research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 363-365

Crystal structure of bis­­(fluoro­sulfato-κO)xenon(II), Xe(SO3F)2

CROSSMARK_Color_square_no_text.svg

aFreie Universität Berlin, Institut für Chemie und Biochemie – Anorganische Chemie, Fabeckstrasse 34-36, 14195 Berlin, Germany
*Correspondence e-mail: m-mali@hotmail.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 February 2015; accepted 9 March 2015; online 14 March 2015)

Thermally unstable Xe(SO3F)2 has been prepared by the reaction of XeF2 with HSO3F. Single crystals were obtained from HSO3F by slow cooling in a sealed tube. The mol­ecular structure is characterized by the Xe atom covalently bonded to two O atoms of two fluoro­sulfate tetra­hedra in an almost linear fashion [O—Xe—O = 179.13 (4)°]. The crystal packing is strongly influenced by inter­molecular van der Waals forces.

1. Chemical context

In 1972, Neil Bartlett published data on the unit cell of Xe(SO3F)2 (Wechsberg et al., 1972[Wechsberg, M., Bulliner, P. A., Sladky, F. O., Mews, R. & Bartlett, N. (1972). Inorg. Chem. 11, 3063-3070.]). As a result of the thermal instability of this compound, no further structural details were given at that time, but 19F and 129Xe NMR spectra were reported subsequently (Gillespie et al., 1974[Gillespie, R. J., Netzer, A. & Schrobilgen, G. J. (1974). Inorg. Chem. 13, 1455-1459.]; Schrobilgen et al., 1978[Schrobilgen, G. J., Holloway, J. H., Granger, P. & Brevard, C. (1978). Inorg. Chem. 17, 980-987.]). The decomposition of Xe(SO3F)2 leads cleanly to Xe and S2O6F2.

2. Structural commentary

Analogous to XeF2 (Agron et al., 1963[Agron, P. A., Begun, G. M., Levy, H. A., Mason, A. A., Jones, C. G. & Smith, D. F. (1963). Science, 139, 842-844.]), the two-coordinated xenon atom adopts a linear geometry [angle O1—Xe—O4 = 179.13 (4)°]. The mol­ecule has nearly Ci symmetry, with the xenon atom at the pseudo-inversion centre (Fig. 1[link]). This finding is in contrast to earlier reports, where Cs symmetry was discussed based on Raman spectroscopic data (Gillespie & Landa, 1973[Gillespie, R. J. & Landa, B. (1973). Inorg. Chem. 12, 1383-1389.]). The Xe—O bonds are 2.1101 (13) and 2.1225 (13) Å, which is typical for Xe—O single bonds, whereas Xe=O double bonds are considerably shorter with lengths ≃ 1.75 Å. The related compound xenon fluoride fluoro­sulfate, XeF(OSO2F) (Bartlett et al., 1969[Bartlett, N., Wechsberg, M., Sladky, F. O., Bulliner, P. A., Jones, G. R. & Burbank, R. D. (1969). J. Chem. Soc. D, pp. 703-704.], 1972[Bartlett, N., Wechsberg, M., Jones, G. R. & Burbank, R. D. (1972). Inorg. Chem. 11, 1124-1127.]), contains a Xe—O bond that is slightly longer [2.155 (8) Å] than in the title compound, but the Xe—F bond of XeF(OSO2F) is at 1.940 (8) Å shorter than that in XeF2 (2.00 Å). For XeF(OSO2F), partial ionic bonding (XeF+·OSO2F) was discussed. Obviously, both XeF2 and Xe(SO3F)2 have a higher covalent character. The S—O bonds in Xe(SO3F)2 involving the O atoms that are also bonded to the xenon atom (S1—O1 and S2—O4) are about 0.1 Å longer than the terminal S—O bonds (Table 1[link]), indicating partial double-bond character.

Table 1
Selected geometric parameters (Å, °)

Xe1—O1 2.1101 (13) S1—F1 1.5449 (12)
Xe1—O4 2.1225 (13) S2—O6 1.4141 (13)
S1—O3 1.4103 (13) S2—O5 1.4150 (14)
S1—O2 1.4092 (14) S2—O4 1.5237 (13)
S1—O1 1.5334 (13) S2—F2 1.5483 (12)
       
O1—Xe1—O4 179.13 (4)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing (Fig. 2[link]) is strongly influenced by inter­molecular van der Waals inter­actions to seven oxygen atoms and two fluorine atoms (Table 2[link]). Whereas the xenon atom in XeF2 exhibits inter­molecular inter­actions to eight fluorine atoms (distance 3.42 Å; Agron et al., 1963[Agron, P. A., Begun, G. M., Levy, H. A., Mason, A. A., Jones, C. G. & Smith, D. F. (1963). Science, 139, 842-844.]), XeF(OSO2F) has fewer contacts (five contacts to oxygen in the range 3.28–3.49 Å and one contact to fluorine of 3.39 Å; Bartlett et al., 1972[Bartlett, N., Wechsberg, M., Jones, G. R. & Burbank, R. D. (1972). Inorg. Chem. 11, 1124-1127.]).

Table 2
Inter­molecular contacts (Å)

Xe1⋯O2 3.1613 (15) Xe1⋯F1iv 3.4551 (17)
Xe1⋯O5 3.1855 (16) Xe1⋯O3v 3.4707 (19)
Xe1⋯O2i 3.1872 (17) Xe1⋯O5vi 3.4818 (18)
Xe1⋯O6ii 3.2317 (19) Xe1⋯F2vii 3.5867 (17)
Xe1⋯O6iii 3.3262 (18)    
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound

4. Synthesis and crystallization

550 mg fluoro­sulfuric acid were placed in a 8 mm PFA tube. 170 mg (1 mmol) of XeF2 were added and the mixture vigorously shaken at room temperature for some minutes until all XeF2 had dissolved. The PFA tube was evacuated for some seconds to remove HF, then frozen with liquid nitro­gen and sealed. The yellow product (≃ 0.2 ml) was warmed to 273 K and the PFA tube placed in a dewar filled with 273 K ethanol and cooled slowly to 193 K in a freezer. The light-yellow single crystals of Xe(SO3F)2 that had formed were deca­nted off and mounted in a cold nitro­gen stream. At 100 K, the crystals are colorless. The compound decomposes rapidly in moist air and can ignite organic materials.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Xe(SO3F)2]
Mr 329.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.706 (3), 13.237 (6), 7.769 (3)
β (°) 96.50 (3)
V3) 685.2 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.66
Crystal size (mm) 0.50 × 0.40 × 0.15
 
Data collection
Diffractometer Bruker CCD SMART 2000
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.545, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11036, 2096, 1978
Rint 0.020
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.033, 1.11
No. of reflections 2096
No. of parameters 101
Δρmax, Δρmin (e Å−3) 0.56, −0.69
Computer programs: SMART and SAINT (Bruker, 2006[Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(fluorosulfato-κO)xenon(II) top
Crystal data top
[Xe(SO3F)2]F(000) = 608
Mr = 329.42Dx = 3.194 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 6.706 (3) Åθ = 2.0–21.0°
b = 13.237 (6) ŵ = 5.66 mm1
c = 7.769 (3) ÅT = 100 K
β = 96.50 (3)°Irregular, colorless
V = 685.2 (5) Å30.50 × 0.40 × 0.15 mm
Z = 4
Data collection top
Bruker CCD SMART 2000
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 30.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 98
Tmin = 0.545, Tmax = 1.000k = 1818
11036 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.4262P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.002
S = 1.11Δρmax = 0.56 e Å3
2096 reflectionsΔρmin = 0.69 e Å3
101 parametersExtinction correction: SHELXL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0244 (5)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Xe10.000928 (13)0.627394 (6)0.726096 (13)0.01145 (4)
S10.33404 (6)0.46260 (3)0.75371 (5)0.01295 (8)
S20.32649 (6)0.79932 (3)0.70775 (5)0.01265 (8)
O40.24243 (18)0.72199 (8)0.82568 (16)0.0155 (2)
F20.51324 (16)0.74159 (8)0.65972 (16)0.0227 (2)
O20.22016 (19)0.45699 (9)0.91739 (17)0.0190 (2)
F10.52083 (16)0.52658 (9)0.78020 (16)0.0255 (2)
O60.4027 (2)0.88225 (8)0.80947 (18)0.0181 (2)
O50.2017 (2)0.81316 (9)0.55006 (17)0.0202 (3)
O30.4069 (2)0.37545 (9)0.6629 (2)0.0218 (3)
O10.23650 (18)0.53141 (9)0.62828 (16)0.0168 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Xe10.01151 (6)0.01094 (6)0.01174 (7)0.00098 (3)0.00068 (3)0.00171 (3)
S10.01200 (16)0.01179 (15)0.0150 (2)0.00106 (12)0.00137 (13)0.00063 (13)
S20.01379 (17)0.01185 (15)0.01261 (19)0.00147 (12)0.00274 (13)0.00024 (13)
O40.0159 (5)0.0156 (5)0.0143 (6)0.0052 (4)0.0010 (4)0.0026 (4)
F20.0194 (5)0.0234 (5)0.0268 (6)0.0023 (4)0.0093 (4)0.0049 (4)
O20.0216 (6)0.0210 (5)0.0141 (6)0.0027 (5)0.0004 (5)0.0033 (5)
F10.0158 (5)0.0232 (5)0.0382 (7)0.0055 (4)0.0064 (5)0.0005 (5)
O60.0221 (6)0.0147 (5)0.0181 (7)0.0052 (4)0.0047 (5)0.0038 (4)
O50.0240 (6)0.0219 (6)0.0141 (6)0.0038 (5)0.0006 (5)0.0044 (5)
O30.0243 (6)0.0164 (6)0.0248 (8)0.0070 (4)0.0026 (5)0.0041 (5)
O10.0167 (5)0.0191 (5)0.0139 (6)0.0064 (4)0.0022 (4)0.0033 (4)
Geometric parameters (Å, º) top
Xe1—O12.1101 (13)S1—F11.5449 (12)
Xe1—O42.1225 (13)S2—O61.4141 (13)
S1—O31.4103 (13)S2—O51.4150 (14)
S1—O21.4092 (14)S2—O41.5237 (13)
S1—O11.5334 (13)S2—F21.5483 (12)
Xe1···O23.1613 (15)Xe1···F1iv3.4551 (17)
Xe1···O53.1855 (16)Xe1···O3v3.4707 (19)
Xe1···O2i3.1872 (17)Xe1···O5vi3.4818 (18)
Xe1···O6ii3.2317 (19)Xe1···F2vii3.5867 (17)
Xe1···O6iii3.3262 (18)
O1—Xe1—O4179.13 (4)O6—S2—O4108.69 (8)
O3—S1—O2122.00 (8)O5—S2—O4112.64 (8)
O3—S1—O1108.46 (8)O6—S2—F2105.47 (8)
O2—S1—O1112.23 (7)O5—S2—F2105.68 (8)
O3—S1—F1105.94 (8)O4—S2—F2100.24 (7)
O2—S1—F1105.86 (8)S2—O4—Xe1119.74 (7)
O1—S1—F199.77 (7)S1—O1—Xe1119.18 (7)
O6—S2—O5121.62 (8)
Symmetry codes: (i) x, y+1, z+2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y, z; (v) x1/2, y+1/2, z+3/2; (vi) x1/2, y+3/2, z+1/2; (vii) x1, y, z.
Intermolecular contacts (Å) top
AtomsDistanceSymmetry code
Xe1···O23.1613 (15)
Xe1···O53.1855 (16)
Xe1···O2i3.1872 (17)i) -x, -y+1, -z+2
Xe1···O6ii3.2317 (19)ii) x-1/2, -y+3/2, z-1/2
Xe1···O6iii3.3262 (18)iii) -x+1/2, y-1/2, -z+3/2
Xe1···F1iv3.4551 (17)iv) x+1, y, z
Xe1···O3v3.4707 (19)v) -x-1/2, y+1/2, -z+3/2
Xe1···O5vi3.4818 (18)vi) x-1/2, -y+3/2, z+1/2
Xe1···F2vii3.5867 (17)vii) x-1, y, z
 

Acknowledgements

MM acknowledges funding by the Fonds der Chemischen Industrie FCI.

References

First citationAgron, P. A., Begun, G. M., Levy, H. A., Mason, A. A., Jones, C. G. & Smith, D. F. (1963). Science, 139, 842–844.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBartlett, N., Wechsberg, M., Jones, G. R. & Burbank, R. D. (1972). Inorg. Chem. 11, 1124–1127.  CrossRef CAS Web of Science Google Scholar
First citationBartlett, N., Wechsberg, M., Sladky, F. O., Bulliner, P. A., Jones, G. R. & Burbank, R. D. (1969). J. Chem. Soc. D, pp. 703–704.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillespie, R. J. & Landa, B. (1973). Inorg. Chem. 12, 1383–1389.  CrossRef CAS Web of Science Google Scholar
First citationGillespie, R. J., Netzer, A. & Schrobilgen, G. J. (1974). Inorg. Chem. 13, 1455–1459.  CrossRef CAS Web of Science Google Scholar
First citationSchrobilgen, G. J., Holloway, J. H., Granger, P. & Brevard, C. (1978). Inorg. Chem. 17, 980–987.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWechsberg, M., Bulliner, P. A., Sladky, F. O., Mews, R. & Bartlett, N. (1972). Inorg. Chem. 11, 3063–3070.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 363-365
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds