research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 402-405

Crystal structure of catena-poly[[aqua­bis­­(4-formyl­benzoato)-κ2O1,O1′;κO1-zinc]-μ-pyrazine-κ2N:N′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cAksaray University, Department of Physics, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 March 2015; accepted 17 March 2015; online 21 March 2015)

The asymmetric unit of the title polymeric compound, [Zn(C8H5O3)2(C4H4N2)(H2O)]n, contains two mol­ecular units. Each unit comprises two 4-formyl­benzoate (FB) anions, one pyrazine mol­ecule and one coordinating water mol­ecule; the FB anions act either as bidentate or as monodentate ligands. The O atoms of the bidentately coordinating FB anions are disordered over two positions, and they were refined with fixed occupancy ratios of 0.75:0.25 and 0.70:0.30, respectively. In the ordered monodentately coordinating FB anions, the carboxyl­ate groups are twisted away from the attached benzene rings (B and E) by 12.1 (2) and 9.2 (2)°, respectively. In the disordered FB anions, the corresponding angles are 14.1 (1) and 4.0 (2)° for benzene rings A and D, respectively. Benzene rings A and B are oriented at a dihedral angle of 45.7 (1)°, D and E at 23.2 (1)°. Pyrazine ring C makes dihedral angles of 85.6 (1) and 72.7 (1)°, respectively, with benzene rings A and B, and pyrazine ring F makes dihedral angles of 87.0 (1) and 81.3 (1)° with benzene rings D and E, respectively. The pyrazine ligands bridge the ZnII cations, forming polymeric chains running parallel to the b-axis direction. Medium-strength intra­molecular O—H⋯O hydrogen bonds link the water mol­ecules to the carboxyl­ate O atoms. In the crystal, water–carboxyl­ate O—H⋯O hydrogen bonds link adjacent chains into layers parallel to the bc plane. The layers are linked via weak pyrazine–formyl C—H⋯O and form­yl–carboxyl­ate C—H⋯O hydrogen bonds. ππ contacts between the benzene rings, with centroid-to-centroid distances of 3.7765 (16), 3.7905 (15) and 3.8231 (16) Å, may further stabilize the structure. There are also weak C—H⋯π inter­actions present.

1. Chemical context

The structural functions and coordination relationships of the aryl­carboxyl­ate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). Transition metal complexes with biochemically active ligands frequently show inter­esting physical and/or chemical properties, and as a result they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively studied in coordination chemistry as bifunctional organic ligands due to their different coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

In this context, we report the synthesis and crystal structure of the title compound, [Zn(C8H5O3)2(C4H4N2)(H2O)]n, which is closely related to its Cd analogue (Çelik et al., 2014[Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2014). Acta Cryst. E70, m37-m38.]). In comparison with the latter, the title compound has a doubled c axis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title polymeric compound contains two mol­ecular units. Each unit bears two 4-formyl­benzoate (FB) anions, one pyrazine mol­ecule and one coordinating water mol­ecule; the FB anions act either as bidentate or monodentate ligands (Fig. 1[link]). The pyrazine ligands bridge adjacent ZnII ions, forming polymeric chains running parallel to the b-axis direction (Fig. 2[link]). The distances between the symmetry-related ZnII ions [Zn1⋯Zn1i and Zn2⋯Zn2i; symmetry code (i) x, y + 1, z] is 7.1729 (5) Å and corresponds to the length of the b axis.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity and only the major occupancy components of the disordered carboxyl­ate O atoms are shown.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. H atoms have been omitted for clarity.

The O1—Zn1—O2 and O8—Zn2—O9 angles are 58.88 (7) and 59.00 (7)°, respectively. The corresponding O—M—O (where M is a transition metal) angles are 52.91 (4) and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2O (Hökelek et al., 2009[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416-m1417.]), 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]) and 53.89 (17) and 53.88 (18)° in [Cd(C8H5O3)2(C4H4N2)(H2O)]n (Çelik et al., 2014[Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2014). Acta Cryst. E70, m37-m38.]).

The near equality of the C1—O1 [1.251 (3) Å], C1—O2 [1.256 (3) Å], C9—O3 [1.257 (3) Å], C9—O4 [1.227 (3) Å] and C21—O8 [1.248 (3) Å], C21—O9 [1.259 (3) Å], C29—O10 [1.258 (3) Å], C29—O11 [1.230 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Zn—O and Zn—N distances are 2.11 (12) Å and 2.194 (6) Å, respectively, close to standard values. The Zn atoms lie 0.0484 (3) and 0.0571 (3) Å below [Zn1 relative to (O1/O2/C1) and (O3/O4/C9)] and 0.0623 (3) and 0.1322 (3) Å above [Zn2 relative to (O8/O9/C21) and (O10/O11/C29)] the carboxyl­ate groups. The dihedral angles between the planar carboxyl­ate groups [(O1/O2/C1), (O3/O4/C9) and (O8/O9/C21), (O10/O11/C29)] and the adjacent benzene rings [A (C2—C7), B (C10—C15) and D (C22—C27), E (C30—C35)] are 14.1 (2), 12.1 (2), 4.0 (2) and 9.2 (2)°, respectively, while the benzene rings are oriented at dihedral angles of 45.7 (1) and 23.2 (1)°. On the other hand, the pyrazine rings [C (N1/N2/C17–C20) and F (N3/N4/C37–C40)] are oriented at dihedral angles of 85.6 (1), 72.7 (1), 87.0 (1) and 81.3 (1)° with respect to benzene rings A, B, D and E, respectively.

3. Supra­molecular features

Medium-strength intra­molecular O—H⋯O hydrogen bonds (Table 1[link]) link the water mol­ecules to the carboxyl­ate oxygen atoms. In the crystal, water–carboxyl­ate O—H⋯O hydrogen bonds (Table 1[link]) link adjacent chains into layers parallel to the bc plane (Fig. 3[link]). The layers are linked via pyrazine–formyl C—H⋯O and form­yl–carboxyl­ate C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure (Fig. 4[link]). ππ contacts between the benzene rings, AAi, BBii and DDiii with centroid-to-centroid distances of 3.7765 (16), 3.7905 (15) and 3.8231 (16) Å, respectively [symmetry codes: (i) 1 − x, −y, −z; (ii) −x, −y, −z; (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z] may further stabilize the structure. There are also weak C—H⋯π inter­actions present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 and Cg10 are the centroids of rings B (C10–C15) and E (C30–C35), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O9 0.90 (2) 1.82 (2) 2.694 (3) 165 (2)
O7—H72⋯O11 0.87 (2) 1.78 (2) 2.640 (3) 170 (2)
O14—H141⋯O2i 0.83 (2) 1.90 (2) 2.705 (3) 165 (2)
O14—H142⋯O4i 0.84 (2) 1.80 (3) 2.635 (3) 172 (3)
C17—H17⋯O12Aii 0.93 2.56 3.375 (5) 146
C19—H19⋯O6iii 0.93 2.47 3.222 (4) 138
C23—H23⋯O1 0.93 2.57 3.361 (3) 143
C38—H38⋯O5Aii 0.93 2.59 3.381 (4) 144
C39—H39⋯O13iv 0.93 2.47 3.154 (4) 130
C12—H12⋯Cg10v 0.93 2.81 3.579 (3) 140
C32—H32⋯Cg8v 0.93 2.78 3.468 (3) 132
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure. Inter­molecular water–carboxyl­ate O—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 4]
Figure 4
Part of the supra­molecular structure formed by the inter­molecular water–carboxyl­ate O—H⋯O, pyrazine–formyl C—H⋯O and form­yl–carboxyl­ate C—H⋯O hydrogen bonds. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·H2O (0.90 g, 5 mmol) in H2O (25 ml) and pyrazine (0.40 g, 5 mmol) in H2O (25 ml) with sodium 4-formyl­benzoate (1.72 g, 10 mmol) in H2O (70 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H71, H72, H141, H142 (for H2O) and H16, H36 (for CH) were located in a difference Fourier map and the O7—H71, O7—H72, O14—H141, O14—H142, C16—H16, C36—H36 distances and H71—O7—H72 angle restrained to 0.897 (16), 0.866 (16), 0.826 (17), 0.845 (18), 0.943 (18), 0.937 (18) Å and 106 (2)°, respectively. The C-bound H atoms were positioned geometrically, with C—H = 0.93 and 0.98 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The O atoms of the two bidentately coordinating FB anions are disordered over two positions. The O atoms (O5A, O5B and O12A, O12B) were refined with fixed occupancy ratios of 0.75:0.25 and 0.70:0.30, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H5O3)2(C4H4N2)(H2O)]
Mr 461.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.4721 (7), 7.1729 (2), 23.6377 (8)
β (°) 91.764 (2)
V3) 3808.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.50 × 0.29 × 0.28
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.628, 0.676
No. of measured, independent and observed [I > 2σ(I)] reflections 87627, 9571, 7984
Rint 0.031
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.10
No. of reflections 9571
No. of parameters 583
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.65
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

catena-Poly[[aquabis(4-formylbenzoato)-κ2O1,O1';κO1-zinc]-µ-pyrazine-κ2N:N'] top
Crystal data top
[Zn(C8H5O3)2(C4H4N2)(H2O)]F(000) = 1888
Mr = 461.74Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.4721 (7) ÅCell parameters from 9153 reflections
b = 7.1729 (2) Åθ = 2.7–28.3°
c = 23.6377 (8) ŵ = 1.34 mm1
β = 91.764 (2)°T = 296 K
V = 3808.4 (2) Å3Block, colorless
Z = 80.50 × 0.29 × 0.28 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
9571 independent reflections
Radiation source: fine-focus sealed tube7984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3030
Tmin = 0.628, Tmax = 0.676k = 99
87627 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0365P)2 + 4.5517P]
where P = (Fo2 + 2Fc2)/3
9571 reflections(Δ/σ)max = 0.002
583 parametersΔρmax = 0.64 e Å3
8 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.744994 (11)0.75073 (4)0.403123 (11)0.02258 (7)
Zn20.747592 (11)0.65126 (4)0.153050 (11)0.02257 (7)
O10.64782 (8)0.7653 (3)0.39486 (8)0.0367 (4)
O20.68812 (7)0.7386 (3)0.47961 (8)0.0382 (4)
O30.82950 (8)0.7338 (3)0.42612 (9)0.0431 (5)
O40.85759 (9)0.8088 (4)0.51393 (10)0.0694 (8)
O5A0.36210 (12)0.7654 (6)0.51051 (16)0.0724 (11)0.75
O5B0.3980 (6)0.710 (2)0.5801 (6)0.107 (5)0.25
O61.15317 (10)0.6472 (5)0.43755 (12)0.0785 (9)
O70.75486 (8)0.7571 (3)0.31819 (7)0.0313 (4)
H710.7277 (10)0.721 (4)0.2918 (10)0.045 (9)*
H720.7893 (8)0.736 (4)0.3040 (11)0.033 (8)*
O80.64987 (8)0.6395 (3)0.14295 (8)0.0382 (4)
O90.69021 (7)0.6319 (3)0.22812 (8)0.0396 (4)
O100.83197 (8)0.6462 (3)0.17805 (9)0.0433 (5)
O110.85687 (9)0.7240 (4)0.26661 (9)0.0617 (7)
O12A0.36444 (14)0.6022 (7)0.25759 (18)0.0804 (13)0.70
O12B0.4034 (4)0.5896 (16)0.3355 (5)0.091 (3)0.30
O131.15688 (9)0.6937 (4)0.18855 (11)0.0677 (7)
O140.75787 (8)0.6458 (3)0.06810 (8)0.0330 (4)
H1410.7321 (10)0.667 (4)0.0432 (10)0.031 (8)*
H1420.7912 (10)0.665 (5)0.0536 (13)0.052 (10)*
N10.74426 (8)1.0554 (3)0.40613 (8)0.0266 (4)
N20.74172 (8)1.4441 (3)0.40378 (8)0.0272 (4)
N30.74446 (8)0.9567 (3)0.15473 (9)0.0273 (4)
N40.74520 (8)1.3452 (3)0.15394 (8)0.0261 (4)
C10.64294 (10)0.7548 (3)0.44733 (11)0.0287 (5)
C20.58192 (10)0.7557 (3)0.47132 (10)0.0262 (5)
C30.57341 (11)0.7017 (4)0.52678 (11)0.0337 (5)
H30.60590.67140.55030.040*
C40.51606 (12)0.6931 (4)0.54700 (11)0.0373 (6)
H40.51010.65430.58390.045*
C50.46791 (11)0.7419 (4)0.51255 (13)0.0376 (6)
C60.47625 (11)0.8009 (4)0.45766 (12)0.0396 (6)
H60.44380.83660.43480.048*
C70.53321 (11)0.8062 (4)0.43705 (11)0.0324 (5)
H70.53890.84400.40000.039*
C80.40702 (14)0.7343 (5)0.53588 (17)0.0566 (9)
H80.40380.60090.52740.068*
C90.86731 (10)0.7533 (3)0.46598 (11)0.0307 (5)
C100.93070 (10)0.7064 (3)0.45186 (10)0.0257 (5)
C110.94340 (11)0.6169 (4)0.40145 (11)0.0316 (5)
H110.91280.58350.37610.038*
C121.00211 (11)0.5777 (4)0.38922 (11)0.0349 (6)
H121.01070.51460.35610.042*
C131.04793 (11)0.6319 (4)0.42600 (11)0.0331 (5)
C141.03533 (11)0.7237 (4)0.47596 (11)0.0349 (6)
H141.06610.76170.50050.042*
C150.97691 (11)0.7583 (4)0.48905 (11)0.0319 (5)
H150.96840.81670.52300.038*
C161.11037 (13)0.5922 (5)0.41156 (15)0.0518 (8)
H161.1144 (15)0.523 (5)0.3781 (10)0.064 (11)*
C170.71703 (11)1.1488 (3)0.36395 (11)0.0333 (5)
H170.69831.08250.33470.040*
C180.71592 (11)1.3417 (3)0.36259 (11)0.0328 (5)
H180.69681.40160.33230.039*
C190.76825 (12)1.3503 (3)0.44611 (11)0.0324 (5)
H190.78631.41650.47580.039*
C200.76983 (11)1.1575 (3)0.44727 (11)0.0309 (5)
H200.78921.09760.47750.037*
C210.64505 (10)0.6280 (3)0.19529 (11)0.0292 (5)
C220.58421 (10)0.6087 (3)0.21928 (10)0.0256 (5)
C230.57669 (11)0.6078 (4)0.27715 (11)0.0362 (6)
H230.60960.61470.30190.043*
C240.51980 (12)0.5964 (4)0.29793 (12)0.0411 (6)
H240.51470.59280.33680.049*
C250.47064 (11)0.5905 (4)0.26150 (12)0.0368 (6)
C260.47806 (11)0.5890 (4)0.20375 (12)0.0419 (7)
H260.44510.58320.17900.050*
C270.53487 (11)0.5963 (4)0.18292 (11)0.0349 (6)
H270.54000.59280.14400.042*
C280.40987 (14)0.5920 (5)0.28524 (17)0.0579 (9)
H280.40830.45550.28390.069*
C290.86873 (10)0.6787 (3)0.21806 (11)0.0306 (5)
C300.93360 (10)0.6650 (3)0.20327 (10)0.0248 (5)
C310.94955 (10)0.5928 (3)0.15123 (10)0.0297 (5)
H310.92040.55380.12510.036*
C321.00910 (10)0.5795 (4)0.13868 (10)0.0315 (5)
H321.02000.52840.10430.038*
C331.05277 (10)0.6418 (4)0.17684 (11)0.0297 (5)
C341.03676 (11)0.7148 (4)0.22858 (11)0.0322 (5)
H341.06600.75700.25420.039*
C350.97750 (10)0.7249 (3)0.24191 (10)0.0296 (5)
H350.96690.77190.27680.035*
C361.11601 (12)0.6292 (5)0.16198 (13)0.0442 (7)
H361.1225 (14)0.564 (4)0.1284 (10)0.055 (10)*
C370.71896 (11)1.0551 (4)0.11238 (11)0.0335 (5)
H370.70060.99200.08220.040*
C380.71914 (12)1.2480 (3)0.11217 (11)0.0335 (6)
H380.70061.31110.08210.040*
C390.77052 (12)1.2490 (3)0.19636 (11)0.0328 (5)
H390.78901.31260.22640.039*
C400.76986 (11)1.0558 (3)0.19668 (11)0.0321 (5)
H400.78770.99320.22720.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02006 (13)0.02144 (13)0.02640 (14)0.00033 (9)0.00340 (10)0.00053 (10)
Zn20.02074 (13)0.02083 (13)0.02630 (14)0.00049 (10)0.00335 (10)0.00102 (10)
O10.0300 (9)0.0457 (11)0.0349 (10)0.0038 (8)0.0098 (8)0.0034 (8)
O20.0223 (8)0.0499 (12)0.0423 (11)0.0011 (8)0.0006 (7)0.0106 (9)
O30.0236 (9)0.0478 (12)0.0574 (13)0.0031 (8)0.0049 (8)0.0026 (10)
O40.0330 (11)0.127 (2)0.0487 (14)0.0129 (13)0.0135 (10)0.0189 (15)
O5A0.0228 (14)0.105 (3)0.090 (3)0.0029 (16)0.0116 (15)0.006 (2)
O5B0.083 (9)0.128 (12)0.114 (11)0.029 (8)0.070 (8)0.022 (9)
O60.0254 (11)0.123 (3)0.088 (2)0.0033 (13)0.0009 (12)0.0048 (18)
O70.0287 (9)0.0424 (11)0.0229 (9)0.0004 (8)0.0060 (7)0.0031 (8)
O80.0317 (9)0.0470 (11)0.0365 (10)0.0034 (8)0.0115 (8)0.0083 (9)
O90.0229 (8)0.0515 (12)0.0444 (11)0.0041 (8)0.0007 (8)0.0131 (9)
O100.0234 (8)0.0470 (12)0.0592 (13)0.0007 (8)0.0036 (8)0.0072 (10)
O110.0315 (10)0.113 (2)0.0416 (12)0.0092 (12)0.0132 (9)0.0065 (13)
O12A0.0252 (16)0.127 (4)0.090 (3)0.0002 (19)0.0110 (17)0.001 (3)
O12B0.065 (6)0.109 (8)0.102 (8)0.022 (5)0.055 (6)0.029 (6)
O130.0263 (10)0.102 (2)0.0753 (17)0.0053 (12)0.0011 (11)0.0160 (15)
O140.0289 (9)0.0440 (11)0.0261 (9)0.0013 (8)0.0036 (8)0.0062 (8)
N10.0242 (9)0.0219 (9)0.0339 (11)0.0006 (8)0.0043 (8)0.0010 (8)
N20.0276 (9)0.0213 (9)0.0328 (11)0.0025 (8)0.0033 (8)0.0017 (8)
N30.0241 (9)0.0202 (9)0.0378 (11)0.0009 (8)0.0056 (8)0.0024 (8)
N40.0279 (10)0.0212 (9)0.0293 (10)0.0006 (8)0.0015 (8)0.0019 (8)
C10.0233 (11)0.0258 (12)0.0372 (14)0.0035 (9)0.0057 (10)0.0090 (10)
C20.0207 (10)0.0272 (12)0.0308 (12)0.0009 (9)0.0033 (9)0.0050 (9)
C30.0276 (12)0.0425 (14)0.0309 (13)0.0020 (11)0.0002 (10)0.0018 (11)
C40.0385 (14)0.0435 (15)0.0305 (14)0.0034 (12)0.0127 (11)0.0022 (11)
C50.0273 (12)0.0373 (14)0.0487 (16)0.0041 (10)0.0113 (11)0.0088 (12)
C60.0244 (12)0.0466 (16)0.0475 (17)0.0026 (11)0.0026 (11)0.0021 (13)
C70.0292 (12)0.0385 (14)0.0294 (13)0.0000 (10)0.0015 (10)0.0041 (11)
C80.0388 (17)0.057 (2)0.076 (3)0.0081 (15)0.0245 (17)0.0156 (18)
C90.0214 (11)0.0299 (13)0.0410 (14)0.0004 (9)0.0052 (10)0.0038 (11)
C100.0219 (10)0.0270 (11)0.0284 (12)0.0012 (9)0.0027 (9)0.0028 (9)
C110.0277 (11)0.0367 (13)0.0302 (13)0.0012 (10)0.0025 (10)0.0047 (10)
C120.0346 (13)0.0396 (14)0.0306 (13)0.0051 (11)0.0055 (10)0.0060 (11)
C130.0247 (11)0.0368 (13)0.0381 (14)0.0026 (10)0.0051 (10)0.0052 (11)
C140.0233 (11)0.0467 (15)0.0345 (14)0.0022 (11)0.0042 (10)0.0007 (12)
C150.0285 (12)0.0397 (14)0.0275 (13)0.0003 (10)0.0015 (10)0.0044 (10)
C160.0300 (14)0.070 (2)0.056 (2)0.0089 (14)0.0085 (14)0.0000 (17)
C170.0341 (13)0.0259 (12)0.0392 (14)0.0006 (10)0.0065 (11)0.0035 (10)
C180.0335 (12)0.0260 (12)0.0386 (14)0.0046 (10)0.0065 (11)0.0022 (10)
C190.0391 (13)0.0257 (12)0.0323 (13)0.0029 (10)0.0014 (11)0.0017 (10)
C200.0346 (12)0.0262 (12)0.0319 (13)0.0012 (10)0.0002 (10)0.0044 (10)
C210.0239 (11)0.0220 (11)0.0421 (15)0.0005 (9)0.0064 (10)0.0019 (10)
C220.0229 (10)0.0243 (11)0.0297 (12)0.0017 (8)0.0034 (9)0.0015 (9)
C230.0309 (12)0.0489 (16)0.0288 (13)0.0028 (11)0.0006 (10)0.0011 (11)
C240.0422 (15)0.0528 (17)0.0289 (14)0.0046 (13)0.0115 (11)0.0025 (12)
C250.0288 (12)0.0343 (14)0.0481 (16)0.0030 (10)0.0127 (11)0.0048 (12)
C260.0260 (12)0.0557 (18)0.0438 (16)0.0033 (12)0.0030 (11)0.0059 (13)
C270.0305 (12)0.0480 (16)0.0263 (13)0.0023 (11)0.0012 (10)0.0029 (11)
C280.0391 (17)0.054 (2)0.082 (3)0.0064 (14)0.0261 (17)0.0099 (18)
C290.0231 (11)0.0282 (12)0.0407 (14)0.0024 (9)0.0048 (10)0.0026 (10)
C300.0223 (10)0.0234 (11)0.0287 (12)0.0027 (8)0.0031 (9)0.0021 (9)
C310.0267 (11)0.0333 (13)0.0289 (12)0.0014 (10)0.0036 (9)0.0064 (10)
C320.0304 (12)0.0380 (14)0.0263 (12)0.0051 (10)0.0024 (9)0.0068 (10)
C330.0244 (11)0.0326 (13)0.0321 (13)0.0033 (9)0.0042 (9)0.0007 (10)
C340.0260 (11)0.0367 (13)0.0337 (14)0.0007 (10)0.0044 (10)0.0076 (11)
C350.0290 (12)0.0326 (13)0.0272 (12)0.0046 (10)0.0026 (9)0.0075 (10)
C360.0272 (13)0.0592 (19)0.0465 (17)0.0049 (13)0.0065 (12)0.0079 (15)
C370.0323 (12)0.0257 (12)0.0420 (14)0.0025 (10)0.0074 (11)0.0023 (11)
C380.0357 (13)0.0265 (12)0.0378 (14)0.0007 (10)0.0079 (11)0.0031 (10)
C390.0423 (14)0.0256 (12)0.0302 (13)0.0001 (10)0.0038 (11)0.0004 (10)
C400.0398 (13)0.0253 (12)0.0312 (13)0.0029 (10)0.0002 (10)0.0054 (10)
Geometric parameters (Å, º) top
Zn1—O12.1889 (18)C10—C91.511 (3)
Zn1—O22.2477 (19)C10—C151.390 (3)
Zn1—O31.9628 (18)C11—C101.391 (3)
Zn1—O72.0271 (17)C11—C121.388 (3)
Zn2—O82.2034 (18)C11—H110.9300
Zn2—O92.2297 (19)C12—C131.383 (4)
Zn2—O101.9689 (18)C12—H120.9300
Zn2—O142.0288 (18)C13—C161.482 (4)
Zn1—N12.186 (2)C14—C131.389 (4)
Zn1—N2i2.200 (2)C14—H140.9300
Zn2—N32.192 (2)C15—C141.380 (3)
Zn2—N4i2.1957 (19)C15—H150.9300
Zn1—C12.550 (2)C16—H160.943 (18)
Zn2—C212.545 (2)C17—H170.9300
O1—C11.251 (3)C18—C171.384 (3)
O2—C11.256 (3)C18—H180.9300
O3—C91.257 (3)C19—H190.9300
O4—C91.227 (3)C21—C221.503 (3)
O5A—C81.179 (5)C22—C231.383 (3)
O6—C161.192 (4)C22—C271.385 (3)
O7—H710.897 (16)C23—C241.386 (4)
O7—H720.866 (16)C23—H230.9300
O8—C211.248 (3)C24—H240.9300
O9—C211.259 (3)C25—C241.380 (4)
O10—C291.258 (3)C25—C281.492 (4)
O11—C291.230 (3)C26—C251.380 (4)
O13—C361.190 (4)C26—H260.9300
O14—H1410.826 (17)C27—C261.383 (3)
O14—H1420.845 (18)C27—H270.9300
N1—C171.334 (3)C28—O12A1.197 (5)
N1—C201.333 (3)C28—O12B1.202 (10)
N2—Zn1ii2.200 (2)C28—H280.9800
N2—C181.338 (3)C31—C321.383 (3)
N2—C191.331 (3)C31—C301.392 (3)
N3—C371.339 (3)C31—H310.9300
N3—C401.334 (3)C34—C351.380 (3)
N4—Zn2ii2.1957 (19)C34—C331.388 (3)
N4—C381.330 (3)C34—H340.9300
N4—C391.331 (3)C20—C191.384 (3)
C2—C11.500 (3)C20—H200.9300
C2—C31.386 (3)C30—C351.392 (3)
C2—C71.390 (3)C30—C291.513 (3)
C3—C41.390 (3)C32—C331.386 (3)
C3—H30.9300C32—H320.9300
C4—H40.9300C33—C361.477 (3)
C5—C41.379 (4)C35—H350.9300
C5—C61.383 (4)C36—H360.937 (18)
C5—C81.492 (4)C37—H370.9300
C6—H60.9300C38—C371.383 (3)
C7—C61.384 (3)C38—H380.9300
C7—H70.9300C39—H390.9300
C8—O5B1.086 (14)C40—C391.386 (3)
C8—H80.9800C40—H400.9300
O1—Zn1—O258.88 (7)C11—C10—C9120.8 (2)
O1—Zn1—N2i90.85 (7)C15—C10—C9119.5 (2)
O1—Zn1—C129.37 (7)C15—C10—C11119.8 (2)
O2—Zn1—C129.52 (7)C10—C11—H11120.2
O3—Zn1—O1169.01 (8)C12—C11—C10119.6 (2)
O3—Zn1—O2110.13 (8)C12—C11—H11120.2
O3—Zn1—O798.12 (8)C11—C12—H12119.8
O3—Zn1—N193.49 (8)C13—C12—C11120.4 (2)
O3—Zn1—N2i88.20 (8)C13—C12—H12119.8
O3—Zn1—C1139.64 (9)C12—C13—C14120.0 (2)
O7—Zn1—O192.86 (7)C12—C13—C16119.5 (3)
O7—Zn1—O2151.61 (7)C14—C13—C16120.4 (3)
O7—Zn1—N190.62 (7)C13—C14—H14120.1
O7—Zn1—N2i91.96 (7)C15—C14—C13119.7 (2)
O7—Zn1—C1122.20 (8)C15—C14—H14120.1
N1—Zn1—O186.95 (7)C10—C15—H15119.8
N1—Zn1—O290.42 (7)C14—C15—C10120.5 (2)
N1—Zn1—N2i176.68 (7)C14—C15—H15119.8
N1—Zn1—C188.14 (7)O6—C16—C13124.9 (3)
N2i—Zn1—O286.32 (7)O6—C16—H16121 (2)
N2i—Zn1—C188.73 (7)C13—C16—H16114 (2)
O8—Zn2—O959.00 (7)N1—C17—C18121.8 (2)
O8—Zn2—C2129.37 (7)N1—C17—H17119.1
O9—Zn2—C2129.64 (7)C18—C17—H17119.1
O10—Zn2—O8168.30 (8)N2—C18—C17121.7 (2)
O10—Zn2—O9109.58 (8)N2—C18—H18119.2
O10—Zn2—O1499.14 (8)C17—C18—H18119.2
O10—Zn2—N392.54 (8)N2—C19—C20122.0 (2)
O10—Zn2—N4i90.13 (8)N2—C19—H19119.0
O10—Zn2—C21139.14 (9)C20—C19—H19119.0
O14—Zn2—O892.03 (7)N1—C20—C19121.6 (2)
O14—Zn2—O9150.78 (7)N1—C20—H20119.2
O14—Zn2—N392.41 (8)C19—C20—H20119.2
O14—Zn2—N4i89.63 (8)O8—C21—Zn259.97 (12)
O14—Zn2—C21121.28 (8)O8—C21—O9121.1 (2)
N3—Zn2—O890.45 (7)O8—C21—C22119.2 (2)
N3—Zn2—O991.62 (7)O9—C21—Zn261.18 (13)
N3—Zn2—N4i176.35 (7)O9—C21—C22119.7 (2)
N3—Zn2—C2191.63 (7)C22—C21—Zn2178.24 (17)
N4i—Zn2—O886.45 (7)C23—C22—C21120.9 (2)
N4i—Zn2—O985.14 (7)C23—C22—C27119.6 (2)
N4i—Zn2—C2184.72 (7)C27—C22—C21119.5 (2)
C1—O1—Zn191.51 (15)C22—C23—C24119.5 (2)
C1—O2—Zn188.67 (15)C22—C23—H23120.2
C9—O3—Zn1145.76 (18)C24—C23—H23120.2
Zn1—O7—H71126.2 (19)C23—C24—H24119.7
Zn1—O7—H72120.4 (18)C25—C24—C23120.7 (2)
H71—O7—H72106 (2)C25—C24—H24119.7
C21—O8—Zn290.66 (15)C24—C25—C26119.9 (2)
C21—O9—Zn289.18 (15)C24—C25—C28119.3 (3)
C29—O10—Zn2145.70 (18)C26—C25—C28120.8 (3)
Zn2—O14—H141127 (2)C25—C26—C27119.5 (2)
Zn2—O14—H142122 (2)C25—C26—H26120.2
H141—O14—H142107 (3)C27—C26—H26120.2
C17—N1—Zn1118.79 (16)C22—C27—H27119.6
C20—N1—Zn1124.69 (16)C26—C27—C22120.8 (2)
C20—N1—C17116.5 (2)C26—C27—H27119.6
C18—N2—Zn1ii123.89 (16)O12A—C28—O12B114.5 (6)
C19—N2—Zn1ii119.73 (16)O12A—C28—C25124.7 (4)
C19—N2—C18116.3 (2)O12A—C28—H2890.8
C37—N3—Zn2121.77 (16)O12B—C28—C25120.7 (6)
C40—N3—Zn2122.19 (16)O12B—C28—H2890.8
C40—N3—C37116.0 (2)C25—C28—H2890.8
C38—N4—Zn2ii121.85 (16)O10—C29—C30115.4 (2)
C38—N4—C39117.1 (2)O11—C29—O10126.5 (2)
C39—N4—Zn2ii121.05 (16)O11—C29—C30118.1 (2)
O1—C1—Zn159.12 (12)C31—C30—C29120.3 (2)
O1—C1—O2120.9 (2)C31—C30—C35119.9 (2)
O1—C1—C2118.9 (2)C35—C30—C29119.8 (2)
O2—C1—Zn161.81 (13)C30—C31—H31120.3
O2—C1—C2120.1 (2)C32—C31—C30119.5 (2)
C2—C1—Zn1177.97 (18)C32—C31—H31120.3
C3—C2—C1120.7 (2)C31—C32—C33120.6 (2)
C3—C2—C7119.7 (2)C31—C32—H32119.7
C7—C2—C1119.6 (2)C33—C32—H32119.7
C2—C3—C4119.6 (2)C32—C33—C34119.8 (2)
C2—C3—H3120.2C32—C33—C36119.5 (2)
C4—C3—H3120.2C34—C33—C36120.7 (2)
C3—C4—H4119.8C33—C34—H34120.0
C5—C4—C3120.3 (3)C35—C34—C33119.9 (2)
C5—C4—H4119.8C35—C34—H34120.0
C4—C5—C6120.3 (2)C30—C35—H35119.9
C4—C5—C8119.0 (3)C34—C35—C30120.2 (2)
C6—C5—C8120.7 (3)C34—C35—H35119.9
C5—C6—C7119.5 (3)O13—C36—C33125.7 (3)
C5—C6—H6120.3O13—C36—H36120 (2)
C7—C6—H6120.3C33—C36—H36114 (2)
C2—C7—H7119.7N3—C37—C38121.9 (2)
C6—C7—C2120.5 (2)N3—C37—H37119.0
C6—C7—H7119.7C38—C37—H37119.0
O5A—C8—C5125.8 (4)N4—C38—C37121.5 (2)
O5A—C8—H891.3N4—C38—H38119.2
O5B—C8—O5A109.7 (8)C37—C38—H38119.2
O5B—C8—C5124.3 (8)N4—C39—C40121.2 (2)
O5B—C8—H891.3N4—C39—H39119.4
C5—C8—H891.3C40—C39—H39119.4
O3—C9—C10115.5 (2)N3—C40—C39122.2 (2)
O4—C9—O3126.4 (2)N3—C40—H40118.9
O4—C9—C10118.2 (2)C39—C40—H40118.9
O2—Zn1—O1—C10.71 (14)Zn1—N1—C20—C19179.19 (18)
O3—Zn1—O1—C11.0 (5)C17—N1—C20—C190.1 (4)
O7—Zn1—O1—C1177.90 (15)Zn1ii—N2—C18—C17177.49 (19)
N1—Zn1—O1—C191.63 (15)C19—N2—C18—C170.2 (4)
N2i—Zn1—O1—C185.90 (15)Zn1ii—N2—C19—C20177.02 (19)
O1—Zn1—O2—C10.71 (14)C18—N2—C19—C200.8 (4)
O3—Zn1—O2—C1179.35 (14)Zn2—N3—C37—C38177.2 (2)
O7—Zn1—O2—C16.6 (2)C40—N3—C37—C380.2 (4)
N1—Zn1—O2—C185.47 (15)Zn2—N3—C40—C39176.65 (19)
N2i—Zn1—O2—C193.92 (15)C37—N3—C40—C390.7 (4)
O1—Zn1—O3—C920.6 (6)Zn2ii—N4—C38—C37178.53 (19)
O2—Zn1—O3—C920.4 (3)C39—N4—C38—C370.8 (4)
O7—Zn1—O3—C9162.5 (3)Zn2ii—N4—C39—C40179.05 (19)
N1—Zn1—O3—C971.3 (3)C38—N4—C39—C400.3 (4)
N2i—Zn1—O3—C9105.8 (3)C3—C2—C1—O1165.0 (2)
C1—Zn1—O3—C919.9 (4)C7—C2—C1—O113.2 (3)
O1—Zn1—N1—C1755.30 (18)C3—C2—C1—O213.1 (4)
O1—Zn1—N1—C20125.40 (19)C7—C2—C1—O2168.7 (2)
O2—Zn1—N1—C17114.10 (18)C1—C2—C3—C4176.2 (2)
O2—Zn1—N1—C2066.59 (19)C7—C2—C3—C42.0 (4)
O3—Zn1—N1—C17135.70 (18)C1—C2—C7—C6177.4 (2)
O3—Zn1—N1—C2043.6 (2)C3—C2—C7—C60.8 (4)
O7—Zn1—N1—C1737.53 (18)C2—C3—C4—C51.4 (4)
O7—Zn1—N1—C20141.78 (19)C6—C5—C4—C30.4 (4)
C1—Zn1—N1—C1784.67 (18)C8—C5—C4—C3178.9 (3)
C1—Zn1—N1—C2096.02 (19)C4—C5—C6—C71.6 (4)
O1—Zn1—C1—O2178.8 (2)C8—C5—C6—C7179.9 (3)
O2—Zn1—C1—O1178.8 (2)C4—C5—C8—O5A177.0 (4)
O3—Zn1—C1—O1179.71 (14)C4—C5—C8—O5B8.1 (11)
O3—Zn1—C1—O20.9 (2)C6—C5—C8—O5A4.4 (6)
O7—Zn1—C1—O12.48 (17)C6—C5—C8—O5B170.5 (10)
O7—Zn1—C1—O2176.29 (13)C2—C7—C6—C51.0 (4)
N1—Zn1—C1—O187.09 (15)C11—C10—C9—O311.0 (3)
N1—Zn1—C1—O294.15 (15)C11—C10—C9—O4170.3 (3)
N2i—Zn1—C1—O193.99 (15)C15—C10—C9—O3167.2 (2)
N2i—Zn1—C1—O284.77 (15)C15—C10—C9—O411.5 (4)
O9—Zn2—O8—C210.91 (14)C9—C10—C15—C14177.4 (2)
O10—Zn2—O8—C2112.3 (5)C11—C10—C15—C140.8 (4)
O14—Zn2—O8—C21175.05 (15)C12—C11—C10—C9179.2 (2)
N3—Zn2—O8—C2192.53 (15)C12—C11—C10—C151.0 (4)
N4i—Zn2—O8—C2185.54 (15)C10—C11—C12—C131.9 (4)
O8—Zn2—O9—C210.90 (14)C11—C12—C13—C141.0 (4)
O10—Zn2—O9—C21176.27 (14)C11—C12—C13—C16178.7 (3)
O14—Zn2—O9—C217.4 (2)C12—C13—C16—O6172.9 (3)
N3—Zn2—O9—C2190.46 (15)C14—C13—C16—O66.8 (5)
N4i—Zn2—O9—C2187.87 (15)C15—C14—C13—C120.8 (4)
O8—Zn2—O10—C2937.1 (6)C15—C14—C13—C16179.4 (3)
O9—Zn2—O10—C2925.1 (4)C10—C15—C14—C131.7 (4)
O14—Zn2—O10—C29160.4 (3)N2—C18—C17—N10.5 (4)
N3—Zn2—O10—C2967.6 (3)N1—C20—C19—N20.6 (4)
N4i—Zn2—O10—C29109.9 (3)O8—C21—C22—C23175.8 (2)
C21—Zn2—O10—C2927.9 (4)O9—C21—C22—C234.4 (4)
O8—Zn2—N3—C3756.67 (19)O8—C21—C22—C272.6 (3)
O8—Zn2—N3—C40126.14 (18)O9—C21—C22—C27177.2 (2)
O9—Zn2—N3—C37115.67 (18)C21—C22—C23—C24177.7 (2)
O9—Zn2—N3—C4067.14 (19)C27—C22—C23—C240.7 (4)
O10—Zn2—N3—C37134.64 (19)C21—C22—C27—C26176.3 (2)
O10—Zn2—N3—C4042.54 (19)C23—C22—C27—C262.1 (4)
O14—Zn2—N3—C3735.38 (19)C22—C23—C24—C251.5 (4)
O14—Zn2—N3—C40141.80 (19)C26—C25—C24—C232.4 (4)
C21—Zn2—N3—C3786.02 (19)C28—C25—C24—C23175.7 (3)
C21—Zn2—N3—C4096.79 (19)C24—C25—C28—O12A173.7 (4)
O8—Zn2—C21—O9178.4 (2)C24—C25—C28—O12B3.4 (8)
O9—Zn2—C21—O8178.4 (2)C26—C25—C28—O12A4.3 (6)
O10—Zn2—C21—O8176.21 (15)C26—C25—C28—O12B178.6 (7)
O10—Zn2—C21—O95.4 (2)C27—C26—C25—C241.0 (4)
O14—Zn2—C21—O85.79 (18)C27—C26—C25—C28177.1 (3)
O14—Zn2—C21—O9175.79 (14)C22—C27—C26—C251.3 (4)
N3—Zn2—C21—O888.02 (15)C31—C30—C29—O109.5 (3)
N3—Zn2—C21—O990.40 (15)C31—C30—C29—O11172.2 (3)
N4i—Zn2—C21—O892.14 (15)C35—C30—C29—O10170.5 (2)
N4i—Zn2—C21—O989.44 (15)C35—C30—C29—O117.8 (4)
Zn1—O1—C1—O21.3 (2)C29—C30—C35—C34179.3 (2)
Zn1—O1—C1—C2179.36 (19)C31—C30—C35—C340.7 (4)
Zn1—O2—C1—O11.2 (2)C32—C31—C30—C29179.3 (2)
Zn1—O2—C1—C2179.30 (19)C32—C31—C30—C350.7 (4)
Zn1—O3—C9—O43.0 (5)C30—C31—C32—C331.7 (4)
Zn1—O3—C9—C10178.4 (2)C31—C32—C33—C341.3 (4)
Zn2—O8—C21—O91.6 (2)C31—C32—C33—C36178.9 (3)
Zn2—O8—C21—C22178.21 (19)C32—C33—C36—O13172.4 (3)
Zn2—O9—C21—O81.6 (2)C34—C33—C36—O137.7 (5)
Zn2—O9—C21—C22178.23 (19)C35—C34—C33—C320.1 (4)
Zn2—O10—C29—O116.8 (5)C35—C34—C33—C36179.7 (3)
Zn2—O10—C29—C30171.3 (2)C33—C34—C35—C301.1 (4)
Zn1—N1—C17—C18178.7 (2)N4—C38—C37—N30.6 (4)
C20—N1—C17—C180.7 (4)N3—C40—C39—N40.5 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg8 and Cg10 are the centroids of rings B (C10–C15) and E (C30–C35), respectively.
D—H···AD—HH···AD···AD—H···A
O7—H71···O90.90 (2)1.82 (2)2.694 (3)165 (2)
O7—H72···O110.87 (2)1.78 (2)2.640 (3)170 (2)
O14—H141···O2iii0.83 (2)1.90 (2)2.705 (3)165 (2)
O14—H142···O4iii0.84 (2)1.80 (3)2.635 (3)172 (3)
C17—H17···O12Aiv0.932.563.375 (5)146
C19—H19···O6v0.932.473.222 (4)138
C23—H23···O10.932.573.361 (3)143
C38—H38···O5Aiv0.932.593.381 (4)144
C39—H39···O13vi0.932.473.154 (4)130
C12—H12···Cg10vii0.932.813.579 (3)140
C32—H32···Cg8vii0.932.783.468 (3)132
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+2, z+1; (vi) x+2, y+1/2, z+1/2; (vii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2014). Acta Cryst. E70, m37–m38.  CSD CrossRef IUCr Journals Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416–m1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 402-405
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds