research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 354-356

Crystal structure of [2,6-di­fluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′)platinum(II)

CROSSMARK_Color_square_no_text.svg

aResearch Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea, and bDivision of Science Education, Kangwon National University, Chuncheon 220-701, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 February 2015; accepted 3 March 2015; online 11 March 2015)

The asymmetric unit of the title compound, [Pt(C10H5F2N2)(C5H7O2)], comprises one PtII atom, one 2,6-di­fluoro-2,3-bi­pyridine ligand and one acetyl­acetonate anion. The PtII atom adopts a distorted square-planar coordination geometry, being C,N-chelated by the 2,6-di­fluoro-3-(pyridin-2-yl)pyridin-4-yl ligand and O,O′-chelated by the pentane-2,4-dionate ligand. The two pyridine rings of the bi­pyridine ligand are approximately coplanar, making a dihedral angle of 1.2 (2)°. A variety of intra- and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds, as well as ππ inter­actions [centroid–centroid distances = 4.337 (3) and 3.774 (3) Å] contribute to the stabilization of the mol­ecular and crystal structures, and result in the formation of a three-dimensional supra­molecular framework.

1. Chemical context

Cyclo­metalated platinum(II) compounds with C,N-chelating ligands have been considered as an attractive research area due to their wide applications, such as biological imaging, non-linear optics, oxygen sensing and organic light-emitting diodes (OLEDs) (Hudson et al., 2012[Hudson, Z. M., Blight, B. A. & Wang, S. (2012). Org. Lett. 14, 1700-1703.]). In particular, phenyl­pyridine (ppy) based platinum(II) β-diketonate compounds have been widely studied because of their excellent stability and high quantum efficiency in OLEDs (Rao et al., 2012[Rao, Y., Schoenmakers, D., Chang, Y.-L., Lu, J., Lu, Z.-H., Kang, Y. & Wang, S. (2012). Chem. Eur. J. 18, 11306-11316.]). However, examples of platinum(II) compounds with C,N-chelating bi­pyridine ligands are scarce. Herein, we report the result of our investigation on the crystal structure of a novel platinum(II) compound with fluorinated bi­pyridine and acetyl­acetonate (acac, O,O) ligands.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of one PtII atom, one 2,6-di­fluoro-2,3-bi­pyridine ligand and one acetyl­acetonate anion. The PtII atom is four-coordinated by the C,N-chelating 2′,6′-di­fluoro-2,3′-bipyridinato ligand and by the O,O′-chelating pentane-2,4-dionato ligand, forming a distorted square-planar coordination sphere due to narrow ligand bite angles, which range from 81.28 (17) to 93.25 (13)°. The Pt—C bond length of 1.951 (4) Å is shorter than the Pt—N bond length of 1.995 (4) Å due to the more electronegative fluorine substit­uent on the C-bound pyridine ring. The Pt—C, Pt—N and Pt—O bond lengths (Table 1[link]) are in normal ranges as reported for similar PtII compounds, e.g. [Pt(Bppy)(acac)] (Bppy is a boron-functionalized phenyl­pyridine; Rao et al., 2012[Rao, Y., Schoenmakers, D., Chang, Y.-L., Lu, J., Lu, Z.-H., Kang, Y. & Wang, S. (2012). Chem. Eur. J. 18, 11306-11316.]). Within the C,N-bidentate ligand of the title compound, the two pyridine rings are approximately co-planar, making a dihedral angle of 1.2 (2)°, indicating that an effective π conjugation of the two pyridine rings occurs in the title compound. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O and C—H⋯F hydrogen bonds (Table 2[link]).

Table 1
Selected bond lengths (Å)

Pt1—C1 1.951 (4) Pt1—O1 2.074 (3)
Pt1—N2 1.995 (4) Pt1—O2 2.001 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.57 3.040 (5) 111
C7—H7⋯F2 0.95 2.31 2.917 (6) 121
C10—H10⋯F1i 0.95 2.32 3.180 (5) 150
C10—H10⋯O1 0.95 2.41 3.006 (5) 120
C12—H12⋯F2ii 0.95 2.44 3.361 (5) 163
C15—H15A⋯F1i 0.98 2.54 3.481 (6) 161
Symmetry codes: (i) x, y, z+1; (ii) x-1, y-1, z.
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intra­molecular C—H⋯O and C—H⋯F hydrogen bonds.

3. Supra­molecular features

Inter­molecular C—H⋯F hydrogen bonds between neighboring mol­ecules lead to the formation of a two-dimensional supra­molecular network extending parallel to the ([\overline{1}]10) plane (Fig. 2[link], Table 2[link]). These networks are inter­linked by ππ inter­actions [Cg1—Cg2i = 4.337 (3) Å and Cg1—Cg2ii = 3.774 (3) Å, where Cg1 and Cg2 are the centroids of the N1, C1–C5 and the N2, C6–C10 rings, respectively; symmetry codes: (i) −x + 1, −y + 2, −z + 2; (ii) −x + 2, −y + 2, −z + 2], resulting in the formation of an overall three-dimensional supra­molecular framework (Fig. 3[link]).

[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through C—H⋯F inter­actions (yellow dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional supra­molecular network formed through ππ stacking inter­actions (black dashed lines). Yellow dashed lines indicate the C—H⋯F inter­actions. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized according to a previous report (Rao et al., 2012[Rao, Y., Schoenmakers, D., Chang, Y.-L., Lu, J., Lu, Z.-H., Kang, Y. & Wang, S. (2012). Chem. Eur. J. 18, 11306-11316.]). Slow evaporation from a di­chloro­methane/hexane solution afforded yellow crystals suitable for X-ray crystallography analysis.

5. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2-H, and 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl protons.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C10H5F2N2)(C5H7O2)]
Mr 485.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 8.0442 (6), 9.8711 (7), 10.1458 (7)
α, β, γ (°) 97.683 (1), 112.320 (1), 99.410 (1)
V3) 718.12 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.80
Crystal size (mm) 0.27 × 0.24 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.177, 0.386
No. of measured, independent and observed [I > 2σ(I)] reflections 7062, 2810, 2773
Rint 0.023
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.053, 1.07
No. of reflections 2810
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −1.27
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

[2,6-Difluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O')platinum(II) top
Crystal data top
[Pt(C10H5F2N2)(C5H7O2)]Z = 2
Mr = 485.36F(000) = 456
Triclinic, P1Dx = 2.245 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0442 (6) ÅCell parameters from 2773 reflections
b = 9.8711 (7) Åθ = 2.1–26.0°
c = 10.1458 (7) ŵ = 9.80 mm1
α = 97.683 (1)°T = 180 K
β = 112.320 (1)°Block, yellow
γ = 99.410 (1)°0.27 × 0.24 × 0.12 mm
V = 718.12 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2810 independent reflections
Radiation source: fine-focus sealed tube2773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 99
Tmin = 0.177, Tmax = 0.386k = 1212
7062 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0295P)2 + 1.5655P]
where P = (Fo2 + 2Fc2)/3
2810 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 1.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.541428 (18)0.778516 (13)0.974446 (14)0.01645 (7)
F10.6043 (5)0.8519 (4)0.4799 (3)0.0462 (8)
F20.9252 (4)1.1982 (3)0.8748 (3)0.0362 (6)
O10.4622 (4)0.7037 (3)1.1284 (3)0.0240 (6)
O20.3730 (4)0.6133 (3)0.8158 (3)0.0231 (6)
N10.7621 (5)1.0252 (4)0.6783 (4)0.0294 (8)
N20.7143 (5)0.9517 (4)1.1169 (4)0.0197 (7)
C10.6273 (6)0.8664 (4)0.8434 (5)0.0209 (8)
C20.5731 (6)0.8150 (5)0.6931 (5)0.0251 (8)
H20.48920.72670.64310.030*
C30.6477 (6)0.8990 (5)0.6230 (5)0.0290 (9)
C40.8076 (6)1.0704 (4)0.8184 (5)0.0245 (8)
C50.7490 (5)0.9996 (4)0.9079 (4)0.0205 (8)
C60.7995 (6)1.0466 (4)1.0634 (5)0.0210 (8)
C70.9196 (6)1.1711 (4)1.1559 (5)0.0263 (9)
H70.98011.23721.11900.032*
C80.9507 (6)1.1986 (5)1.3023 (5)0.0295 (9)
H81.03161.28361.36590.035*
C90.8626 (6)1.1006 (5)1.3545 (5)0.0279 (9)
H90.88291.11681.45440.034*
C100.7447 (6)0.9790 (5)1.2585 (5)0.0249 (8)
H100.68290.91211.29370.030*
C110.3374 (6)0.5912 (4)1.0981 (5)0.0219 (8)
C120.2383 (6)0.5027 (4)0.9600 (5)0.0247 (9)
H120.14500.42560.95250.030*
C130.2611 (6)0.5149 (4)0.8326 (5)0.0230 (8)
C140.1488 (7)0.4045 (5)0.6953 (5)0.0328 (10)
H14A0.18160.42880.61630.049*
H14B0.01700.39960.66840.049*
H14C0.17460.31310.71170.049*
C150.3027 (7)0.5529 (5)1.2257 (5)0.0305 (10)
H15A0.38220.62451.31420.046*
H15B0.33060.46131.23890.046*
H15C0.17280.54791.20720.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01828 (10)0.01327 (9)0.01850 (9)0.00005 (6)0.00925 (7)0.00501 (6)
F10.062 (2)0.0564 (19)0.0253 (14)0.0043 (16)0.0257 (14)0.0124 (13)
F20.0389 (15)0.0238 (13)0.0495 (17)0.0032 (11)0.0244 (13)0.0138 (12)
O10.0251 (15)0.0198 (14)0.0209 (14)0.0073 (12)0.0087 (12)0.0017 (11)
O20.0242 (14)0.0179 (14)0.0241 (14)0.0014 (11)0.0095 (12)0.0034 (11)
N10.031 (2)0.033 (2)0.034 (2)0.0088 (16)0.0200 (17)0.0187 (17)
N20.0176 (16)0.0169 (16)0.0235 (17)0.0015 (13)0.0083 (14)0.0045 (13)
C10.029 (2)0.0176 (19)0.025 (2)0.0086 (16)0.0169 (18)0.0103 (16)
C20.027 (2)0.025 (2)0.022 (2)0.0021 (17)0.0101 (17)0.0073 (16)
C30.032 (2)0.037 (2)0.021 (2)0.0097 (19)0.0124 (18)0.0108 (18)
C40.023 (2)0.021 (2)0.035 (2)0.0044 (16)0.0161 (18)0.0130 (17)
C50.0191 (18)0.0190 (19)0.025 (2)0.0043 (15)0.0102 (16)0.0065 (16)
C60.0198 (18)0.0182 (19)0.028 (2)0.0041 (15)0.0119 (17)0.0077 (16)
C70.023 (2)0.0170 (19)0.037 (2)0.0004 (16)0.0115 (18)0.0070 (17)
C80.025 (2)0.021 (2)0.031 (2)0.0002 (17)0.0042 (18)0.0021 (17)
C90.029 (2)0.027 (2)0.022 (2)0.0038 (18)0.0074 (17)0.0002 (17)
C100.028 (2)0.024 (2)0.023 (2)0.0032 (17)0.0120 (17)0.0037 (16)
C110.023 (2)0.020 (2)0.028 (2)0.0037 (16)0.0136 (17)0.0129 (16)
C120.021 (2)0.0175 (19)0.034 (2)0.0024 (16)0.0119 (18)0.0086 (17)
C130.0207 (19)0.0160 (19)0.027 (2)0.0004 (15)0.0065 (17)0.0040 (16)
C140.031 (2)0.025 (2)0.029 (2)0.0074 (18)0.0057 (19)0.0023 (18)
C150.030 (2)0.032 (2)0.032 (2)0.0008 (19)0.016 (2)0.0124 (19)
Geometric parameters (Å, º) top
Pt1—C11.951 (4)C7—C81.389 (7)
Pt1—N21.995 (4)C7—H70.9500
Pt1—O12.074 (3)C8—C91.384 (7)
Pt1—O22.001 (3)C8—H80.9500
F1—C31.352 (5)C9—C101.379 (6)
F2—C41.349 (5)C9—H90.9500
O1—C111.282 (5)C10—H100.9500
O2—C131.288 (5)C11—C121.399 (6)
N1—C41.316 (6)C11—C151.506 (6)
N1—C31.327 (6)C12—C131.391 (6)
N2—C101.343 (5)C12—H120.9500
N2—C61.361 (5)C13—C141.504 (6)
C1—C51.406 (6)C14—H14A0.9800
C1—C21.410 (6)C14—H14B0.9800
C2—C31.368 (6)C14—H14C0.9800
C2—H20.9500C15—H15A0.9800
C4—C51.387 (6)C15—H15B0.9800
C5—C61.457 (6)C15—H15C0.9800
C6—C71.393 (6)
C1—Pt1—N281.28 (17)C6—C7—H7120.0
C1—Pt1—O292.90 (16)C9—C8—C7119.3 (4)
N2—Pt1—O2174.15 (12)C9—C8—H8120.4
C1—Pt1—O1174.40 (14)C7—C8—H8120.4
N2—Pt1—O193.25 (13)C10—C9—C8118.6 (4)
O2—Pt1—O192.55 (12)C10—C9—H9120.7
C11—O1—Pt1123.4 (3)C8—C9—H9120.7
C13—O2—Pt1123.9 (3)N2—C10—C9122.4 (4)
C4—N1—C3113.8 (4)N2—C10—H10118.8
C10—N2—C6119.9 (4)C9—C10—H10118.8
C10—N2—Pt1123.4 (3)O1—C11—C12125.5 (4)
C6—N2—Pt1116.7 (3)O1—C11—C15115.4 (4)
C5—C1—C2117.9 (4)C12—C11—C15119.1 (4)
C5—C1—Pt1114.5 (3)C13—C12—C11127.3 (4)
C2—C1—Pt1127.4 (3)C13—C12—H12116.4
C3—C2—C1116.6 (4)C11—C12—H12116.4
C3—C2—H2121.7O2—C13—C12127.1 (4)
C1—C2—H2121.7O2—C13—C14113.0 (4)
N1—C3—F1113.5 (4)C12—C13—C14119.9 (4)
N1—C3—C2127.9 (4)C13—C14—H14A109.5
F1—C3—C2118.6 (4)C13—C14—H14B109.5
N1—C4—F2113.7 (4)H14A—C14—H14B109.5
N1—C4—C5126.6 (4)C13—C14—H14C109.5
F2—C4—C5119.7 (4)H14A—C14—H14C109.5
C4—C5—C1117.2 (4)H14B—C14—H14C109.5
C4—C5—C6127.6 (4)C11—C15—H15A109.5
C1—C5—C6115.3 (4)C11—C15—H15B109.5
N2—C6—C7119.9 (4)H15A—C15—H15B109.5
N2—C6—C5112.2 (4)C11—C15—H15C109.5
C7—C6—C5128.0 (4)H15A—C15—H15C109.5
C8—C7—C6119.9 (4)H15B—C15—H15C109.5
C8—C7—H7120.0
N2—Pt1—O1—C11176.1 (3)C2—C1—C5—C6180.0 (4)
O2—Pt1—O1—C113.1 (3)Pt1—C1—C5—C63.4 (5)
C1—Pt1—O2—C13175.2 (3)C10—N2—C6—C70.7 (6)
O1—Pt1—O2—C133.5 (3)Pt1—N2—C6—C7178.9 (3)
C1—Pt1—N2—C10179.3 (4)C10—N2—C6—C5179.6 (4)
O1—Pt1—N2—C101.9 (3)Pt1—N2—C6—C51.4 (4)
C1—Pt1—N2—C62.6 (3)C4—C5—C6—N2179.1 (4)
O1—Pt1—N2—C6176.2 (3)C1—C5—C6—N21.3 (5)
N2—Pt1—C1—C53.2 (3)C4—C5—C6—C71.2 (7)
O2—Pt1—C1—C5176.2 (3)C1—C5—C6—C7178.4 (4)
N2—Pt1—C1—C2179.4 (4)N2—C6—C7—C80.6 (6)
O2—Pt1—C1—C20.0 (4)C5—C6—C7—C8179.8 (4)
C5—C1—C2—C31.4 (6)C6—C7—C8—C90.5 (6)
Pt1—C1—C2—C3177.4 (3)C7—C8—C9—C100.6 (7)
C4—N1—C3—F1178.8 (4)C6—N2—C10—C90.8 (6)
C4—N1—C3—C20.9 (7)Pt1—N2—C10—C9178.9 (3)
C1—C2—C3—N11.8 (7)C8—C9—C10—N20.8 (7)
C1—C2—C3—F1177.9 (4)Pt1—O1—C11—C120.5 (6)
C3—N1—C4—F2179.4 (4)Pt1—O1—C11—C15178.7 (3)
C3—N1—C4—C50.3 (6)O1—C11—C12—C133.4 (7)
N1—C4—C5—C10.6 (6)C15—C11—C12—C13174.8 (4)
F2—C4—C5—C1179.6 (4)Pt1—O2—C13—C121.3 (6)
N1—C4—C5—C6179.1 (4)Pt1—O2—C13—C14179.2 (3)
F2—C4—C5—C60.0 (6)C11—C12—C13—O23.0 (7)
C2—C1—C5—C40.3 (6)C11—C12—C13—C14176.4 (4)
Pt1—C1—C5—C4176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.573.040 (5)111
C7—H7···F20.952.312.917 (6)121
C10—H10···F1i0.952.323.180 (5)150
C10—H10···O10.952.413.006 (5)120
C12—H12···F2ii0.952.443.361 (5)163
C15—H15A···F1i0.982.543.481 (6)161
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z.
 

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10039141) funded by the MOTIE (Ministry of Trade, Industry & Energy, Korea), KEIT (Korea Evaluation Institute of Industrial Technology) and the 2014 Research Grant from Kangwon National University (C1010838-01-01).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHudson, Z. M., Blight, B. A. & Wang, S. (2012). Org. Lett. 14, 1700–1703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRao, Y., Schoenmakers, D., Chang, Y.-L., Lu, J., Lu, Z.-H., Kang, Y. & Wang, S. (2012). Chem. Eur. J. 18, 11306–11316.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 354-356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds