research communications
of ruthenocenecarbonitrile
aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de
The molecular structure of ruthenocenecarbonitrile, [Ru(η5-C5H4C≡N)(η5-C5H5)], exhibits symmetry m, with the mirror plane bisecting the molecule through the C≡N substituent. The RuII atom is slightly shifted from the η5-C5H4 centroid towards the C≡N substituent. In the crystal, molecules are arranged in columns parallel to [100]. One-dimensional intermolecular π–π interactions [3.363 (3) Å] between the C≡N carbon atom and one carbon of the cyclopentadienyl ring of the overlaying molecule are present.
Keywords: crystal structure; ruthenocene; ruthenocenecarbonitrile; sandwich compound; nitrile.
CCDC reference: 1054219
1. Chemical context
The nitrile group is isoelectronic with the acetylid function (Bonniard et al., 2011), which has already been investigated in electron-transfer studies (see, for example, Lang et al., 2006; Poppitz et al., 2014; Speck et al., 2012; Hildebrandt & Lang, 2013; Miesel et al., 2013). Coordination of, for example, ferrocenecarbonitrile towards transition metals M will allow investigation of the electronic properties of —C≡N—M— or —C≡N—M—N≡C— bridging units. A synthesis for ferrocenecarbonitrile has already been described in 1957 (Graham et al., 1957); however, only one example of an application in electrochemical studies has been described by Dowling et al. (1981). This prompted us to synthesize ferrocenecarbonitrile transition metal complexes to investigate the electronic properties of the —C≡N—M—N≡C— bridging units (Strehler et al. 2013, 2014). In a continuation of this work, we present herein the synthesis and of the related ruthenocenecarbonitrile, (I). The synthesis of this compound was realized by treatment of formylruthenocene with hydroxylamine hydrochloride, zinc oxide and potassium iodide in acetonitrile, which is similar to a procedure already described for the synthesis of ferrocenecarbonitrile (Kivrak & Zora, 2007).
2. Structural commentary
The title compound contains one half-molecule in the ). The Ru1–centroid distance to the C≡N-substituted cyclopentadienyl ring is slightly increased [1.8179 (1) Å] compared to the unsubstituted C5H5 unit [1.8157 (1) Å]. Both cyclopentadienyl rings adopt an ideally eclipsed conformation and are virtually oriented parallel towards each other, which is expressed by the bond angle at the RuII between the two centroids (= D), with D(C5H4)—Ru1—D(C5H5) = 178.87 (1)°. However, the RuII atom is slightly shifted from the centre of the C5 ring to the nitrile-bonded C2 atom, which can be explained best by the significantly different Ru—C bond lengths (Table 1) and also the Ru—D—C angles, which should ideally be 90° (Table 1). This is in accordance with the shift in the ferrocenedicarbonitrile structure (Altmannshofer et al., 2008). The C≡N substituent itself is bent away from the metal atom in (I), with a maximum shift for N1 [0.047 (4) Å].
with a mirror plane bisecting the molecule through atoms C1, C2, C5, N1 and Ru1 (Fig. 1
|
3. Supramolecular features
The packing of (I) consists of a layer-type structure parallel to (010) with the direction of the C≡N function aligned parallel to [10], alternating between adjacent layers. A further order is observed by a columnar arrangement of slightly tilted molecules parallel to [100]. Weak intermolecular π–π interactions within the sum of the van der Waals radii (Σ = 3.4 Å; Bondi, 1964) are present between C5 and the C1′ atom [3.363 (3) Å] of the overlying molecule in the same layer (Fig. 2).
4. Database survey
The ruthenocene backbone is hardly described in the literature. Reported derivatives contain sp (ethynyl) (Sato et al., 1997; Packheiser et al., 2008; Jakob et al., 2008, 2009a), sp2 (Sato et al., 1998, 2004; Jakob et al., 2009b) and sp3 (Sokolov et al., 2010; Barlow et al., 2001) carbon substituents or a carboxylic acid moiety (Zhang & Coppens, 2001) and its respective RuII complex (Wyman et al., 2005). They all exhibit similar Ru—D distances (1.795–1.823 Å) as compared to (I) [1.8179 (1)–1.8157 (1) Å] or unsubstituted ruthenocene (1.794–1.816 Å) (Ma & Coppens, 2003; Borissova et al., 2008; Seiler & Dunitz, 1980).
Comparison of the C—C [1.431 (3) Å] and the C≡N distances [1.148 (3) Å] with the respective ferrocene carbonitrile derivatives (C≡N = 1.133–1.150; C—C = 1.428–1.433 Å; Altmannshofer et al., 2008; Dayaker et al., 2010; Bell et al., 1996; Nemykin et al., 2007; Erben et al., 2007) reveals no significant influence of the central metal atom on the electronic properties of the substituent.
5. Synthesis and crystallization
Formylruthenocene was prepared according to a published procedure (Mueller-Westerhoff et al., 1993). Synthesis of ruthenocenecarbonitrile, (I): formylruthenocene (2.27 g, 8.8 mmol), hydroxylamine hydrochloride (0.96 g, 13.8 mmol), zinc oxide (0.86 g, 10.6 mmol) and potassium iodide (1.76 g, 10.6 mmol) were suspended in 120 ml of dry acetonitrile. The mixture was stirred for 4 h at precisely 368 K. After cooling the reaction mixture to ambient temperature, 18 ml of an aqueous Na2S2O3 (5%) solution were added in a single portion, and stirring was continued for additional 20 min. Solid particles were removed by filtration and the filtrate was extracted with ethyl acetate (3 × 50 ml). The combined organic layers were dried over MgSO4. All volatiles were removed under reduced pressure and the crude product was purified by flash on aluminum oxide using dichloromethane as Greenish crystals of (I) were obtained by slow evaporation of a saturated dichloromethane solution containing (I) at ambient temperature (yield: 820 mg, 3.3 mmol, 38% based on formylruthenocene). IR (KBr, cm−1): ν = 2226 (m, C≡N), 2854 (s), 2925 (s), 3082 (m, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K): δ 4.69 (s, 5H, C5H5), 4.70 (pt, 2H, JH,H = 1.8 Hz), 4.70 (pt, 2H, JH,H = 1.8 Hz). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K): δ = 55.3 (Ci-C5H4), 72.4 (C5H4), 72.9 (C5H5), 73.5 (C5H4), 119.4 (CN). HRMS (ESI–TOF, M+): C11H9NRu: m/z = 256.9792 (calc. 256.9776).
6. Refinement
C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å. Crystal data, data collection and structure details are summarized in Table 2.
Supporting information
CCDC reference: 1054219
10.1107/S205698901500540X/wm5119sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500540X/wm5119Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Ru(C5H5)(C6H4N)] | F(000) = 252 |
Mr = 256.26 | Dx = 1.947 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2023 (2) Å | Cell parameters from 26762 reflections |
b = 8.6802 (2) Å | θ = 3.5–28.7° |
c = 7.2922 (1) Å | µ = 1.74 mm−1 |
β = 106.497 (2)° | T = 110 K |
V = 437.12 (2) Å3 | Block, yellow green |
Z = 2 | 0.38 × 0.30 × 0.30 mm |
Oxford Gemini S CCD diffractometer | 900 independent reflections |
Radiation source: fine-focus sealed tube | 877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 26.0°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | h = −8→8 |
Tmin = 0.849, Tmax = 1.000 | k = −10→10 |
27710 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.012 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.032 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0218P)2 + 0.1909P] where P = (Fo2 + 2Fc2)/3 |
900 reflections | (Δ/σ)max < 0.001 |
67 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R factor wR and goodness of fit S are based on F2, conventional R factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.4152 (3) | 0.2500 | −0.0364 (3) | 0.0162 (4) | |
C2 | −0.3084 (3) | 0.2500 | 0.1617 (3) | 0.0142 (4) | |
C3 | −0.24721 (18) | 0.11497 (16) | 0.27791 (19) | 0.0142 (3) | |
H3C | −0.2679 | 0.0130 | 0.2382 | 0.017* | |
C4 | −0.14854 (18) | 0.16776 (15) | 0.46603 (18) | 0.0145 (3) | |
H4C | −0.0935 | 0.1053 | 0.5710 | 0.017* | |
C5 | 0.1429 (3) | 0.2500 | 0.0334 (3) | 0.0185 (4) | |
H5C | 0.0744 | 0.2500 | −0.0957 | 0.022* | |
C6 | 0.20428 (19) | 0.11674 (17) | 0.1491 (2) | 0.0175 (3) | |
H6C | 0.1832 | 0.0149 | 0.1089 | 0.021* | |
C7 | 0.30392 (17) | 0.16746 (16) | 0.33757 (19) | 0.0158 (3) | |
H7C | 0.3591 | 0.1045 | 0.4420 | 0.019* | |
N1 | −0.5024 (2) | 0.2500 | −0.1949 (3) | 0.0244 (4) | |
Ru1 | 0.00474 (2) | 0.2500 | 0.26311 (2) | 0.00953 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0120 (8) | 0.0168 (9) | 0.0198 (10) | 0.000 | 0.0045 (7) | 0.000 |
C2 | 0.0093 (8) | 0.0168 (9) | 0.0170 (9) | 0.000 | 0.0044 (7) | 0.000 |
C3 | 0.0111 (6) | 0.0148 (7) | 0.0182 (6) | −0.0022 (5) | 0.0065 (5) | −0.0003 (5) |
C4 | 0.0145 (6) | 0.0163 (7) | 0.0146 (6) | 0.0003 (5) | 0.0072 (5) | 0.0029 (5) |
C5 | 0.0155 (9) | 0.0283 (11) | 0.0145 (9) | 0.000 | 0.0087 (7) | 0.000 |
C6 | 0.0143 (6) | 0.0190 (7) | 0.0222 (7) | 0.0005 (5) | 0.0101 (5) | −0.0047 (6) |
C7 | 0.0098 (6) | 0.0191 (7) | 0.0193 (6) | 0.0033 (5) | 0.0054 (5) | 0.0029 (5) |
N1 | 0.0222 (9) | 0.0274 (10) | 0.0208 (9) | 0.000 | 0.0015 (7) | 0.000 |
Ru1 | 0.00850 (10) | 0.00992 (10) | 0.01040 (10) | 0.000 | 0.00305 (6) | 0.000 |
C1—N1 | 1.148 (3) | C5—Ru1 | 2.1780 (18) |
C1—C2 | 1.431 (3) | C5—H5C | 0.9300 |
C2—C3i | 1.4401 (17) | C6—C7 | 1.4274 (19) |
C2—C3 | 1.4401 (17) | C6—Ru1 | 2.1848 (13) |
C2—Ru1 | 2.1649 (18) | C6—H6C | 0.9300 |
C3—C4 | 1.4294 (18) | C7—C7i | 1.433 (3) |
C3—Ru1 | 2.1885 (13) | C7—Ru1 | 2.1878 (12) |
C3—H3C | 0.9300 | C7—H7C | 0.9300 |
C4—C4i | 1.428 (3) | Ru1—C6i | 2.1848 (13) |
C4—Ru1 | 2.2013 (12) | Ru1—C7i | 2.1878 (12) |
C4—H4C | 0.9300 | Ru1—C3i | 2.1885 (13) |
C5—C6i | 1.4262 (18) | Ru1—C4i | 2.2013 (12) |
C5—C6 | 1.4262 (18) | ||
N1—C1—C2 | 179.4 (2) | C5—Ru1—C6 | 38.16 (5) |
C1—C2—C3i | 125.52 (8) | C6i—Ru1—C6 | 63.94 (8) |
C1—C2—C3 | 125.52 (8) | C2—Ru1—C7i | 160.38 (4) |
C3i—C2—C3 | 108.96 (16) | C5—Ru1—C7i | 63.77 (6) |
C1—C2—Ru1 | 123.64 (13) | C6i—Ru1—C7i | 38.11 (5) |
C3i—C2—Ru1 | 71.57 (8) | C6—Ru1—C7i | 63.89 (5) |
C3—C2—Ru1 | 71.57 (8) | C2—Ru1—C7 | 160.38 (4) |
C4—C3—C2 | 106.82 (12) | C5—Ru1—C7 | 63.77 (6) |
C4—C3—Ru1 | 71.48 (7) | C6i—Ru1—C7 | 63.89 (5) |
C2—C3—Ru1 | 69.80 (9) | C6—Ru1—C7 | 38.11 (5) |
C4—C3—H3C | 126.6 | C7i—Ru1—C7 | 38.23 (7) |
C2—C3—H3C | 126.6 | C2—Ru1—C3i | 38.63 (4) |
Ru1—C3—H3C | 123.8 | C5—Ru1—C3i | 127.17 (5) |
C4i—C4—C3 | 108.70 (8) | C6i—Ru1—C3i | 112.30 (6) |
C4i—C4—Ru1 | 71.08 (3) | C6—Ru1—C3i | 161.19 (5) |
C3—C4—Ru1 | 70.51 (7) | C7i—Ru1—C3i | 125.76 (5) |
C4i—C4—H4C | 125.7 | C7—Ru1—C3i | 159.25 (5) |
C3—C4—H4C | 125.7 | C2—Ru1—C3 | 38.63 (4) |
Ru1—C4—H4C | 124.4 | C5—Ru1—C3 | 127.17 (5) |
C6i—C5—C6 | 108.40 (17) | C6i—Ru1—C3 | 161.18 (5) |
C6i—C5—Ru1 | 71.18 (9) | C6—Ru1—C3 | 112.30 (6) |
C6—C5—Ru1 | 71.18 (9) | C7i—Ru1—C3 | 159.25 (5) |
C6i—C5—H5C | 125.8 | C7—Ru1—C3 | 125.76 (5) |
C6—C5—H5C | 125.8 | C3i—Ru1—C3 | 64.76 (7) |
Ru1—C5—H5C | 123.5 | C2—Ru1—C4i | 63.69 (6) |
C5—C6—C7 | 107.83 (13) | C5—Ru1—C4i | 160.55 (4) |
C5—C6—Ru1 | 70.66 (9) | C6i—Ru1—C4i | 126.43 (5) |
C7—C6—Ru1 | 71.06 (7) | C6—Ru1—C4i | 159.58 (5) |
C5—C6—H6C | 126.1 | C7i—Ru1—C4i | 111.94 (5) |
C7—C6—H6C | 126.1 | C7—Ru1—C4i | 125.87 (5) |
Ru1—C6—H6C | 123.8 | C3i—Ru1—C4i | 38.01 (5) |
C6—C7—C7i | 107.97 (8) | C3—Ru1—C4i | 63.86 (5) |
C6—C7—Ru1 | 70.83 (7) | C2—Ru1—C4 | 63.69 (6) |
C7i—C7—Ru1 | 70.88 (4) | C5—Ru1—C4 | 160.55 (4) |
C6—C7—H7C | 126.0 | C6i—Ru1—C4 | 159.58 (5) |
C7i—C7—H7C | 126.0 | C6—Ru1—C4 | 126.42 (5) |
Ru1—C7—H7C | 123.9 | C7i—Ru1—C4 | 125.87 (5) |
C2—Ru1—C5 | 113.36 (7) | C7—Ru1—C4 | 111.94 (5) |
C2—Ru1—C6i | 127.17 (5) | C3i—Ru1—C4 | 63.86 (5) |
C5—Ru1—C6i | 38.16 (5) | C3—Ru1—C4 | 38.01 (5) |
C2—Ru1—C6 | 127.17 (5) | C4i—Ru1—C4 | 37.84 (7) |
C1—C2—C3—C4 | −179.04 (16) | C2—C3—C4—Ru1 | −61.20 (10) |
C3i—C2—C3—C4 | 0.13 (19) | C6i—C5—C6—C7 | 0.1 (2) |
Ru1—C2—C3—C4 | 62.30 (9) | Ru1—C5—C6—C7 | −61.69 (9) |
C1—C2—C3—Ru1 | 118.66 (18) | C6i—C5—C6—Ru1 | 61.79 (12) |
C3i—C2—C3—Ru1 | −62.17 (12) | C5—C6—C7—C7i | −0.06 (12) |
C2—C3—C4—C4i | −0.08 (12) | Ru1—C6—C7—C7i | −61.50 (4) |
Ru1—C3—C4—C4i | 61.12 (4) | C5—C6—C7—Ru1 | 61.44 (10) |
Symmetry code: (i) x, −y+1/2, z. |
D is the centroid of the C5H4 or C5H5 ring. |
C2 | C3 | C4 | C5 | C6 | C7 | |
Ru1—C | 2.1650 (18) | 2.1886 (13) | 2.2013 (12) | 2.1779 (18) | 2.1847 (13) | 2.1879 (12) |
C—D—Ru1 | 88.90 (8) | 89.63 (6) | 90.93 (6) | 89.75 (9) | 89.95 (6) | 90.16 (6) |
Acknowledgements
MK is grateful to the Fonds der Chemischen Industrie for a Chemiefonds fellowship.
References
Altmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013–8024. CSD CrossRef PubMed CAS Google Scholar
Barlow, S., Cowley, A., Green, J. C., Brunker, T. J. & Hascall, T. (2001). Organometallics, 20, 5351–5359. CSD CrossRef CAS Google Scholar
Bell, W., Ferguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 1928–1930. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114–124. CSD CrossRef CAS PubMed Google Scholar
Borissova, A. O., Antipin, M. Yu., Perekalin, D. S. & Lyssenko, K. A. (2008). CrystEngComm, 10, 827–832. CSD CrossRef CAS Google Scholar
Dayaker, G., Sreeshailam, A., Chevallier, F., Roisnel, T., Radha Krishna, P. & Mongin, F. (2010). Chem. Commun. 46, 2862–2864. CSD CrossRef CAS Google Scholar
Dowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345–2348. CrossRef CAS Google Scholar
Erben, M., Růžička, A., Vinklárek, J., Šťáva, V. & Handlíř, K. (2007). Acta Cryst. E63, m2145–m2146. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Graham, P. J., Lindsey, R. V., Parshall, G. W., Peterson, M. L. & Whitman, G. M. (1957). J. Am. Chem. Soc. 79, 3416–3420. CrossRef CAS Google Scholar
Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653. Web of Science CrossRef CAS Google Scholar
Jakob, A., Ecorchard, P., Köhler, K. & Lang, H. (2008). J. Organomet. Chem. 693, 3479–3489. CSD CrossRef CAS Google Scholar
Jakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009a). J. Organomet. Chem. 694, 655–666. CSD CrossRef CAS Google Scholar
Jakob, A., Ecorchard, P., Rüffer, T., Linseis, M., Winter, R. F. & Lang, H. (2009b). J. Organomet. Chem. 694, 3542–3547. CSD CrossRef CAS Google Scholar
Kivrak, A. & Zora, M. (2007). J. Organomet. Chem. 692, 2346–2349. CrossRef CAS Google Scholar
Lang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836–1850. CrossRef CAS Google Scholar
Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 504–505. CSD CrossRef Google Scholar
Miesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993–3002. Web of Science CSD CrossRef CAS Google Scholar
Mueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163–167. CAS Google Scholar
Nemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007). Organometallics, 26, 3138–3148. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Packheiser, R., Jakob, A., Ecorchard, P., Walfort, B. & Lang, H. (2008). Organometallics, 27, 1214–1226. CSD CrossRef CAS Google Scholar
Poppitz, E. A. A., Hildebrandt, A. M., Korb, M. & Lang, H. (2014). J. Organomet. Chem. 752, 133–140. CSD CrossRef CAS Google Scholar
Sato, M., Kawata, Y., Kudo, A., Iwai, A., Saitoh, H. & Ochiai, S. (1998). J. Chem. Soc. Dalton Trans. pp. 2215–2224. Web of Science CrossRef Google Scholar
Sato, M., Kawata, Y., Shintate, H., Habata, Y., Akabori, S. & Unoura, K. (1997). Organometallics, 16, 1693–1701. CSD CrossRef CAS Google Scholar
Sato, M., Nagata, T., Tanemura, A., Fujihara, T., Kumakura, S. & Unoura, K. (2004). Chem. Eur. J. 10, 2166–2178. CSD CrossRef PubMed CAS Google Scholar
Seiler, P. & Dunitz, J. D. (1980). Acta Cryst. B36, 2946–2950. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sokolov, V. I., Nikitin, L. N., Bulygina, L. A., Khrustalev, V. N., Starikova, Z. A. & Khokhlov, A. R. (2010). J. Organomet. Chem. 695, 799–803. CSD CrossRef CAS Google Scholar
Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373–6380. Web of Science CSD CrossRef CAS Google Scholar
Strehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214–1219. CSD CrossRef CAS Google Scholar
Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279–4289. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wyman, I. W., Robertson, K. N., Cameron, T. S., Swarts, J. C. & Aquino, M. A. S. (2005). Organometallics, 24, 6055–6058. CSD CrossRef CAS Google Scholar
Zhang, Y. & Coppens, P. (2001). Private communication (refcode RALRAX). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.