 1511
3347 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.0441P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3347 reflectionsΔρmax = 0.35 e Å3
207 parametersΔρmin = 0.20 e Å3
Crystal data top
[Zn(C13H11N3)2(H2O)](NO3)2V = 2696.4 (2) Å3
Mr = 625.9Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.2892 (9) ŵ = 0.97 mm1
b = 15.0782 (8) ÅT = 296 K
c = 11.6840 (6) Å0.21 × 0.2 × 0.18 mm
β = 110.0178 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3347 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3007 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.726Rint = 0.020
13558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
3347 reflectionsΔρmin = 0.20 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50.15270 (2)0.250.03249 (9)
N20.59261 (7)0.22530 (8)0.37818 (10)0.0317 (2)
C30.61501 (9)0.22740 (10)0.50420 (12)0.0331 (3)
C40.60111 (11)0.16542 (11)0.58370 (15)0.0436 (4)
H40.57260.11210.55560.052*
C50.63145 (12)0.18640 (14)0.70620 (15)0.0522 (4)
H50.62420.14580.76190.063*
C60.67293 (11)0.26740 (13)0.74848 (14)0.0499 (4)
H60.69140.27970.83140.06*
C70.68716 (10)0.32919 (11)0.67076 (14)0.0413 (3)
H70.71430.38310.69890.05*
C80.65875 (9)0.30678 (10)0.54755 (12)0.0338 (3)
N90.66310 (9)0.35081 (9)0.44630 (12)0.0348 (3)
H90.6898 (13)0.3906 (14)0.4450 (18)0.045 (5)*
C100.62329 (8)0.29990 (9)0.34760 (12)0.0309 (3)
C110.61314 (9)0.32625 (10)0.22259 (13)0.0346 (3)
C120.61377 (12)0.41579 (12)0.19286 (16)0.0496 (4)
H120.62280.45860.25330.059*
C130.60111 (15)0.44164 (14)0.07450 (18)0.0645 (6)
H130.6010.50150.05510.077*
C140.58865 (16)0.37784 (16)0.01468 (18)0.0660 (6)
H140.58010.3950.09440.079*
C150.58871 (13)0.28936 (13)0.01287 (15)0.0524 (4)
H150.58040.24730.04830.063*
C160.60098 (9)0.26197 (11)0.13089 (13)0.0372 (3)
N170.59641 (9)0.17030 (9)0.15649 (13)0.0397 (3)
H17A0.5924 (14)0.1410 (14)0.092 (2)0.053 (6)*
H17B0.6415 (14)0.1544 (11)0.2191 (19)0.040 (5)*
O180.50.02352 (11)0.250.0668 (7)
H180.5330 (14)0.0001 (16)0.3054 (19)0.066 (7)*
N190.67858 (9)0.01854 (9)0.48037 (12)0.0434 (3)
O200.60669 (8)0.05918 (8)0.44950 (11)0.0528 (3)
O210.73467 (10)0.03031 (13)0.58020 (13)0.0808 (5)
O220.69082 (10)0.03590 (10)0.40974 (15)0.0712 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03883 (14)0.02325 (12)0.03001 (13)00.00485 (9)0
N20.0331 (5)0.0301 (6)0.0296 (5)0.0014 (4)0.0078 (4)0.0025 (4)
C30.0311 (6)0.0359 (7)0.0303 (6)0.0021 (5)0.0081 (5)0.0015 (5)
C40.0476 (9)0.0412 (8)0.0396 (8)0.0031 (6)0.0120 (7)0.0035 (6)
C50.0563 (10)0.0629 (11)0.0368 (8)0.0011 (8)0.0153 (7)0.0108 (8)
C60.0474 (9)0.0708 (12)0.0292 (7)0.0006 (8)0.0102 (6)0.0037 (7)
C70.0373 (7)0.0496 (9)0.0343 (7)0.0013 (6)0.0090 (6)0.0097 (6)
C80.0288 (6)0.0392 (7)0.0320 (7)0.0017 (5)0.0087 (5)0.0040 (5)
N90.0362 (6)0.0332 (6)0.0344 (6)0.0076 (5)0.0114 (5)0.0069 (5)
C100.0281 (6)0.0316 (7)0.0326 (6)0.0000 (5)0.0102 (5)0.0045 (5)
C110.0344 (7)0.0377 (7)0.0328 (7)0.0055 (5)0.0130 (5)0.0027 (5)
C120.0633 (11)0.0425 (9)0.0426 (8)0.0154 (8)0.0177 (8)0.0028 (7)
C130.0902 (15)0.0509 (11)0.0520 (11)0.0227 (10)0.0240 (10)0.0093 (8)
C140.0855 (15)0.0755 (14)0.0402 (9)0.0255 (12)0.0256 (9)0.0052 (9)
C150.0620 (11)0.0649 (11)0.0364 (8)0.0171 (9)0.0246 (7)0.0087 (8)
C160.0336 (7)0.0448 (8)0.0364 (7)0.0050 (6)0.0162 (6)0.0060 (6)
N170.0429 (7)0.0391 (7)0.0367 (7)0.0044 (5)0.0129 (6)0.0102 (5)
O180.0787 (14)0.0254 (8)0.0592 (12)00.0243 (10)0
N190.0440 (7)0.0394 (7)0.0416 (7)0.0037 (5)0.0079 (5)0.0051 (5)
O200.0555 (7)0.0511 (7)0.0437 (6)0.0187 (6)0.0066 (5)0.0105 (5)
O210.0619 (9)0.1084 (14)0.0499 (8)0.0073 (8)0.0093 (7)0.0063 (8)
O220.0671 (9)0.0601 (9)0.0866 (11)0.0203 (7)0.0266 (8)0.0165 (7)
Geometric parameters (Å, º) top
Zn1—O181.9479 (17)N9—H90.74 (2)
Zn1—N2i2.0421 (11)C10—C111.467 (2)
Zn1—N22.0421 (11)C11—C121.395 (2)
Zn1—N17i2.2147 (14)C11—C161.408 (2)
Zn1—N172.2147 (14)C12—C131.383 (3)
N2—C101.3285 (18)C12—H120.93
N2—C31.3908 (17)C13—C141.381 (3)
C3—C41.390 (2)C13—H130.93
C3—C81.396 (2)C14—C151.372 (3)
C4—C51.382 (2)C14—H140.93
C4—H40.93C15—C161.387 (2)
C5—C61.401 (3)C15—H150.93
C5—H50.93C16—N171.422 (2)
C6—C71.375 (2)N17—H17A0.86 (2)
C6—H60.93N17—H17B0.87 (2)
C7—C81.395 (2)O18—H180.77 (2)
C7—H70.93N19—O211.2235 (18)
C8—N91.379 (2)N19—O221.228 (2)
N9—C101.3518 (18)N19—O201.2601 (17)
O18—Zn1—N2i122.42 (3)C8—N9—H9127.4 (15)
O18—Zn1—N2122.42 (3)N2—C10—N9111.48 (12)
N2i—Zn1—N2115.17 (7)N2—C10—C11124.91 (12)
O18—Zn1—N17i96.88 (4)N9—C10—C11123.58 (13)
N2i—Zn1—N17i80.04 (5)C12—C11—C16119.21 (14)
N2—Zn1—N17i92.55 (5)C12—C11—C10120.13 (14)
O18—Zn1—N1796.88 (4)C16—C11—C10120.65 (14)
N2i—Zn1—N1792.55 (5)C13—C12—C11120.70 (17)
N2—Zn1—N1780.04 (5)C13—C12—H12119.6
N17i—Zn1—N17166.24 (7)C11—C12—H12119.6
C10—N2—C3106.20 (11)C14—C13—C12119.43 (18)
C10—N2—Zn1120.54 (9)C14—C13—H13120.3
C3—N2—Zn1130.45 (10)C12—C13—H13120.3
C4—C3—N2130.43 (14)C15—C14—C13120.80 (17)
C4—C3—C8120.91 (13)C15—C14—H14119.6
N2—C3—C8108.66 (12)C13—C14—H14119.6
C5—C4—C3117.13 (16)C14—C15—C16120.73 (17)
C5—C4—H4121.4C14—C15—H15119.6
C3—C4—H4121.4C16—C15—H15119.6
C4—C5—C6121.54 (16)C15—C16—C11119.12 (15)
C4—C5—H5119.2C15—C16—N17119.91 (15)
C6—C5—H5119.2C11—C16—N17120.88 (14)
C7—C6—C5121.85 (15)C16—N17—Zn1108.50 (9)
C7—C6—H6119.1C16—N17—H17A107.9 (14)
C5—C6—H6119.1Zn1—N17—H17A121.4 (14)
C6—C7—C8116.50 (15)C16—N17—H17B110.7 (11)
C6—C7—H7121.7Zn1—N17—H17B95.1 (13)
C8—C7—H7121.7H17A—N17—H17B112.7 (18)
N9—C8—C7132.26 (14)Zn1—O18—H18117.5 (18)
N9—C8—C3105.73 (12)O21—N19—O22119.85 (16)
C7—C8—C3122.00 (14)O21—N19—O20121.32 (16)
C10—N9—C8107.93 (12)O22—N19—O20118.78 (14)
C10—N9—H9123.6 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O21ii0.74 (2)2.51 (2)3.248 (2)173 (2)
N9—H9···O22ii0.74 (2)2.37 (2)2.944 (2)134.7 (19)
N17—H17A···O20iii0.86 (2)2.14 (2)2.9937 (17)169 (2)
O18—H18···O200.77 (2)1.92 (2)2.6897 (14)175 (2)
O18—H18···O220.77 (2)2.50 (2)3.0345 (16)128 (2)
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O21i0.74 (2)2.51 (2)3.248 (2)173 (2)
N9—H9···O22i0.74 (2)2.37 (2)2.944 (2)134.7 (19)
N17—H17A···O20ii0.86 (2)2.14 (2)2.9937 (17)169 (2)
O18—H18···O200.77 (2)1.92 (2)2.6897 (14)175 (2)
O18—H18···O220.77 (2)2.50 (2)3.0345 (16)128 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y, z1/2.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChassaing, C., Berger, M., Heckeroth, A., Ilg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111–1114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEsparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090–2098.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPodunavac-Kuzmonovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381–388.  Google Scholar
First citationSánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204–1213.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m85-m86
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds