research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 346-349

Crystal structure of tetra­aqua­[2-(pyridin-2-yl)-1H-imidazole-κ2N2,N3]iron(II) sulfate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, and cVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia
*Correspondence e-mail: fat_setifi@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 February 2015; accepted 3 March 2015; online 11 March 2015)

In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octa­hedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octa­hedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further inter­connect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and ππ inter­actions.

1. Chemical context

Polynitrile anions have recently received considerable attention in the fields of coordination chemistry and mol­ecular materials (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]). These organic anions are of inter­est due to their ability to act towards metal atoms with various coordination modes and for their high degree of electronic delocalization (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2002[Setifi, F., Golhen, S., Ouahab, L., Turner, S. S. & Day, P. (2002). CrystEngComm, 4, 1-6.], 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.], 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]).

[Scheme 1]

We are inter­ested in using these anionic ligands in combin­ation with other neutral bridging co-ligands to explore their structural features and properties relevant to the field of mol­ecular materials exhibiting the spin crossover (SCO) phenomenon (Dupouy et al., 2008[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921-8931.], 2009[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404-3406.]). In an attempt to prepare such an iron(II) complex using hydro­thermal synthesis, we obtained instead the title compound [Fe(pyim)(H2O)4]SO4, (I)[link], where pyim is 2-(pyridin-2-yl)-1H-imidazole.

2. Structural commentary

Fig. 1[link] shows the asymmetric unit of (I)[link]. The main building units in the crystal structure of (I)[link] are octa­hedral [Fe(pyim)(H2O)4]2+ complex cations and [SO4]2− anions. The distorted octa­hedral environment of the central FeII ion is defined by two N donor atoms of the pyim ligand and by the O atoms of two water mol­ecules in the equatorial plane, while the two remaining water mol­ecules coordinate at the axial sites. The bite angle N1—Fe—N2 of 76.04 (7)° shows the most significant deviation from the ideal octa­hedral geometry, with the other coordination angles deviating by 0.21 (7) to 11.91 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with atom labels and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as double dashed lines.

The Fe—N coordination bonds with the chelate ligand have markedly different lengths, Fe—N1 = 2.243 (2) and Fe—N2 = 2.1361 (17) Å, which are also dissimilar to those in the previously reported [Fe(dmbpy)(H2O)4]SO4 complex where dmbpy is 5,5′-dimethyl-2,2′-bi­pyridine (Belamri et al., 2014[Belamri, Y., Setifi, F., Francuski, B. M., Novaković, S. B. & Zouaoui, S. (2014). Acta Cryst. E70, 544-546.].) comprising a nearly symmetrical dipyridyl ligand [Fe—N = 2.176 (3) Å on average]. The torsion angles within the approximately planar five-membered chelate ring of (I)[link] vary from 0.6 (3) to −5.2 (2)° and reflect a more pronounced deviation from planarity in comparison with the dmbpy FeII complex that exhibits a maximal torsion angle of 2.0 (3)°. The dihedral angle of 5.5 (1) ° between the aromatic rings of the pyim ligand is within the range of the values reported for the eight independent mol­ecules in the crystal structure of the non-coordinating ligand [1(1) to 17 (1)°; Tinant et al., 2010[Tinant, B., Decamp, C., Robert, F. & Garcia, Y. Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 729-732.]]. In the present complex, all four Fe—O bond lengths, ranging from 2.1191 (18) to 2.1340 (17) Å, are longer than the corres­ponding ones in the [Fe(dmbpy)(H2O)4]SO4 complex, which range from 2.079 (2) to 2.110 (2) Å.

3. Supra­molecular features

The crystal packing of (I)[link] is stabilized by a complex hydrogen-bonding network involving the coordinating water mol­ecules and the imidazole fragment as donors to the O acceptors atoms of the sulfate anion. Each cationic [Fe(pyim)(H2O)4]2+ unit is surrounded by five [SO4]2− anions. Similarly to the crystal structure of [Fe(dmbpy)(H2O)4]SO4, pairs of axially and equatorially coordinating water mol­ecules bind to pairs of O acceptor atoms from the same [SO4]2− group, forming eight medium-strength inter­actions (Table 1[link]). These hydrogen bonds arrange the complex mol­ecules into layers parallel to the ab plane (Fig. 2[link]). Additional N—H⋯O and C—H⋯O hydrogen bonds involving the donors from the aromatic ligand inter­connect adjacent layers into a three-dimensional arrangement (Fig. 3[link]). The vicinity of aromatic rings in the inter-layer region gives rise to C—H⋯π [H3⋯Cg1i = 3.033 Å; C3—H3⋯Cg1i = 117°; symmetry code: (i) = −x + [{1\over 2}], y + [{1\over 2}], z; Cg1 is the centroid of the imidazole ring] and weak ππ inter­actions [Cg1⋯Cg2ii = 3.821 Å, the shortest inter­atomic distance N3⋯C2ii = 3.325 (1) Å; symmetry code: (ii) = −x + 1, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of the imidazole and pyridine rings, respectively]. C—H⋯O inter­actions are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O3i 0.78 (3) 2.00 (3) 2.785 (3) 175 (3)
O5—H2O5⋯O1ii 0.85 (4) 2.00 (3) 2.845 (3) 172 (4)
O6—H1O6⋯O1 0.71 (3) 2.15 (3) 2.857 (3) 170 (3)
O6—H2O6⋯O3iii 0.89 (3) 1.85 (3) 2.736 (3) 175 (3)
O7—H1O7⋯O1iii 0.64 (4) 2.17 (3) 2.809 (3) 173 (4)
O7—H2O7⋯O4ii 0.90 (4) 1.83 (3) 2.720 (3) 168 (4)
O8—H1O8⋯O4i 0.76 (3) 1.96 (3) 2.722 (3) 178 (4)
O8—H2O8⋯O2 0.84 (3) 1.90 (3) 2.737 (3) 175 (3)
N3—H3N⋯O2iv 0.93 (3) 1.93 (3) 2.858 (3) 178 (3)
C4—H4⋯O2iv 0.93 2.40 3.287 (3) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
O—H⋯O inter­actions (dashed lines) connect cationic and anionic units into layers parallel to the ab plane (view of a single layer down the c axis). H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
[Figure 3]
Figure 3
The three-dimensional packing of (I)[link] viewed down the b axis.

4. Synthesis and crystallization

The title compound was obtained under hydro­thermal conditions from a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 2-(pyridin-2-yl)-1H-imidazole (15 mg, 0.1 mmol) and potassium tri­cyano­methanide KC(CN)3 (26 mg, 0.2 mmol) in water-ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was then allowed to cool to ambient temperature. Block-like yellow crystals of (I)[link] were collected by filtration, washed with water and dried in air (yield 58%).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 Å for aromatic C atoms, with Uiso(H) = 1.2Ueq(C). The H atoms attached to O and N atoms were located in a difference Fourier map and were refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C8H7N3)(H2O)4]SO4
Mr 369.14
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 12.476 (5), 11.741 (5), 20.313 (7)
V3) 2975.5 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.19
Crystal size (mm) 0.34 × 0.20 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.802, 0.871
No. of measured, independent and observed [I > 2σ(I)] reflections 20168, 4417, 3008
Rint 0.042
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.08
No. of reflections 4417
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX(Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae, 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Tetraaqua[2-(pyridin-2-yl)-1H-imidazole-κ2N2,N3]iron(II) sulfate top
Crystal data top
[Fe(C8H7N3)(H2O)4]SO4F(000) = 1520
Mr = 369.14Dx = 1.648 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9606 reflections
a = 12.476 (5) Åθ = 2.5–30.0°
b = 11.741 (5) ŵ = 1.19 mm1
c = 20.313 (7) ÅT = 293 K
V = 2975.5 (19) Å3Block, yellow
Z = 80.34 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ & ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.802, Tmax = 0.871k = 1416
20168 measured reflectionsl = 2827
Refinement top
Refinement on F2226 parameters
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.47 e Å3
4417 reflectionsΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.45016 (2)0.72203 (3)0.35060 (2)0.02305 (9)
S10.74974 (4)0.47721 (5)0.30259 (2)0.02198 (11)
O10.69197 (10)0.52744 (13)0.24568 (6)0.0295 (3)
O20.69268 (12)0.50603 (15)0.36361 (7)0.0378 (4)
O30.85850 (11)0.52416 (15)0.30581 (7)0.0368 (4)
O40.75368 (13)0.35340 (15)0.29605 (7)0.0441 (4)
O50.45617 (15)0.89924 (16)0.33077 (10)0.0416 (4)
O60.50247 (15)0.66267 (16)0.25674 (7)0.0336 (4)
O70.29469 (14)0.71843 (19)0.30864 (8)0.0322 (4)
O80.61694 (12)0.72412 (17)0.37388 (8)0.0314 (4)
N10.42117 (13)0.54515 (16)0.38829 (7)0.0274 (4)
N20.40687 (14)0.74690 (16)0.45132 (8)0.0294 (4)
N30.35709 (14)0.6734 (2)0.54639 (8)0.0353 (5)
C10.42985 (17)0.4458 (2)0.35520 (10)0.0357 (5)
H10.45480.44770.31210.043*
C20.40365 (18)0.3420 (2)0.38200 (11)0.0405 (6)
H20.41070.27530.35770.049*
C30.36666 (19)0.3396 (2)0.44581 (12)0.0438 (6)
H30.34840.27070.46540.053*
C40.35690 (17)0.4400 (2)0.48053 (11)0.0387 (6)
H40.33140.43970.52350.046*
C50.38537 (15)0.5406 (2)0.45065 (9)0.0279 (5)
C60.38177 (14)0.6510 (2)0.48286 (9)0.0283 (5)
C70.36954 (17)0.7871 (2)0.55631 (11)0.0398 (6)
H70.35930.82660.59550.048*
C80.40013 (17)0.8319 (2)0.49715 (10)0.0362 (5)
H80.41420.90850.48930.043*
H1O50.510 (2)0.932 (2)0.3248 (13)0.049 (8)*
H2O50.408 (3)0.933 (3)0.3090 (15)0.084 (12)*
H1O60.5519 (19)0.632 (2)0.2580 (12)0.036 (8)*
H2O60.453 (2)0.617 (3)0.2387 (13)0.062 (9)*
H1O70.273 (2)0.672 (3)0.2986 (13)0.045 (11)*
H2O70.286 (2)0.770 (3)0.2761 (16)0.066 (10)*
H1O80.652 (2)0.760 (2)0.3515 (11)0.038 (8)*
H2O80.644 (2)0.658 (3)0.3708 (13)0.050 (9)*
H3N0.3399 (19)0.615 (2)0.5753 (13)0.054 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02282 (15)0.02469 (18)0.02163 (14)0.00077 (12)0.00178 (10)0.00238 (11)
S10.0206 (2)0.0222 (3)0.0231 (2)0.00159 (19)0.00054 (17)0.00183 (18)
O10.0279 (7)0.0296 (9)0.0309 (7)0.0009 (6)0.0064 (5)0.0067 (6)
O20.0427 (9)0.0408 (11)0.0300 (7)0.0072 (8)0.0144 (6)0.0084 (7)
O30.0214 (7)0.0493 (12)0.0397 (8)0.0045 (7)0.0021 (6)0.0095 (7)
O40.0598 (10)0.0226 (10)0.0500 (9)0.0088 (8)0.0224 (8)0.0042 (7)
O50.0300 (9)0.0299 (11)0.0649 (11)0.0052 (8)0.0073 (8)0.0177 (8)
O60.0263 (8)0.0449 (12)0.0296 (8)0.0023 (9)0.0008 (6)0.0053 (7)
O70.0292 (8)0.0304 (11)0.0370 (9)0.0006 (8)0.0061 (6)0.0014 (8)
O80.0250 (8)0.0322 (11)0.0372 (8)0.0020 (8)0.0001 (6)0.0057 (8)
N10.0290 (9)0.0306 (11)0.0226 (8)0.0024 (8)0.0005 (6)0.0035 (7)
N20.0272 (9)0.0343 (12)0.0267 (9)0.0011 (8)0.0019 (7)0.0027 (7)
N30.0344 (10)0.0474 (14)0.0241 (9)0.0006 (9)0.0072 (7)0.0031 (8)
C10.0399 (12)0.0366 (15)0.0305 (11)0.0023 (11)0.0040 (9)0.0014 (9)
C20.0422 (13)0.0323 (15)0.0470 (13)0.0037 (12)0.0076 (10)0.0068 (11)
C30.0430 (14)0.0397 (17)0.0486 (14)0.0108 (12)0.0005 (10)0.0068 (11)
C40.0341 (12)0.0483 (17)0.0338 (11)0.0112 (11)0.0032 (9)0.0090 (10)
C50.0209 (9)0.0370 (14)0.0257 (9)0.0040 (9)0.0015 (7)0.0048 (8)
C60.0211 (9)0.0413 (15)0.0227 (9)0.0017 (9)0.0033 (7)0.0050 (8)
C70.0352 (12)0.0516 (18)0.0326 (11)0.0047 (11)0.0045 (9)0.0049 (10)
C80.0353 (12)0.0340 (15)0.0395 (12)0.0010 (11)0.0022 (9)0.0073 (10)
Geometric parameters (Å, º) top
Fe1—O72.1191 (18)N1—C11.351 (3)
Fe1—O52.121 (2)N2—C61.333 (3)
Fe1—O62.1323 (15)N2—C81.368 (3)
Fe1—O82.1340 (17)N3—C61.353 (2)
Fe1—N22.1361 (17)N3—C71.359 (3)
Fe1—N12.243 (2)N3—H3N0.93 (3)
S1—O41.4605 (19)C1—C21.373 (4)
S1—O31.4661 (16)C1—H10.9300
S1—O21.4688 (14)C2—C31.376 (3)
S1—O11.4844 (14)C2—H20.9300
O5—H1O50.78 (3)C3—C41.379 (4)
O5—H2O50.85 (3)C3—H30.9300
O6—H1O60.71 (2)C4—C51.374 (3)
O6—H2O60.89 (3)C4—H40.9300
O7—H1O70.64 (3)C5—C61.453 (3)
O7—H2O70.90 (3)C7—C81.366 (3)
O8—H1O80.76 (3)C7—H70.9300
O8—H2O80.84 (3)C8—H80.9300
N1—C51.344 (2)
O7—Fe1—O588.60 (8)C5—N1—C1117.44 (19)
O7—Fe1—O685.07 (7)C5—N1—Fe1114.36 (15)
O5—Fe1—O698.06 (8)C1—N1—Fe1128.10 (14)
O7—Fe1—O8169.08 (6)C6—N2—C8105.96 (18)
O5—Fe1—O889.79 (7)C6—N2—Fe1113.84 (14)
O6—Fe1—O884.46 (7)C8—N2—Fe1140.12 (17)
O7—Fe1—N299.00 (7)C6—N3—C7107.85 (19)
O5—Fe1—N293.25 (8)C6—N3—H3N120.6 (17)
O6—Fe1—N2168.09 (7)C7—N3—H3N131.4 (17)
O8—Fe1—N291.87 (7)N1—C1—C2123.3 (2)
O7—Fe1—N188.35 (7)N1—C1—H1118.3
O5—Fe1—N1168.26 (7)C2—C1—H1118.3
O6—Fe1—N192.97 (7)C1—C2—C3118.2 (2)
O8—Fe1—N195.29 (7)C1—C2—H2120.9
N2—Fe1—N176.04 (7)C3—C2—H2120.9
O4—S1—O3110.31 (10)C2—C3—C4119.5 (2)
O4—S1—O2108.80 (10)C2—C3—H3120.2
O3—S1—O2108.93 (9)C4—C3—H3120.2
O4—S1—O1109.93 (9)C5—C4—C3119.1 (2)
O3—S1—O1109.55 (9)C5—C4—H4120.5
O2—S1—O1109.29 (9)C3—C4—H4120.5
Fe1—O5—H1O5123 (2)N1—C5—C4122.4 (2)
Fe1—O5—H2O5122 (2)N1—C5—C6113.50 (18)
H1O5—O5—H2O5108 (3)C4—C5—C6124.04 (19)
Fe1—O6—H1O6113.3 (19)N2—C6—N3110.3 (2)
Fe1—O6—H2O6110.5 (17)N2—C6—C5122.02 (17)
H1O6—O6—H2O6108 (3)N3—C6—C5127.6 (2)
Fe1—O7—H1O7122 (3)N3—C7—C8106.2 (2)
Fe1—O7—H2O7113.1 (18)N3—C7—H7126.9
H1O7—O7—H2O7106 (3)C8—C7—H7126.9
Fe1—O8—H1O8115.5 (19)C7—C8—N2109.6 (2)
Fe1—O8—H2O8111.1 (18)C7—C8—H8125.2
H1O8—O8—H2O8104 (3)N2—C8—H8125.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.78 (3)2.00 (3)2.785 (3)175 (3)
O5—H2O5···O1ii0.85 (4)2.00 (3)2.845 (3)172 (4)
O6—H1O6···O10.71 (3)2.15 (3)2.857 (3)170 (3)
O6—H2O6···O3iii0.89 (3)1.85 (3)2.736 (3)175 (3)
O7—H1O7···O1iii0.64 (4)2.17 (3)2.809 (3)173 (4)
O7—H2O7···O4ii0.90 (4)1.83 (3)2.720 (3)168 (4)
O8—H1O8···O4i0.76 (3)1.96 (3)2.722 (3)178 (4)
O8—H2O8···O20.84 (3)1.90 (3)2.737 (3)175 (3)
N3—H3N···O2iv0.93 (3)1.93 (3)2.858 (3)178 (3)
C4—H4···O2iv0.932.403.287 (3)160
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

SZ, SF and MH acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support. BMF and SBN thank the Ministry of Education and Science of the Republic of Serbia for financial support (project Nos. 172014 and 172035).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  CSD CrossRef CAS Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelamri, Y., Setifi, F., Francuski, B. M., Novaković, S. B. & Zouaoui, S. (2014). Acta Cryst. E70, 544–546.  CSD CrossRef IUCr Journals Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406.  Web of Science CSD CrossRef Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Golhen, S., Ouahab, L., Turner, S. S. & Day, P. (2002). CrystEngComm, 4, 1–6.  Web of Science CSD CrossRef Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTinant, B., Decamp, C., Robert, F. & Garcia, Y. Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 729–732.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 346-349
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds