research communications
catena-poly[[diaquabis(4-formylbenzoato-κO1)cobalt(II)]-μ-pyrazine-κ2N:N′]
ofaDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cAksaray University, Department of Physics, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title polymeric compound, [Co(C8H5O3)2(C4H4N2)(H2O)2]n, the CoII atom is located on a twofold rotation axis and has a slightly distorted octahedral coordination sphere. In the equatorial plane, it is coordinated by two carboxylate O atoms of two symmetry-related monodentate formylbenzoate anions and by two N atoms of two bridging pyrazine ligands. The latter are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water molecules. In the formylbenzoate anion, the carboxylate group is twisted away from the attached benzene ring by 7.50 (8)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 64.90 (4)°. The pyrazine ligands bridge the CoII cations, forming linear chains running along the b-axis direction. Strong intramolecular O—H⋯O hydrogen bonds link the water molecules to the carboxylate O atoms. In the crystal, weak O—Hwater⋯Owater hydrogen bonds link adjacent chains into layers parallel to the bc plane. The layers are linked via C—Hpyrazine⋯Oformyl hydrogen bonds, forming a three-dimensional network. There are also weak C—H⋯π interactions present.
Keywords: crystal structure; cobalt(II); transition metal complexes; benzoic acid derivatives; one-dimensional coordination polymer.
CCDC reference: 1051344
1. Chemical context
The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Antsyshkina et al., 1980; Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties and, as a result, they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).
In this context, we report the synthesis and 8H5O3)2(C4H4N2)(H2O)2]n, which is isotypic with its CuII (Çelik et al., 2014a) and NiII (Çelik et al., 2014b) analogues.
of the title compound, [Co(C2. Structural commentary
The II ion, one formylbenzoate (FB) anion, one water molecule and half of a pyrazine molecule. Atoms N1 and N2 of the pyrazine ligand and Co1 are located on a twofold rotation axis (Fig. 1). The pyrazine ligands bridge adjacent CoII ions, forming polymeric chains running along the b-axis direction (Fig. 2). The distance between symmetry-related CoII ions [Co1⋯Co1iii; symmetry code: (iii) x, y + 1, z] is 7.1193 (4) Å.
of the title compound contains a CoThe equatorial plane of the CoIIO4N2 coordination sphere is composed of two carboxylate O atoms [O1 and O1i; symmetry code: (i) 2 − x, y, − z] of two symmetry-related monodentate formylbenzoate anions and two N atoms [N1 and N2ii; symmetry code: (ii) x, −1 + y, z] of two bridging pyrazine ligands, which are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms (O4 and O4i) of the coordinating water molecules.
The near equality of the C1—O1 [1.272 (2) Å] and C1—O2 [1.245 (2) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The Co—N bond length is 2.165 (9) Å, while the Co—O bond lengths are 2.0551 (9) Å (for benzoate oxygen) and 2.1491 (11) Å (for water oxygen), close to standard values. The Co1 atom is displaced by 0.1034 (2) Å from the mean plane of the carboxylate group (O1/C1/O2). The dihedral angle between the carboxylate group and the adjacent benzene ring A (C2–C7) is 7.50 (8)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 64.90 (4)°.
3. Supramolecular features
Strong intramolecular O—H⋯O hydrogen bonds (Table 1) link the water molecules to the non-coordinating carboxylate oxygen atoms. In the crystal, weak O—Hwater⋯Owater hydrogen bonds (Table 1) link adjacent chains into layers parallel to the bc plane. The layers are linked via C—Hpyrazine⋯Oformyl hydrogen bonds, forming a three-dimensional network (Fig. 3). There are also weak C—H⋯π interactions present (Table 1).
4. Refinement
The experimental details including the crystal data, data collection and . Atoms H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The methine H atom was also located in a difference Fourier map and the C—H distance restrained to 0.984 (13) Å. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
are summarized in Table 25. Synthesis and crystallization
The title compound was prepared by the reaction of CoSO4·7H2O (1.40 g, 5 mmol) in H2O (25 ml) and pyrazine (0.40 g, 5 mmol) in H2O (25 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (70 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving orange single crystals.
Supporting information
CCDC reference: 1051344
10.1107/S205698901500403X/wm5129sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500403X/wm5129Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Co(C8H5O3)2(C4H4N2)(H2O)2] | F(000) = 972 |
Mr = 473.29 | Dx = 1.626 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9866 reflections |
a = 22.1623 (6) Å | θ = 2.4–28.3° |
b = 7.1193 (2) Å | µ = 0.94 mm−1 |
c = 12.2911 (3) Å | T = 296 K |
β = 94.432 (1)° | Block, orange |
V = 1933.49 (9) Å3 | 0.47 × 0.22 × 0.11 mm |
Z = 4 |
Bruker SMART BREEZE CCD diffractometer | 2427 independent reflections |
Radiation source: fine-focus sealed tube | 2336 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 28.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −29→29 |
Tmin = 0.830, Tmax = 0.914 | k = −9→9 |
27023 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0409P)2 + 1.5712P] where P = (Fo2 + 2Fc2)/3 |
2427 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.35 e Å−3 |
1 restraint | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 1.0000 | −0.05145 (3) | 0.7500 | 0.01998 (9) | |
O1 | 0.91572 (4) | −0.04830 (13) | 0.80894 (9) | 0.0276 (2) | |
O2 | 0.86274 (5) | −0.17780 (18) | 0.66579 (9) | 0.0402 (3) | |
O3 | 0.60114 (6) | −0.1312 (3) | 0.95577 (12) | 0.0651 (4) | |
O4 | 0.96115 (5) | −0.06701 (18) | 0.58454 (9) | 0.0352 (2) | |
H41 | 0.9245 (12) | −0.104 (4) | 0.600 (2) | 0.058 (6)* | |
H42 | 0.9564 (12) | 0.019 (4) | 0.555 (2) | 0.066 (8)* | |
N1 | 1.0000 | 0.2518 (2) | 0.7500 | 0.0247 (3) | |
N2 | 1.0000 | 0.6436 (2) | 0.7500 | 0.0235 (3) | |
C1 | 0.86731 (5) | −0.11157 (17) | 0.75983 (11) | 0.0240 (2) | |
C2 | 0.81095 (5) | −0.10250 (17) | 0.82116 (10) | 0.0226 (2) | |
C3 | 0.81105 (6) | −0.0089 (2) | 0.92052 (11) | 0.0268 (2) | |
H3 | 0.8467 | 0.0439 | 0.9518 | 0.032* | |
C4 | 0.75794 (6) | 0.0058 (2) | 0.97289 (11) | 0.0301 (3) | |
H4 | 0.7580 | 0.0682 | 1.0394 | 0.036* | |
C5 | 0.70463 (6) | −0.0726 (2) | 0.92617 (12) | 0.0292 (3) | |
C6 | 0.70446 (6) | −0.1685 (2) | 0.82755 (12) | 0.0307 (3) | |
H6 | 0.6689 | −0.2222 | 0.7967 | 0.037* | |
C7 | 0.75745 (6) | −0.18340 (19) | 0.77557 (11) | 0.0271 (3) | |
H7 | 0.7574 | −0.2478 | 0.7098 | 0.032* | |
C8 | 0.64849 (8) | −0.0553 (3) | 0.98296 (15) | 0.0430 (4) | |
H8 | 0.6472 (7) | 0.029 (2) | 1.0463 (12) | 0.021 (4)* | |
C9 | 0.97461 (6) | 0.35053 (18) | 0.82681 (11) | 0.0287 (3) | |
H9 | 0.9563 | 0.2869 | 0.8815 | 0.034* | |
C10 | 0.97486 (7) | 0.54530 (17) | 0.82719 (12) | 0.0282 (3) | |
H10 | 0.9571 | 0.6090 | 0.8825 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01683 (12) | 0.01603 (12) | 0.02763 (14) | 0.000 | 0.00520 (8) | 0.000 |
O1 | 0.0180 (4) | 0.0288 (5) | 0.0366 (5) | −0.0022 (3) | 0.0058 (4) | −0.0040 (4) |
O2 | 0.0284 (5) | 0.0584 (7) | 0.0351 (5) | −0.0116 (5) | 0.0103 (4) | −0.0128 (5) |
O3 | 0.0296 (6) | 0.1092 (13) | 0.0583 (8) | −0.0015 (7) | 0.0149 (5) | 0.0049 (9) |
O4 | 0.0299 (5) | 0.0449 (6) | 0.0312 (5) | −0.0052 (5) | 0.0051 (4) | 0.0083 (5) |
N1 | 0.0217 (7) | 0.0178 (6) | 0.0353 (8) | 0.000 | 0.0065 (6) | 0.000 |
N2 | 0.0242 (7) | 0.0172 (6) | 0.0301 (7) | 0.000 | 0.0078 (6) | 0.000 |
C1 | 0.0197 (5) | 0.0204 (5) | 0.0324 (6) | −0.0004 (4) | 0.0059 (4) | 0.0013 (5) |
C2 | 0.0193 (5) | 0.0218 (5) | 0.0270 (6) | 0.0006 (4) | 0.0039 (4) | 0.0022 (4) |
C3 | 0.0224 (6) | 0.0303 (6) | 0.0272 (6) | 0.0003 (5) | −0.0008 (5) | −0.0012 (5) |
C4 | 0.0312 (7) | 0.0337 (7) | 0.0259 (6) | 0.0040 (6) | 0.0048 (5) | −0.0022 (5) |
C5 | 0.0236 (6) | 0.0332 (7) | 0.0317 (6) | 0.0046 (5) | 0.0086 (5) | 0.0055 (5) |
C6 | 0.0207 (6) | 0.0367 (7) | 0.0351 (7) | −0.0048 (5) | 0.0038 (5) | −0.0002 (6) |
C7 | 0.0234 (6) | 0.0308 (6) | 0.0274 (6) | −0.0050 (5) | 0.0048 (5) | −0.0036 (5) |
C8 | 0.0316 (8) | 0.0576 (11) | 0.0417 (8) | 0.0079 (7) | 0.0152 (6) | 0.0035 (7) |
C9 | 0.0318 (6) | 0.0211 (6) | 0.0349 (7) | −0.0002 (5) | 0.0137 (5) | 0.0036 (5) |
C10 | 0.0332 (7) | 0.0210 (6) | 0.0321 (7) | 0.0016 (5) | 0.0141 (5) | −0.0009 (5) |
Co1—O1 | 2.0551 (9) | C2—C1 | 1.5093 (17) |
Co1—O1i | 2.0551 (9) | C2—C3 | 1.3911 (18) |
Co1—O4 | 2.1491 (11) | C2—C7 | 1.3961 (17) |
Co1—O4i | 2.1491 (11) | C3—H3 | 0.9300 |
Co1—N1 | 2.1588 (15) | C4—C3 | 1.3884 (18) |
Co1—N2ii | 2.1714 (15) | C4—H4 | 0.9300 |
O1—C1 | 1.2721 (16) | C5—C4 | 1.390 (2) |
O2—C1 | 1.2451 (17) | C5—C6 | 1.391 (2) |
O3—C8 | 1.205 (2) | C5—C8 | 1.478 (2) |
O4—H41 | 0.89 (3) | C6—H6 | 0.9300 |
O4—H42 | 0.71 (3) | C7—C6 | 1.3836 (18) |
N1—C9 | 1.3357 (15) | C7—H7 | 0.9300 |
N1—C9i | 1.3357 (15) | C8—H8 | 0.984 (13) |
N2—Co1iii | 2.1714 (15) | C9—H9 | 0.9300 |
N2—C10 | 1.3347 (15) | C10—C9 | 1.3866 (19) |
N2—C10i | 1.3347 (15) | C10—H10 | 0.9300 |
O1—Co1—O1i | 178.75 (5) | C3—C2—C1 | 120.92 (11) |
O1—Co1—O4 | 91.46 (4) | C3—C2—C7 | 119.58 (12) |
O1i—Co1—O4 | 88.60 (4) | C7—C2—C1 | 119.46 (11) |
O1—Co1—O4i | 88.60 (4) | C2—C3—H3 | 120.0 |
O1i—Co1—O4i | 91.46 (4) | C4—C3—C2 | 119.94 (12) |
O1—Co1—N1 | 89.38 (3) | C4—C3—H3 | 120.0 |
O1i—Co1—N1 | 89.38 (3) | C3—C4—C5 | 120.15 (13) |
O1—Co1—N2ii | 90.62 (3) | C3—C4—H4 | 119.9 |
O1i—Co1—N2ii | 90.62 (3) | C5—C4—H4 | 119.9 |
O4—Co1—O4i | 174.09 (7) | C4—C5—C6 | 120.13 (12) |
O4—Co1—N1 | 92.96 (4) | C4—C5—C8 | 119.41 (14) |
O4i—Co1—N1 | 92.96 (4) | C6—C5—C8 | 120.46 (14) |
O4—Co1—N2ii | 87.04 (4) | C5—C6—H6 | 120.2 |
O4i—Co1—N2ii | 87.04 (4) | C7—C6—C5 | 119.67 (12) |
N1—Co1—N2ii | 180.000 (1) | C7—C6—H6 | 120.2 |
C1—O1—Co1 | 125.81 (9) | C2—C7—H7 | 119.7 |
Co1—O4—H41 | 96.6 (15) | C6—C7—C2 | 120.52 (12) |
Co1—O4—H42 | 118 (2) | C6—C7—H7 | 119.7 |
H41—O4—H42 | 105 (3) | O3—C8—C5 | 125.34 (17) |
C9—N1—Co1 | 121.75 (8) | O3—C8—H8 | 114.5 (10) |
C9i—N1—Co1 | 121.75 (8) | C5—C8—H8 | 120.1 (10) |
C9—N1—C9i | 116.49 (15) | N1—C9—C10 | 121.79 (12) |
C10—N2—Co1iii | 121.61 (8) | N1—C9—H9 | 119.1 |
C10i—N2—Co1iii | 121.61 (8) | C10—C9—H9 | 119.1 |
C10—N2—C10i | 116.79 (15) | N2—C10—C9 | 121.57 (12) |
O1—C1—C2 | 116.62 (11) | N2—C10—H10 | 119.2 |
O2—C1—O1 | 125.42 (12) | C9—C10—H10 | 119.2 |
O2—C1—C2 | 117.96 (11) | ||
O4—Co1—O1—C1 | 23.45 (11) | C3—C2—C1—O1 | 7.53 (18) |
O4i—Co1—O1—C1 | −150.64 (11) | C3—C2—C1—O2 | −171.75 (13) |
N1—Co1—O1—C1 | 116.39 (10) | C7—C2—C1—O1 | −174.80 (12) |
N2ii—Co1—O1—C1 | −63.61 (10) | C7—C2—C1—O2 | 5.92 (18) |
O1—Co1—N1—C9 | 35.39 (8) | C1—C2—C3—C4 | 176.79 (12) |
O1i—Co1—N1—C9 | −144.61 (8) | C7—C2—C3—C4 | −0.9 (2) |
O1—Co1—N1—C9i | −144.61 (8) | C1—C2—C7—C6 | −176.64 (12) |
O1i—Co1—N1—C9i | 35.39 (8) | C3—C2—C7—C6 | 1.1 (2) |
O4—Co1—N1—C9 | 126.82 (8) | C5—C4—C3—C2 | −0.1 (2) |
O4i—Co1—N1—C9 | −53.18 (8) | C4—C5—C6—C7 | −0.8 (2) |
O4—Co1—N1—C9i | −53.18 (8) | C6—C5—C4—C3 | 1.0 (2) |
O4i—Co1—N1—C9i | 126.82 (8) | C8—C5—C4—C3 | −179.86 (14) |
Co1—O1—C1—O2 | −3.6 (2) | C8—C5—C6—C7 | −179.95 (14) |
Co1—O1—C1—C2 | 177.23 (8) | C4—C5—C8—O3 | −172.93 (18) |
Co1—N1—C9—C10 | 179.66 (10) | C6—C5—C8—O3 | 6.3 (3) |
C9i—N1—C9—C10 | −0.34 (10) | C2—C7—C6—C5 | −0.2 (2) |
Co1iii—N2—C10—C9 | 179.66 (10) | N2—C10—C9—N1 | 0.7 (2) |
C10i—N2—C10—C9 | −0.34 (10) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, y−1, z; (iii) x, y+1, z. |
Cg1 is the centroid of ring A (C2–C7). |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O2 | 0.89 (3) | 1.72 (3) | 2.5909 (16) | 164 (2) |
O4—H42···O4iv | 0.71 (3) | 2.63 (3) | 2.958 (2) | 111 (2) |
C10—H10···O3v | 0.93 | 2.46 | 3.320 (2) | 154 |
C7—H7···Cg1vi | 0.93 | 2.65 | 3.4216 (15) | 142 |
Symmetry codes: (iv) −x+2, −y, −z+1; (v) −x+3/2, −y+1/2, −z+2; (vi) x, −y, z−1/2. |
Acknowledgements
The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by the Kafkas University Research Fund (grant No. 2012-FEF-12).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080. CAS Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2014a). Acta Cryst. E70, m4–m5. CSD CrossRef IUCr Journals Google Scholar
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2014b). Acta Cryst. E70, m65–m66. CSD CrossRef IUCr Journals Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.