research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 398-401

Crystal structure of ruthenocenecarbo­nitrile

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 January 2015; accepted 16 March 2015; online 21 March 2015)

The mol­ecular structure of ruthenocenecarbo­nitrile, [Ru(η5-C5H4C≡N)(η5-C5H5)], exhibits point group symmetry m, with the mirror plane bis­ecting the mol­ecule through the C≡N substituent. The RuII atom is slightly shifted from the η5-C5H4 centroid towards the C≡N substituent. In the crystal, mol­ecules are arranged in columns parallel to [100]. One-dimensional inter­molecular ππ inter­actions [3.363 (3) Å] between the C≡N carbon atom and one carbon of the cyclo­penta­dienyl ring of the overlaying mol­ecule are present.

1. Chemical context

The nitrile group is isoelectronic with the acetylid function (Bonniard et al., 2011[Bonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114-124.]), which has already been investigated in electron-transfer studies (see, for example, Lang et al., 2006[Lang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836-1850.]; Poppitz et al., 2014[Poppitz, E. A. A., Hildebrandt, A. M., Korb, M. & Lang, H. (2014). J. Organomet. Chem. 752, 133-140.]; Speck et al., 2012[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373-6380.]; Hildebrandt & Lang, 2013[Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640-5653.]; Miesel et al., 2013[Miesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993-3002.]). Coordination of, for example, ferrocenecarbo­nitrile towards transition metals M will allow investigation of the electronic properties of —C≡N—M— or —C≡N—M—N≡C— bridging units. A synthesis for ferrocenecarbo­nitrile has already been described in 1957 (Graham et al., 1957[Graham, P. J., Lindsey, R. V., Parshall, G. W., Peterson, M. L. & Whitman, G. M. (1957). J. Am. Chem. Soc. 79, 3416-3420.]); however, only one example of an application in electrochemical studies has been described by Dowling et al. (1981[Dowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345-2348.]). This prompted us to synthesize ferrocenecarbo­nitrile transition metal complexes to investigate the electronic properties of the —C≡N—M—N≡C— bridging units (Strehler et al. 2013[Strehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214-1219.], 2014[Strehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279-4289.]). In a continuation of this work, we present herein the synthesis and crystal structure of the related ruthenocenecarbo­nitrile, (I)[link]. The synthesis of this compound was realized by treatment of formyl­ruthenocene with hydroxyl­amine hydro­chloride, zinc oxide and potassium iodide in aceto­nitrile, which is similar to a procedure already described for the synthesis of ferrocenecarbo­nitrile (Kivrak & Zora, 2007[Kivrak, A. & Zora, M. (2007). J. Organomet. Chem. 692, 2346-2349.]).

[Scheme 1]

2. Structural commentary

The title compound contains one half-mol­ecule in the asymmetric unit with a mirror plane bis­ecting the mol­ecule through atoms C1, C2, C5, N1 and Ru1 (Fig. 1[link]). The Ru1–centroid distance to the C≡N-substituted cyclo­penta­dienyl ring is slightly increased [1.8179 (1) Å] compared to the unsubstituted C5H5 unit [1.8157 (1) Å]. Both cyclo­penta­dienyl rings adopt an ideally eclipsed conformation and are virtually oriented parallel towards each other, which is expressed by the bond angle at the RuII between the two centroids (= D), with D(C5H4)—Ru1—D(C5H5) = 178.87 (1)°. However, the RuII atom is slightly shifted from the centre of the C5 ring to the nitrile-bonded C2 atom, which can be explained best by the significantly different Ru—C bond lengths (Table 1[link]) and also the Ru—D—C angles, which should ideally be 90° (Table 1[link]). This is in accordance with the shift in the ferrocenedicarbo­nitrile structure (Altmannshofer et al., 2008[Altmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013-8024.]). The C≡N substituent itself is bent away from the metal atom in (I)[link], with a maximum shift for N1 [0.047 (4) Å].

Table 1
Selected bond lengths (Å) and angles (°) for the clarification of the shift of the Ru1 atom towards the C≡N substituent in (I)[link]

D is the centroid of the C5H4 or C5H5 ring.

  C2 C3 C4 C5 C6 C7
Ru1—C 2.1650 (18) 2.1886 (13) 2.2013 (12) 2.1779 (18) 2.1847 (13) 2.1879 (12)
C—D—Ru1 88.90 (8) 89.63 (6) 90.93 (6) 89.75 (9) 89.95 (6) 90.16 (6)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (A) x, −y + [{1\over 2}], z.]

3. Supra­molecular features

The packing of (I)[link] consists of a layer-type structure parallel to (010) with the direction of the C≡N function aligned parallel to [10[\overline{1}]], alternating between adjacent layers. A further order is observed by a columnar arrangement of slightly tilted mol­ecules parallel to [100]. Weak inter­molecular ππ inter­actions within the sum of the van der Waals radii (Σ = 3.4 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) are present between C5 and the C1′ atom [3.363 (3) Å] of the overlying mol­ecule in the same layer (Fig. 2[link]).

[Figure 2]
Figure 2
Inter­molecular ππ inter­actions (blue) between C5 and C1′ in the crystal structure of (I)[link]. All H atoms have been omitted for clarity. [Symmetry code: (′) x − 1, y, z.]

4. Database survey

The ruthenocene backbone is hardly described in the literature. Reported derivatives contain sp (ethyn­yl) (Sato et al., 1997[Sato, M., Kawata, Y., Shintate, H., Habata, Y., Akabori, S. & Unoura, K. (1997). Organometallics, 16, 1693-1701.]; Packheiser et al., 2008[Packheiser, R., Jakob, A., Ecorchard, P., Walfort, B. & Lang, H. (2008). Organometallics, 27, 1214-1226.]; Jakob et al., 2008[Jakob, A., Ecorchard, P., Köhler, K. & Lang, H. (2008). J. Organomet. Chem. 693, 3479-3489.], 2009a[Jakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009a). J. Organomet. Chem. 694, 655-666.]), sp2 (Sato et al., 1998[Sato, M., Kawata, Y., Kudo, A., Iwai, A., Saitoh, H. & Ochiai, S. (1998). J. Chem. Soc. Dalton Trans. pp. 2215-2224.], 2004[Sato, M., Nagata, T., Tanemura, A., Fujihara, T., Kumakura, S. & Unoura, K. (2004). Chem. Eur. J. 10, 2166-2178.]; Jakob et al., 2009b[Jakob, A., Ecorchard, P., Rüffer, T., Linseis, M., Winter, R. F. & Lang, H. (2009b). J. Organomet. Chem. 694, 3542-3547.]) and sp3 (Sokolov et al., 2010[Sokolov, V. I., Nikitin, L. N., Bulygina, L. A., Khrustalev, V. N., Starikova, Z. A. & Khokhlov, A. R. (2010). J. Organomet. Chem. 695, 799-803.]; Barlow et al., 2001[Barlow, S., Cowley, A., Green, J. C., Brunker, T. J. & Hascall, T. (2001). Organometallics, 20, 5351-5359.]) carbon substituents or a carb­oxy­lic acid moiety (Zhang & Coppens, 2001[Zhang, Y. & Coppens, P. (2001). Private communication (refcode RALRAX). CCDC, Cambridge, England.]) and its respective RuII complex (Wyman et al., 2005[Wyman, I. W., Robertson, K. N., Cameron, T. S., Swarts, J. C. & Aquino, M. A. S. (2005). Organometallics, 24, 6055-6058.]). They all exhibit similar Ru—D distances (1.795–1.823 Å) as compared to (I)[link] [1.8179 (1)–1.8157 (1) Å] or unsubstituted ruthenocene (1.794–1.816 Å) (Ma & Coppens, 2003[Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 504-505.]; Borissova et al., 2008[Borissova, A. O., Antipin, M. Yu., Perekalin, D. S. & Lyssenko, K. A. (2008). CrystEngComm, 10, 827-832.]; Seiler & Dunitz, 1980[Seiler, P. & Dunitz, J. D. (1980). Acta Cryst. B36, 2946-2950.]).

Comparison of the C—C [1.431 (3) Å] and the C≡N distances [1.148 (3) Å] with the respective ferrocene carbo­nitrile derivatives (C≡N = 1.133–1.150; C—C = 1.428–1.433 Å; Altmannshofer et al., 2008[Altmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013-8024.]; Dayaker et al., 2010[Dayaker, G., Sreeshailam, A., Chevallier, F., Roisnel, T., Radha Krishna, P. & Mongin, F. (2010). Chem. Commun. 46, 2862-2864.]; Bell et al., 1996[Bell, W., Ferguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 1928-1930.]; Nemykin et al., 2007[Nemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007). Organometallics, 26, 3138-3148.]; Erben et al., 2007[Erben, M., Růžička, A., Vinklárek, J., Šťáva, V. & Handlíř, K. (2007). Acta Cryst. E63, m2145-m2146.]) reveals no significant influence of the central metal atom on the electronic properties of the substituent.

5. Synthesis and crystallization

Formyl­ruthenocene was prepared according to a published procedure (Mueller-Westerhoff et al., 1993[Mueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163-167.]). Synthesis of ruthenocenecarbo­nitrile, (I)[link]: formyl­ruthenocene (2.27 g, 8.8 mmol), hydroxyl­amine hydro­chloride (0.96 g, 13.8 mmol), zinc oxide (0.86 g, 10.6 mmol) and potassium iodide (1.76 g, 10.6 mmol) were suspended in 120 ml of dry aceto­nitrile. The mixture was stirred for 4 h at precisely 368 K. After cooling the reaction mixture to ambient temperature, 18 ml of an aqueous Na2S2O3 (5%) solution were added in a single portion, and stirring was continued for additional 20 min. Solid particles were removed by filtration and the filtrate was extracted with ethyl acetate (3 × 50 ml). The combined organic layers were dried over MgSO4. All volatiles were removed under reduced pressure and the crude product was purified by flash chromatography on aluminum oxide using di­chloro­methane as eluent. Greenish crystals of (I)[link] were obtained by slow evaporation of a saturated di­chloro­methane solution containing (I)[link] at ambient temperature (yield: 820 mg, 3.3 mmol, 38% based on formyl­ruthenocene). IR (KBr, cm−1): ν = 2226 (m, C≡N), 2854 (s), 2925 (s), 3082 (m, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K): δ 4.69 (s, 5H, C5H5), 4.70 (pt, 2H, JH,H = 1.8 Hz), 4.70 (pt, 2H, JH,H = 1.8 Hz). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K): δ = 55.3 (Ci-C5H4), 72.4 (C5H4), 72.9 (C5H5), 73.5 (C5H4), 119.4 (CN). HRMS (ESI–TOF, M+): C11H9NRu: m/z = 256.9792 (calc. 256.9776).

6. Refinement

C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ru(C5H5)(C6H4N)]
Mr 256.26
Crystal system, space group Monoclinic, P21/m
Temperature (K) 110
a, b, c (Å) 7.2023 (2), 8.6802 (2), 7.2922 (1)
β (°) 106.497 (2)
V3) 437.12 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.74
Crystal size (mm) 0.38 × 0.30 × 0.30
 
Data collection
Diffractometer Oxford Gemini S CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.849, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27710, 900, 877
Rint 0.019
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.032, 1.05
No. of reflections 900
No. of parameters 67
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.39
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Ruthenocenecarbonitrile top
Crystal data top
[Ru(C5H5)(C6H4N)]F(000) = 252
Mr = 256.26Dx = 1.947 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 7.2023 (2) ÅCell parameters from 26762 reflections
b = 8.6802 (2) Åθ = 3.5–28.7°
c = 7.2922 (1) ŵ = 1.74 mm1
β = 106.497 (2)°T = 110 K
V = 437.12 (2) Å3Block, yellow green
Z = 20.38 × 0.30 × 0.30 mm
Data collection top
Oxford Gemini S CCD
diffractometer
900 independent reflections
Radiation source: fine-focus sealed tube877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 88
Tmin = 0.849, Tmax = 1.000k = 1010
27710 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.032H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.1909P]
where P = (Fo2 + 2Fc2)/3
900 reflections(Δ/σ)max < 0.001
67 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R factor wR and goodness of fit S are based on F2, conventional R factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4152 (3)0.25000.0364 (3)0.0162 (4)
C20.3084 (3)0.25000.1617 (3)0.0142 (4)
C30.24721 (18)0.11497 (16)0.27791 (19)0.0142 (3)
H3C0.26790.01300.23820.017*
C40.14854 (18)0.16776 (15)0.46603 (18)0.0145 (3)
H4C0.09350.10530.57100.017*
C50.1429 (3)0.25000.0334 (3)0.0185 (4)
H5C0.07440.25000.09570.022*
C60.20428 (19)0.11674 (17)0.1491 (2)0.0175 (3)
H6C0.18320.01490.10890.021*
C70.30392 (17)0.16746 (16)0.33757 (19)0.0158 (3)
H7C0.35910.10450.44200.019*
N10.5024 (2)0.25000.1949 (3)0.0244 (4)
Ru10.00474 (2)0.25000.26311 (2)0.00953 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0120 (8)0.0168 (9)0.0198 (10)0.0000.0045 (7)0.000
C20.0093 (8)0.0168 (9)0.0170 (9)0.0000.0044 (7)0.000
C30.0111 (6)0.0148 (7)0.0182 (6)0.0022 (5)0.0065 (5)0.0003 (5)
C40.0145 (6)0.0163 (7)0.0146 (6)0.0003 (5)0.0072 (5)0.0029 (5)
C50.0155 (9)0.0283 (11)0.0145 (9)0.0000.0087 (7)0.000
C60.0143 (6)0.0190 (7)0.0222 (7)0.0005 (5)0.0101 (5)0.0047 (6)
C70.0098 (6)0.0191 (7)0.0193 (6)0.0033 (5)0.0054 (5)0.0029 (5)
N10.0222 (9)0.0274 (10)0.0208 (9)0.0000.0015 (7)0.000
Ru10.00850 (10)0.00992 (10)0.01040 (10)0.0000.00305 (6)0.000
Geometric parameters (Å, º) top
C1—N11.148 (3)C5—Ru12.1780 (18)
C1—C21.431 (3)C5—H5C0.9300
C2—C3i1.4401 (17)C6—C71.4274 (19)
C2—C31.4401 (17)C6—Ru12.1848 (13)
C2—Ru12.1649 (18)C6—H6C0.9300
C3—C41.4294 (18)C7—C7i1.433 (3)
C3—Ru12.1885 (13)C7—Ru12.1878 (12)
C3—H3C0.9300C7—H7C0.9300
C4—C4i1.428 (3)Ru1—C6i2.1848 (13)
C4—Ru12.2013 (12)Ru1—C7i2.1878 (12)
C4—H4C0.9300Ru1—C3i2.1885 (13)
C5—C6i1.4262 (18)Ru1—C4i2.2013 (12)
C5—C61.4262 (18)
N1—C1—C2179.4 (2)C5—Ru1—C638.16 (5)
C1—C2—C3i125.52 (8)C6i—Ru1—C663.94 (8)
C1—C2—C3125.52 (8)C2—Ru1—C7i160.38 (4)
C3i—C2—C3108.96 (16)C5—Ru1—C7i63.77 (6)
C1—C2—Ru1123.64 (13)C6i—Ru1—C7i38.11 (5)
C3i—C2—Ru171.57 (8)C6—Ru1—C7i63.89 (5)
C3—C2—Ru171.57 (8)C2—Ru1—C7160.38 (4)
C4—C3—C2106.82 (12)C5—Ru1—C763.77 (6)
C4—C3—Ru171.48 (7)C6i—Ru1—C763.89 (5)
C2—C3—Ru169.80 (9)C6—Ru1—C738.11 (5)
C4—C3—H3C126.6C7i—Ru1—C738.23 (7)
C2—C3—H3C126.6C2—Ru1—C3i38.63 (4)
Ru1—C3—H3C123.8C5—Ru1—C3i127.17 (5)
C4i—C4—C3108.70 (8)C6i—Ru1—C3i112.30 (6)
C4i—C4—Ru171.08 (3)C6—Ru1—C3i161.19 (5)
C3—C4—Ru170.51 (7)C7i—Ru1—C3i125.76 (5)
C4i—C4—H4C125.7C7—Ru1—C3i159.25 (5)
C3—C4—H4C125.7C2—Ru1—C338.63 (4)
Ru1—C4—H4C124.4C5—Ru1—C3127.17 (5)
C6i—C5—C6108.40 (17)C6i—Ru1—C3161.18 (5)
C6i—C5—Ru171.18 (9)C6—Ru1—C3112.30 (6)
C6—C5—Ru171.18 (9)C7i—Ru1—C3159.25 (5)
C6i—C5—H5C125.8C7—Ru1—C3125.76 (5)
C6—C5—H5C125.8C3i—Ru1—C364.76 (7)
Ru1—C5—H5C123.5C2—Ru1—C4i63.69 (6)
C5—C6—C7107.83 (13)C5—Ru1—C4i160.55 (4)
C5—C6—Ru170.66 (9)C6i—Ru1—C4i126.43 (5)
C7—C6—Ru171.06 (7)C6—Ru1—C4i159.58 (5)
C5—C6—H6C126.1C7i—Ru1—C4i111.94 (5)
C7—C6—H6C126.1C7—Ru1—C4i125.87 (5)
Ru1—C6—H6C123.8C3i—Ru1—C4i38.01 (5)
C6—C7—C7i107.97 (8)C3—Ru1—C4i63.86 (5)
C6—C7—Ru170.83 (7)C2—Ru1—C463.69 (6)
C7i—C7—Ru170.88 (4)C5—Ru1—C4160.55 (4)
C6—C7—H7C126.0C6i—Ru1—C4159.58 (5)
C7i—C7—H7C126.0C6—Ru1—C4126.42 (5)
Ru1—C7—H7C123.9C7i—Ru1—C4125.87 (5)
C2—Ru1—C5113.36 (7)C7—Ru1—C4111.94 (5)
C2—Ru1—C6i127.17 (5)C3i—Ru1—C463.86 (5)
C5—Ru1—C6i38.16 (5)C3—Ru1—C438.01 (5)
C2—Ru1—C6127.17 (5)C4i—Ru1—C437.84 (7)
C1—C2—C3—C4179.04 (16)C2—C3—C4—Ru161.20 (10)
C3i—C2—C3—C40.13 (19)C6i—C5—C6—C70.1 (2)
Ru1—C2—C3—C462.30 (9)Ru1—C5—C6—C761.69 (9)
C1—C2—C3—Ru1118.66 (18)C6i—C5—C6—Ru161.79 (12)
C3i—C2—C3—Ru162.17 (12)C5—C6—C7—C7i0.06 (12)
C2—C3—C4—C4i0.08 (12)Ru1—C6—C7—C7i61.50 (4)
Ru1—C3—C4—C4i61.12 (4)C5—C6—C7—Ru161.44 (10)
Symmetry code: (i) x, y+1/2, z.
Selected bond lengths (Å) and angles (°) for the clarification of the shift of the Ru1 atom towards the CN substituent in (I). top
D is the centroid of the C5H4 or C5H5 ring.
C2C3C4C5C6C7
Ru1—C2.1650 (18)2.1886 (13)2.2013 (12)2.1779 (18)2.1847 (13)2.1879 (12)
C—D—Ru188.90 (8)89.63 (6)90.93 (6)89.75 (9)89.95 (6)90.16 (6)
 

Acknowledgements

MK is grateful to the Fonds der Chemischen Industrie for a Chemiefonds fellowship.

References

First citationAltmannshofer, S., Herdtweck, E., Köhler, F. H., Miller, R., Mölle, R., Scheidt, E.-W., Scherer, W. & Train, C. (2008). Chem. Eur. J. 14, 8013–8024.  CSD CrossRef PubMed CAS Google Scholar
First citationBarlow, S., Cowley, A., Green, J. C., Brunker, T. J. & Hascall, T. (2001). Organometallics, 20, 5351–5359.  CSD CrossRef CAS Google Scholar
First citationBell, W., Ferguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 1928–1930.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBonniard, L., Kahlal, S., Diallo, A. K., Ornelas, C., Roisnel, T., Manca, G., Rodrigues, J., Ruiz, J., Astruc, D. & Saillard, J. Y. (2011). Inorg. Chem. 50, 114–124.  CSD CrossRef CAS PubMed Google Scholar
First citationBorissova, A. O., Antipin, M. Yu., Perekalin, D. S. & Lyssenko, K. A. (2008). CrystEngComm, 10, 827–832.  CSD CrossRef CAS Google Scholar
First citationDayaker, G., Sreeshailam, A., Chevallier, F., Roisnel, T., Radha Krishna, P. & Mongin, F. (2010). Chem. Commun. 46, 2862–2864.  CSD CrossRef CAS Google Scholar
First citationDowling, N., Henry, P. M., Lewis, N. A. & Taube, H. (1981). Inorg. Chem. 20, 2345–2348.  CrossRef CAS Google Scholar
First citationErben, M., Růžička, A., Vinklárek, J., Šťáva, V. & Handlíř, K. (2007). Acta Cryst. E63, m2145–m2146.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraham, P. J., Lindsey, R. V., Parshall, G. W., Peterson, M. L. & Whitman, G. M. (1957). J. Am. Chem. Soc. 79, 3416–3420.  CrossRef CAS Google Scholar
First citationHildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653.  Web of Science CrossRef CAS Google Scholar
First citationJakob, A., Ecorchard, P., Köhler, K. & Lang, H. (2008). J. Organomet. Chem. 693, 3479–3489.  CSD CrossRef CAS Google Scholar
First citationJakob, A., Ecorchard, P., Linseis, M., Winter, R. F. & Lang, H. (2009a). J. Organomet. Chem. 694, 655–666.  CSD CrossRef CAS Google Scholar
First citationJakob, A., Ecorchard, P., Rüffer, T., Linseis, M., Winter, R. F. & Lang, H. (2009b). J. Organomet. Chem. 694, 3542–3547.  CSD CrossRef CAS Google Scholar
First citationKivrak, A. & Zora, M. (2007). J. Organomet. Chem. 692, 2346–2349.  CrossRef CAS Google Scholar
First citationLang, H., Packheiser, R. & Walfort, B. (2006). Organometallics, 25, 1836–1850.  CrossRef CAS Google Scholar
First citationMa, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 504–505.  CSD CrossRef Google Scholar
First citationMiesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993–3002.  Web of Science CSD CrossRef CAS Google Scholar
First citationMueller-Westerhoff, U. T., Zheng, Y. & Ingram, G. (1993). J. Organomet. Chem. 463, 163–167.  CAS Google Scholar
First citationNemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007). Organometallics, 26, 3138–3148.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPackheiser, R., Jakob, A., Ecorchard, P., Walfort, B. & Lang, H. (2008). Organometallics, 27, 1214–1226.  CSD CrossRef CAS Google Scholar
First citationPoppitz, E. A. A., Hildebrandt, A. M., Korb, M. & Lang, H. (2014). J. Organomet. Chem. 752, 133–140.  CSD CrossRef CAS Google Scholar
First citationSato, M., Kawata, Y., Kudo, A., Iwai, A., Saitoh, H. & Ochiai, S. (1998). J. Chem. Soc. Dalton Trans. pp. 2215–2224.  Web of Science CrossRef Google Scholar
First citationSato, M., Kawata, Y., Shintate, H., Habata, Y., Akabori, S. & Unoura, K. (1997). Organometallics, 16, 1693–1701.  CSD CrossRef CAS Google Scholar
First citationSato, M., Nagata, T., Tanemura, A., Fujihara, T., Kumakura, S. & Unoura, K. (2004). Chem. Eur. J. 10, 2166–2178.  CSD CrossRef PubMed CAS Google Scholar
First citationSeiler, P. & Dunitz, J. D. (1980). Acta Cryst. B36, 2946–2950.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokolov, V. I., Nikitin, L. N., Bulygina, L. A., Khrustalev, V. N., Starikova, Z. A. & Khokhlov, A. R. (2010). J. Organomet. Chem. 695, 799–803.  CSD CrossRef CAS Google Scholar
First citationSpeck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373–6380.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrehler, F., Hildebrandt, H., Korb, M. & Lang, H. (2013). Z. Anorg. Allg. Chem. 639, 1214–1219.  CSD CrossRef CAS Google Scholar
First citationStrehler, F., Hildebrandt, H., Korb, M., Rüffer, T. & Lang, H. (2014). Organometallics, 33, 4279–4289.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWyman, I. W., Robertson, K. N., Cameron, T. S., Swarts, J. C. & Aquino, M. A. S. (2005). Organometallics, 24, 6055–6058.  CSD CrossRef CAS Google Scholar
First citationZhang, Y. & Coppens, P. (2001). Private communication (refcode RALRAX). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 398-401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds