research communications
H-imidazole-κ2N2,N3]iron(II) sulfate
of tetraaqua[2-(pyridin-2-yl)-1aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, and cVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia
*Correspondence e-mail: fat_setifi@yahoo.fr
In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and π–π interactions.
Keywords: crystal structure; 2-(pyridin-2-yl)-1H-imidazole; iron(II) complex; hydrogen bonding; C—H⋯π interactions; π–π interactions.
CCDC reference: 1051905
1. Chemical context
Polynitrile anions have recently received considerable attention in the fields of coordination chemistry and molecular materials (Benmansour et al., 2010). These organic anions are of interest due to their ability to act towards metal atoms with various coordination modes and for their high degree of electronic delocalization (Miyazaki et al., 2003; Atmani et al., 2008; Benmansour et al., 2008, 2012; Setifi et al., 2002, 2013, 2014; Addala et al., 2015).
We are interested in using these anionic ligands in combination with other neutral bridging co-ligands to explore their structural features and properties relevant to the field of molecular materials exhibiting the spin crossover (SCO) phenomenon (Dupouy et al., 2008, 2009). In an attempt to prepare such an iron(II) complex using hydrothermal synthesis, we obtained instead the title compound [Fe(pyim)(H2O)4]SO4, (I), where pyim is 2-(pyridin-2-yl)-1H-imidazole.
2. Structural commentary
Fig. 1 shows the of (I). The main building units in the of (I) are octahedral [Fe(pyim)(H2O)4]2+ complex cations and [SO4]2− anions. The distorted octahedral environment of the central FeII ion is defined by two N donor atoms of the pyim ligand and by the O atoms of two water molecules in the equatorial plane, while the two remaining water molecules coordinate at the axial sites. The bite angle N1—Fe—N2 of 76.04 (7)° shows the most significant deviation from the ideal octahedral geometry, with the other coordination angles deviating by 0.21 (7) to 11.91 (7)°.
The Fe—N coordination bonds with the chelate ligand have markedly different lengths, Fe—N1 = 2.243 (2) and Fe—N2 = 2.1361 (17) Å, which are also dissimilar to those in the previously reported [Fe(dmbpy)(H2O)4]SO4 complex where dmbpy is 5,5′-dimethyl-2,2′-bipyridine (Belamri et al., 2014.) comprising a nearly symmetrical dipyridyl ligand [Fe—N = 2.176 (3) Å on average]. The torsion angles within the approximately planar five-membered chelate ring of (I) vary from 0.6 (3) to −5.2 (2)° and reflect a more pronounced deviation from planarity in comparison with the dmbpy FeII complex that exhibits a maximal torsion angle of 2.0 (3)°. The dihedral angle of 5.5 (1) ° between the aromatic rings of the pyim ligand is within the range of the values reported for the eight independent molecules in the of the non-coordinating ligand [1(1) to 17 (1)°; Tinant et al., 2010]. In the present complex, all four Fe—O bond lengths, ranging from 2.1191 (18) to 2.1340 (17) Å, are longer than the corresponding ones in the [Fe(dmbpy)(H2O)4]SO4 complex, which range from 2.079 (2) to 2.110 (2) Å.
3. Supramolecular features
The crystal packing of (I) is stabilized by a complex hydrogen-bonding network involving the coordinating water molecules and the imidazole fragment as donors to the O acceptors atoms of the sulfate anion. Each cationic [Fe(pyim)(H2O)4]2+ unit is surrounded by five [SO4]2− anions. Similarly to the of [Fe(dmbpy)(H2O)4]SO4, pairs of axially and equatorially coordinating water molecules bind to pairs of O acceptor atoms from the same [SO4]2− group, forming eight medium-strength interactions (Table 1). These hydrogen bonds arrange the complex molecules into layers parallel to the ab plane (Fig. 2). Additional N—H⋯O and C—H⋯O hydrogen bonds involving the donors from the aromatic ligand interconnect adjacent layers into a three-dimensional arrangement (Fig. 3). The vicinity of aromatic rings in the inter-layer region gives rise to C—H⋯π [H3⋯Cg1i = 3.033 Å; C3—H3⋯Cg1i = 117°; symmetry code: (i) = −x + , y + , z; Cg1 is the centroid of the imidazole ring] and weak π–π interactions [Cg1⋯Cg2ii = 3.821 Å, the shortest interatomic distance N3⋯C2ii = 3.325 (1) Å; symmetry code: (ii) = −x + 1, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of the imidazole and pyridine rings, respectively]. C—H⋯O interactions are also observed (Table 1).
4. Synthesis and crystallization
The title compound was obtained under hydrothermal conditions from a mixture of iron(II) sulfate heptahydrate (28 mg, 0.1 mmol), 2-(pyridin-2-yl)-1H-imidazole (15 mg, 0.1 mmol) and potassium tricyanomethanide KC(CN)3 (26 mg, 0.2 mmol) in water-ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was then allowed to cool to ambient temperature. Block-like yellow crystals of (I) were collected by filtration, washed with water and dried in air (yield 58%).
5. details
Crystal data, data collection and structure . H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 Å for aromatic C atoms, with Uiso(H) = 1.2Ueq(C). The H atoms attached to O and N atoms were located in a difference Fourier map and were refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1051905
10.1107/S2056989015004417/wm5132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015004417/wm5132Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).[Fe(C8H7N3)(H2O)4]SO4 | F(000) = 1520 |
Mr = 369.14 | Dx = 1.648 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9606 reflections |
a = 12.476 (5) Å | θ = 2.5–30.0° |
b = 11.741 (5) Å | µ = 1.19 mm−1 |
c = 20.313 (7) Å | T = 293 K |
V = 2975.5 (19) Å3 | Block, yellow |
Z = 8 | 0.34 × 0.20 × 0.11 mm |
Bruker APEXII CCD diffractometer | 4417 independent reflections |
Radiation source: fine-focus sealed tube | 3008 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
φ & ω scans | θmax = 30.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.802, Tmax = 0.871 | k = −14→16 |
20168 measured reflections | l = −28→27 |
Refinement on F2 | 226 parameters |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.041P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.47 e Å−3 |
4417 reflections | Δρmin = −0.41 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.45016 (2) | 0.72203 (3) | 0.35060 (2) | 0.02305 (9) | |
S1 | 0.74974 (4) | 0.47721 (5) | 0.30259 (2) | 0.02198 (11) | |
O1 | 0.69197 (10) | 0.52744 (13) | 0.24568 (6) | 0.0295 (3) | |
O2 | 0.69268 (12) | 0.50603 (15) | 0.36361 (7) | 0.0378 (4) | |
O3 | 0.85850 (11) | 0.52416 (15) | 0.30581 (7) | 0.0368 (4) | |
O4 | 0.75368 (13) | 0.35340 (15) | 0.29605 (7) | 0.0441 (4) | |
O5 | 0.45617 (15) | 0.89924 (16) | 0.33077 (10) | 0.0416 (4) | |
O6 | 0.50247 (15) | 0.66267 (16) | 0.25674 (7) | 0.0336 (4) | |
O7 | 0.29469 (14) | 0.71843 (19) | 0.30864 (8) | 0.0322 (4) | |
O8 | 0.61694 (12) | 0.72412 (17) | 0.37388 (8) | 0.0314 (4) | |
N1 | 0.42117 (13) | 0.54515 (16) | 0.38829 (7) | 0.0274 (4) | |
N2 | 0.40687 (14) | 0.74690 (16) | 0.45132 (8) | 0.0294 (4) | |
N3 | 0.35709 (14) | 0.6734 (2) | 0.54639 (8) | 0.0353 (5) | |
C1 | 0.42985 (17) | 0.4458 (2) | 0.35520 (10) | 0.0357 (5) | |
H1 | 0.4548 | 0.4477 | 0.3121 | 0.043* | |
C2 | 0.40365 (18) | 0.3420 (2) | 0.38200 (11) | 0.0405 (6) | |
H2 | 0.4107 | 0.2753 | 0.3577 | 0.049* | |
C3 | 0.36666 (19) | 0.3396 (2) | 0.44581 (12) | 0.0438 (6) | |
H3 | 0.3484 | 0.2707 | 0.4654 | 0.053* | |
C4 | 0.35690 (17) | 0.4400 (2) | 0.48053 (11) | 0.0387 (6) | |
H4 | 0.3314 | 0.4397 | 0.5235 | 0.046* | |
C5 | 0.38537 (15) | 0.5406 (2) | 0.45065 (9) | 0.0279 (5) | |
C6 | 0.38177 (14) | 0.6510 (2) | 0.48286 (9) | 0.0283 (5) | |
C7 | 0.36954 (17) | 0.7871 (2) | 0.55631 (11) | 0.0398 (6) | |
H7 | 0.3593 | 0.8266 | 0.5955 | 0.048* | |
C8 | 0.40013 (17) | 0.8319 (2) | 0.49715 (10) | 0.0362 (5) | |
H8 | 0.4142 | 0.9085 | 0.4893 | 0.043* | |
H1O5 | 0.510 (2) | 0.932 (2) | 0.3248 (13) | 0.049 (8)* | |
H2O5 | 0.408 (3) | 0.933 (3) | 0.3090 (15) | 0.084 (12)* | |
H1O6 | 0.5519 (19) | 0.632 (2) | 0.2580 (12) | 0.036 (8)* | |
H2O6 | 0.453 (2) | 0.617 (3) | 0.2387 (13) | 0.062 (9)* | |
H1O7 | 0.273 (2) | 0.672 (3) | 0.2986 (13) | 0.045 (11)* | |
H2O7 | 0.286 (2) | 0.770 (3) | 0.2761 (16) | 0.066 (10)* | |
H1O8 | 0.652 (2) | 0.760 (2) | 0.3515 (11) | 0.038 (8)* | |
H2O8 | 0.644 (2) | 0.658 (3) | 0.3708 (13) | 0.050 (9)* | |
H3N | 0.3399 (19) | 0.615 (2) | 0.5753 (13) | 0.054 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02282 (15) | 0.02469 (18) | 0.02163 (14) | −0.00077 (12) | 0.00178 (10) | 0.00238 (11) |
S1 | 0.0206 (2) | 0.0222 (3) | 0.0231 (2) | 0.00159 (19) | −0.00054 (17) | 0.00183 (18) |
O1 | 0.0279 (7) | 0.0296 (9) | 0.0309 (7) | 0.0009 (6) | −0.0064 (5) | 0.0067 (6) |
O2 | 0.0427 (9) | 0.0408 (11) | 0.0300 (7) | 0.0072 (8) | 0.0144 (6) | 0.0084 (7) |
O3 | 0.0214 (7) | 0.0493 (12) | 0.0397 (8) | −0.0045 (7) | −0.0021 (6) | 0.0095 (7) |
O4 | 0.0598 (10) | 0.0226 (10) | 0.0500 (9) | 0.0088 (8) | −0.0224 (8) | −0.0042 (7) |
O5 | 0.0300 (9) | 0.0299 (11) | 0.0649 (11) | −0.0052 (8) | −0.0073 (8) | 0.0177 (8) |
O6 | 0.0263 (8) | 0.0449 (12) | 0.0296 (8) | 0.0023 (9) | 0.0008 (6) | −0.0053 (7) |
O7 | 0.0292 (8) | 0.0304 (11) | 0.0370 (9) | −0.0006 (8) | −0.0061 (6) | −0.0014 (8) |
O8 | 0.0250 (8) | 0.0322 (11) | 0.0372 (8) | −0.0020 (8) | −0.0001 (6) | 0.0057 (8) |
N1 | 0.0290 (9) | 0.0306 (11) | 0.0226 (8) | −0.0024 (8) | −0.0005 (6) | 0.0035 (7) |
N2 | 0.0272 (9) | 0.0343 (12) | 0.0267 (9) | 0.0011 (8) | 0.0019 (7) | −0.0027 (7) |
N3 | 0.0344 (10) | 0.0474 (14) | 0.0241 (9) | −0.0006 (9) | 0.0072 (7) | 0.0031 (8) |
C1 | 0.0399 (12) | 0.0366 (15) | 0.0305 (11) | 0.0023 (11) | −0.0040 (9) | −0.0014 (9) |
C2 | 0.0422 (13) | 0.0323 (15) | 0.0470 (13) | −0.0037 (12) | −0.0076 (10) | −0.0068 (11) |
C3 | 0.0430 (14) | 0.0397 (17) | 0.0486 (14) | −0.0108 (12) | −0.0005 (10) | 0.0068 (11) |
C4 | 0.0341 (12) | 0.0483 (17) | 0.0338 (11) | −0.0112 (11) | 0.0032 (9) | 0.0090 (10) |
C5 | 0.0209 (9) | 0.0370 (14) | 0.0257 (9) | −0.0040 (9) | −0.0015 (7) | 0.0048 (8) |
C6 | 0.0211 (9) | 0.0413 (15) | 0.0227 (9) | −0.0017 (9) | 0.0033 (7) | 0.0050 (8) |
C7 | 0.0352 (12) | 0.0516 (18) | 0.0326 (11) | 0.0047 (11) | 0.0045 (9) | −0.0049 (10) |
C8 | 0.0353 (12) | 0.0340 (15) | 0.0395 (12) | 0.0010 (11) | 0.0022 (9) | −0.0073 (10) |
Fe1—O7 | 2.1191 (18) | N1—C1 | 1.351 (3) |
Fe1—O5 | 2.121 (2) | N2—C6 | 1.333 (3) |
Fe1—O6 | 2.1323 (15) | N2—C8 | 1.368 (3) |
Fe1—O8 | 2.1340 (17) | N3—C6 | 1.353 (2) |
Fe1—N2 | 2.1361 (17) | N3—C7 | 1.359 (3) |
Fe1—N1 | 2.243 (2) | N3—H3N | 0.93 (3) |
S1—O4 | 1.4605 (19) | C1—C2 | 1.373 (4) |
S1—O3 | 1.4661 (16) | C1—H1 | 0.9300 |
S1—O2 | 1.4688 (14) | C2—C3 | 1.376 (3) |
S1—O1 | 1.4844 (14) | C2—H2 | 0.9300 |
O5—H1O5 | 0.78 (3) | C3—C4 | 1.379 (4) |
O5—H2O5 | 0.85 (3) | C3—H3 | 0.9300 |
O6—H1O6 | 0.71 (2) | C4—C5 | 1.374 (3) |
O6—H2O6 | 0.89 (3) | C4—H4 | 0.9300 |
O7—H1O7 | 0.64 (3) | C5—C6 | 1.453 (3) |
O7—H2O7 | 0.90 (3) | C7—C8 | 1.366 (3) |
O8—H1O8 | 0.76 (3) | C7—H7 | 0.9300 |
O8—H2O8 | 0.84 (3) | C8—H8 | 0.9300 |
N1—C5 | 1.344 (2) | ||
O7—Fe1—O5 | 88.60 (8) | C5—N1—C1 | 117.44 (19) |
O7—Fe1—O6 | 85.07 (7) | C5—N1—Fe1 | 114.36 (15) |
O5—Fe1—O6 | 98.06 (8) | C1—N1—Fe1 | 128.10 (14) |
O7—Fe1—O8 | 169.08 (6) | C6—N2—C8 | 105.96 (18) |
O5—Fe1—O8 | 89.79 (7) | C6—N2—Fe1 | 113.84 (14) |
O6—Fe1—O8 | 84.46 (7) | C8—N2—Fe1 | 140.12 (17) |
O7—Fe1—N2 | 99.00 (7) | C6—N3—C7 | 107.85 (19) |
O5—Fe1—N2 | 93.25 (8) | C6—N3—H3N | 120.6 (17) |
O6—Fe1—N2 | 168.09 (7) | C7—N3—H3N | 131.4 (17) |
O8—Fe1—N2 | 91.87 (7) | N1—C1—C2 | 123.3 (2) |
O7—Fe1—N1 | 88.35 (7) | N1—C1—H1 | 118.3 |
O5—Fe1—N1 | 168.26 (7) | C2—C1—H1 | 118.3 |
O6—Fe1—N1 | 92.97 (7) | C1—C2—C3 | 118.2 (2) |
O8—Fe1—N1 | 95.29 (7) | C1—C2—H2 | 120.9 |
N2—Fe1—N1 | 76.04 (7) | C3—C2—H2 | 120.9 |
O4—S1—O3 | 110.31 (10) | C2—C3—C4 | 119.5 (2) |
O4—S1—O2 | 108.80 (10) | C2—C3—H3 | 120.2 |
O3—S1—O2 | 108.93 (9) | C4—C3—H3 | 120.2 |
O4—S1—O1 | 109.93 (9) | C5—C4—C3 | 119.1 (2) |
O3—S1—O1 | 109.55 (9) | C5—C4—H4 | 120.5 |
O2—S1—O1 | 109.29 (9) | C3—C4—H4 | 120.5 |
Fe1—O5—H1O5 | 123 (2) | N1—C5—C4 | 122.4 (2) |
Fe1—O5—H2O5 | 122 (2) | N1—C5—C6 | 113.50 (18) |
H1O5—O5—H2O5 | 108 (3) | C4—C5—C6 | 124.04 (19) |
Fe1—O6—H1O6 | 113.3 (19) | N2—C6—N3 | 110.3 (2) |
Fe1—O6—H2O6 | 110.5 (17) | N2—C6—C5 | 122.02 (17) |
H1O6—O6—H2O6 | 108 (3) | N3—C6—C5 | 127.6 (2) |
Fe1—O7—H1O7 | 122 (3) | N3—C7—C8 | 106.2 (2) |
Fe1—O7—H2O7 | 113.1 (18) | N3—C7—H7 | 126.9 |
H1O7—O7—H2O7 | 106 (3) | C8—C7—H7 | 126.9 |
Fe1—O8—H1O8 | 115.5 (19) | C7—C8—N2 | 109.6 (2) |
Fe1—O8—H2O8 | 111.1 (18) | C7—C8—H8 | 125.2 |
H1O8—O8—H2O8 | 104 (3) | N2—C8—H8 | 125.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1O5···O3i | 0.78 (3) | 2.00 (3) | 2.785 (3) | 175 (3) |
O5—H2O5···O1ii | 0.85 (4) | 2.00 (3) | 2.845 (3) | 172 (4) |
O6—H1O6···O1 | 0.71 (3) | 2.15 (3) | 2.857 (3) | 170 (3) |
O6—H2O6···O3iii | 0.89 (3) | 1.85 (3) | 2.736 (3) | 175 (3) |
O7—H1O7···O1iii | 0.64 (4) | 2.17 (3) | 2.809 (3) | 173 (4) |
O7—H2O7···O4ii | 0.90 (4) | 1.83 (3) | 2.720 (3) | 168 (4) |
O8—H1O8···O4i | 0.76 (3) | 1.96 (3) | 2.722 (3) | 178 (4) |
O8—H2O8···O2 | 0.84 (3) | 1.90 (3) | 2.737 (3) | 175 (3) |
N3—H3N···O2iv | 0.93 (3) | 1.93 (3) | 2.858 (3) | 178 (3) |
C4—H4···O2iv | 0.93 | 2.40 | 3.287 (3) | 160 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1/2, y, −z+1/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
SZ, SF and MH acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support. BMF and SBN thank the Ministry of Education and Science of the Republic of Serbia for financial support (project Nos. 172014 and 172035).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. CSD CrossRef CAS Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Belamri, Y., Setifi, F., Francuski, B. M., Novaković, S. B. & Zouaoui, S. (2014). Acta Cryst. E70, 544–546. CSD CrossRef IUCr Journals Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406. Web of Science CSD CrossRef Google Scholar
Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, F., Golhen, S., Ouahab, L., Turner, S. S. & Day, P. (2002). CrystEngComm, 4, 1–6. Web of Science CSD CrossRef Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tinant, B., Decamp, C., Robert, F. & Garcia, Y. Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 729–732. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.