research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 431-434

Crystal structure of hepta­kis­(2,6-di­methyl­phenyl isocyanide-κC)vanadium(I) iodide

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, and bUniversity of Minnesota, 207 Pleasant Str. SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: mminyaev@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 March 2015; accepted 24 March 2015; online 28 March 2015)

The title salt, [V(C9H9N)7]+I or [V(CNX­yl)7]+I (Xyl is 2,6-di­methyl­phen­yl), crystallized from tetra­hydro­furan at low temperatures after reacting (Et4N)+[V(CO)6], excess of CNXyl and iodine. The complex cation and the two crystallographically different iodide anions, each located on a different glide plane, are well separated in the crystal structure. The V(CN)7 core of the cation has the form of a distorted monocapped trigonal prism. This compound is of inter­est as the first isolable homoleptic seven-coordinate vanadium analog of the 18-electron [V(CO)7]+ monocation.

1. Chemical context

Reaction of the carbonyl­ate anion [M(CO)6] (M = Nb, Ta) with an Ag+ cation and excess of xylyl isocyanide (CNX­yl) leads to formation of the 18-electron cation [M(CNX­yl)7]+ (Fig. 1[link], see: Barybin et al., 2007[Barybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141-1150.]). However, oxidation of V(CNX­yl)6 (Barybin et al., 1998[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (1998). J. Am. Chem. Soc. 120, 429-430.], 2000[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (2000). J. Am. Chem. Soc. 122, 4678-4691.]) or of trans-(CO)2V(CNX­yl)4 in the presence of excess CNXyl (Barybin et al., 2000[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (2000). J. Am. Chem. Soc. 122, 4678-4691.]) with the ferrocenyl cation provides the stable 16-electron cation [V(CNX­yl)6]+ (Fig. 1[link]). Also of inter­est are observations of [M(CO)7]+ (M = Nb, Ta) species in the gas phase and unsuccessful attempts to detect [V(CO)7]+ under the same conditions (Ricks et al., 2009[Ricks, A. M., Reed, Z. D. & Duncan, M. A. (2009). J. Am. Chem. Soc. 131, 9176-9177.]). On this basis, isolation of the title compound, [V(CNX­yl)7]+I, was a totally unexpected result. Only one homoleptic seven-coordinate vanadium complex with only monodentate ligands has been previously reported, viz. K4[V(CN)7]·2H2O (Levenson & Towns, 1974[Levenson, R. A. & Towns, R. L. R. (1974). Inorg. Chem. 13, 105-109.]).

[Figure 1]
Figure 1
Scheme showing preparation and transformations of some isocyanide complexes of group 5 metals.

Oxidation of [M(CO)6] (M = Nb, Ta) with one equivalent of I2 in the presence of excess CNXyl gives the 18-electron uncharged mol­ecular complexes M(CNX­yl)6I bearing only six isocyanide ligands (Fig.1, see: Barybin et al., 2007[Barybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141-1150.]). Anion-exchange reaction between [Ta(CNX­yl)7]+[BF4] and [Bu4N]+I leads to the loss of one CNXyl ligand and to formation of Ta(CNX­yl)6I (Barybin et al., 2007[Barybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141-1150.]). Rehder et al. (1999[Rehder, D., Böttcher, C., Collazo, C., Hedelt, R. & Schmidt, H. (1999). J. Organomet. Chem. 585, 294-307.]) have isolated only trans-V(CNX­yl)4I2 being formed in a similar oxidation reaction from [V(CO)6]. We report herein that the 18-electron inter­mediate ionic complex [V(CNX­yl)7]+I, which is formed and stable at low temperatures, can be isolated from the last reaction (Fig. 1[link]). It is soluble in THF but insoluble in toluene. At room temperature in THF, it completely decomposes during seven to ten days to produce trans-V(CNX­yl)4I2 (based on X-ray, NMR and IR data), free CNXyl and V(CNX­yl)6 (based on NMR and IR studies).

[Scheme 1]

2. Structural commentary

The cation and anion in the title compound are separated in the crystal structure. The asymmetric unit contains an unusual seven-coordinate vanadium(I) cation, [V(CNX­yl)7]+, and two iodide anions, each of which is located on a different glide plane (Fig. 2[link]). No solvent mol­ecule is present regardless of potentially solvent-accessible volumes of 49 Å3. There are some non-valent short contacts: I⋯H—CAr (I1⋯H51A 3.091 Å), CAr—H⋯CAr (H13A⋯C43 2.760, H60A⋯C40 2.898 Å), CH2—H⋯CAr (H8C⋯C14 2.831, H27A⋯C21 2.770, H36A⋯C57 2.887, H36A⋯C58 2.765, H45A⋯C34 2.812 Å), CH2—H⋯CH3 (H27A⋯C26 2.878 Å), CAr—H⋯CH3 (H41A⋯C18 2.857 Å). However, no significant inter­ionic inter­actions are present.

[Figure 2]
Figure 2
The mol­ecular structure of [V(CNX­yl)7]+I with displacement parameters drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

The coordination polyhedron of the [V(CNX­yl)7]+ cation is a distorted monocapped trigonal prism (Fig. 3[link]), supported by calculations with the HEPTA program (Maseras & Eisenstein, 1997[Maseras, F. & Eisenstein, O. (1997). New J. Chem. 21, 961-967.]). Deviations (dimensionless) from three ideal geometries have been calculated using 21 real and optimal inter­ligand angles (Maseras & Eisenstein, 1997[Maseras, F. & Eisenstein, O. (1997). New J. Chem. 21, 961-967.]). The lowest deviations are 3.57 for a capped trigonal prism (C2v) with C55≡N7-Xyl as a capping ligand, 5.69 for a capped octa­hedron (C3v) with C10≡N2-Xyl as a capping ligand, and 13.86 for a penta­gonal bipyramid (D5h) with the C28≡N4-Xyl and C37≡N5-Xyl ligands being in the axial positions.

[Figure 3]
Figure 3
The V(CN)7 core of the cation is a monocapped trigonal prism. 2,6-Di­methyl­phenyl groups are not shown.

The V—C distances vary from 2.002 (4) to 2.062 (4) Å, with the exception for the capping ligand which is associated with the longest bond, V1—C55 = 2.107 (3) Å. For the six ligands, the C≡N triple-bond lengths lie in a very narrow inter­val from 1.160 (4) to 1.165 (4) Å. The value for the capping ligand is 1.152 (4) Å (C55—N7). At the same time, all C≡N distances are about the same, as in most free isocyanides (1.14 to 1.16 Å) found in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The V—C≡N angles are nearly linear (see: Fig. 3[link]), having values between 175.7 (3) and 177.7 (3)°. The isocyanide ligands are slightly bent about the nitro­gen atoms with the C≡N—C angles between 161.0 (3) and 178.1 (4)°. It should be noted that the C≡N bond length and the C≡N—C angle of the capping ligand (C55≡N7—X­yl) correspond to a nearly unperturbed isocyanide mol­ecule.

3. Database survey

According to the Cambridge Structural Database (CSD version 5.35 with updates, Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), the number of group 5 metal isocyanide compounds structurally determined is limited to 65. Among them, there are only ten crystal structures of cationic and/or halogen-containing isocyanide complexes related to the present work like [M(CNR)x]n+ or M(CNR)xHaly (M = V, Nb, Ta), which do not include any other ligands: Three isocyanide complexes represented by a 16-electron vanadium(I) cation in [V(CNX­yl)6]+[PF6](THF) (CSD refcodes PERCAQ; Barybin et al., 1998[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (1998). J. Am. Chem. Soc. 120, 429-430.]; PERCAQ01, Barybin et al., 2000[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (2000). J. Am. Chem. Soc. 122, 4678-4691.]), an 18-electron tantalum(I) cation in [Ta(CNX­yl)7]+[BF4] (WODNOS, Barybin et al., 1999[Barybin, M. V., Young, V. G. Jr & Ellis, J. E. (1999). J. Am. Chem. Soc. 121, 9237-9238.]; WODNOS01, Barybin et al., 2007[Barybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141-1150.]), and a 15-electron vanadium(II) dication in [V(CNtBu)6]2+[V(CO)6]2 (ZEFXUD, Silverman et al., 1981[Silverman, L. D., Corfield, P. W. R. & Lippard, S. J. (1981). Inorg. Chem. 20, 3106-3109.]).

Uncharged halogen isocyanide mol­ecular complexes are the 14-electron V(CNtBu)3Cl3 (CLBCNV, Silverman et al., 1980[Silverman, L. D., Dewan, J. C., Giandomenico, C. M. & Lippard, S. J. (1980). Inorg. Chem. 19, 3379-3383.]; note that some carbon and hydrogen atoms are missing in the CIF taken from the CSD), three 15-electron complexes [V(CNX­yl)4I2](thf) (KAPKUH, Rehder et al., 1999[Rehder, D., Böttcher, C., Collazo, C., Hedelt, R. & Schmidt, H. (1999). J. Organomet. Chem. 585, 294-307.]), [V(CNtBu)4I2](thf)2 (ZASFOO, Böttcher et al., 1995[Böttcher, C., Rodewald, D. & Rehder, D. (1995). J. Organomet. Chem. 496, 43-48.]), [V(CNtBu)4Br2](thf)2 (ZASFUU, Böttcher et al., 1995[Böttcher, C., Rodewald, D. & Rehder, D. (1995). J. Organomet. Chem. 496, 43-48.]), and 18-electron Ta(CNX­yl)6I (NEYVAP, Barybin et al., 2007[Barybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141-1150.]).

Two cationic halogen isocyanide complexes are known: a 15-electron vanadium(II) complex [V(CNtBu)5I]+I (ZASFII, Böttcher et al., 1995[Böttcher, C., Rodewald, D. & Rehder, D. (1995). J. Organomet. Chem. 496, 43-48.]) and a 18-electron niobium(III) complex [Nb(CNtBu)6I2]+I(thf) (RARHOH, Collazo et al., 1996[Collazo, C., Rodewald, D., Schmidt, H. & Rehder, D. (1996). Organometallics, 15, 4884-4887.]).

4. Synthesis and crystallization

All synthetic manipulations were performed under vacuum or an atmosphere of purified argon, using Schlenk glassware, dry-box techniques and absolute solvents. [Et4N][V(CO)6] was recrystallized form a THF/Et2O mixture and dried under dynamic vacuum prior to use.

A solution of I2 (0.756 g, 2.98 mmol) in THF (45 ml) was dropwise added through a cannula to a cold (201 K) vigorously stirred solution of [Et4N][V(CO)6] (1.030 g, 2.95 mmol) in THF (65 ml), keeping the reaction mixture temperature below 203 K during addition. The resulting mixture was stirred for five minutes at 198 to 201 K. A solution of CNXyl (3.09 g, 23.6 mmol) in THF (50 ml) was added to the cold stirred reaction mixture, keeping its temperature below 208 K. The red reaction mixture was stirred overnight at 208 K. Then the mixture was allowed to warm up and filtered at room temperature. The white filter cake ([Et4N]I) was washed with THF (2 × 10 ml). All but ca 10 ml of THF was evaporated from the resulting solution under reduced pressure. Toluene (200 ml) was added to the residue, and the mixture was stirred at room temperature for several minutes. The dark-red precipitate was filtered off, washed with toluene (3 × 10 ml) and dried under dynamic vacuum. Red microcrystalline [V(CNX­yl)7]I was obtained in 54% yield (1.751 g, 1.60 mmol). IR (Nujol mull): νCN 2142 w, 2101 m sh, 2057 m sh, 2016 vs br, 1974 s cm−1.

Most toluene was evaporated from the remaining toluene solution to give previously studied green single crystals of [V(CNX­yl)4I2](thf). For its crystal and mol­ecular structure, see: Rehder et al. (1999[Rehder, D., Böttcher, C., Collazo, C., Hedelt, R. & Schmidt, H. (1999). J. Organomet. Chem. 585, 294-307.]).

A nearly saturated THF solution (at room temperature) of [V(CNX­yl)7]I (ca 20 ml) was placed into one ampoule of an H-shaped Schlenk vessel. Some reduced pressure was formed inside the vessel. Most solvent was slowly evaporated from the solution during eight hours into the second ampoule by cooling it with cold isopropyl alcohol (initial temperature was 223 K), producing several red single crystals of the title compound inside the first ampoule. The crystals were cut into smaller pieces prior to X-ray studies.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The hydrogen atoms were positioned geometrically (C—H distance = 0.950 Å for aromatic, 0.980 Å for methyl hydrogen atoms) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl hydrogen atoms. A rotating group model was applied for all methyl groups.

Table 1
Experimental details

Crystal data
Chemical formula [V(C9H9N)7]I
Mr 1096.04
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 173
a, c (Å) 22.765 (2), 22.101 (3)
V3) 11454 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.60 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 81726, 10177, 8757
Rint 0.047
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.02
No. of reflections 10177
No. of parameters 664
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.55
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4655 Friedel pairs
Absolute structure parameter −0.002 (14)
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Heptakis(2,6-dimethylphenyl isocyanide-κC)vanadium(I) iodide top
Crystal data top
[V(C9H9N)7]IDx = 1.271 Mg m3
Mr = 1096.04Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 7505 reflections
a = 22.765 (2) Åθ = 2.6–25.0°
c = 22.101 (3) ŵ = 0.76 mm1
V = 11454 (2) Å3T = 173 K
Z = 8Block, red
F(000) = 45280.60 × 0.35 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
10177 independent reflections
Radiation source: fine-focus sealed tube8757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 25.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2726
Tmin = 0.660, Tmax = 0.863k = 2727
81726 measured reflectionsl = 2526
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0345P)2 + 6.9436P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10177 reflectionsΔρmax = 0.63 e Å3
664 parametersΔρmin = 0.55 e Å3
0 restraintsAbsolute structure: Flack (1983), 4655 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.00001.00000.268135 (13)0.04485 (8)
I20.00000.50000.312752 (14)0.04651 (8)
V10.24591 (2)0.74322 (2)0.55367 (2)0.02709 (11)
N10.36059 (12)0.73626 (12)0.63909 (12)0.0345 (6)
N20.16890 (13)0.63043 (13)0.52762 (12)0.0359 (6)
N30.33007 (13)0.65308 (12)0.48694 (12)0.0379 (7)
N40.30654 (12)0.81424 (12)0.44392 (14)0.0383 (6)
N50.20026 (13)0.69516 (13)0.68036 (13)0.0395 (7)
N60.13250 (14)0.80208 (13)0.49265 (15)0.0470 (7)
N70.23249 (12)0.86458 (12)0.63054 (13)0.0360 (6)
C10.32056 (14)0.73978 (14)0.60642 (15)0.0337 (7)
C20.40739 (14)0.73143 (14)0.68027 (14)0.0335 (7)
C30.43949 (16)0.78138 (16)0.69292 (17)0.0470 (9)
C40.48481 (19)0.7760 (2)0.73392 (19)0.0610 (12)
H4A0.50760.80970.74370.073*
C50.4977 (2)0.7235 (2)0.76078 (17)0.0582 (10)
H5A0.52940.72100.78860.070*
C60.46489 (18)0.6741 (2)0.74778 (15)0.0486 (11)
H6A0.47400.63790.76690.058*
C70.41828 (15)0.67705 (15)0.70664 (15)0.0380 (8)
C80.4240 (2)0.83864 (19)0.6635 (2)0.0772 (15)
H8A0.45300.86850.67470.116*
H8B0.38490.85110.67700.116*
H8C0.42380.83370.61940.116*
C90.38213 (19)0.62423 (16)0.6929 (2)0.0556 (10)
H9A0.38530.61490.64970.083*
H9B0.34100.63220.70300.083*
H9C0.39630.59090.71680.083*
C100.19707 (15)0.67235 (16)0.53512 (15)0.0328 (8)
C110.15327 (15)0.57119 (15)0.51994 (14)0.0352 (8)
C120.19218 (17)0.52812 (17)0.53980 (17)0.0419 (9)
C130.1782 (2)0.47045 (18)0.5278 (2)0.0529 (11)
H13A0.20420.44030.54050.063*
C140.12731 (19)0.45542 (17)0.4978 (2)0.0570 (10)
H14A0.11880.41540.48950.068*
C150.08923 (17)0.4984 (2)0.48008 (16)0.0558 (9)
H15A0.05410.48770.45970.067*
C160.10055 (15)0.55774 (16)0.49114 (18)0.0429 (9)
C170.24698 (18)0.54464 (18)0.5745 (2)0.0623 (12)
H17A0.26590.50900.58990.093*
H17B0.23640.57020.60840.093*
H17C0.27420.56540.54760.093*
C180.05718 (17)0.60312 (18)0.4730 (2)0.0571 (11)
H18A0.07670.64140.47060.086*
H18B0.02560.60480.50310.086*
H18C0.04070.59300.43340.086*
C190.29812 (14)0.68541 (13)0.51106 (15)0.0310 (8)
C200.37452 (15)0.62325 (14)0.45616 (14)0.0331 (7)
C210.36012 (16)0.58963 (14)0.40527 (15)0.0386 (8)
C220.40640 (18)0.56365 (16)0.37435 (17)0.0478 (9)
H22A0.39840.54070.33940.057*
C230.46327 (17)0.57045 (16)0.39317 (19)0.0508 (10)
H23A0.49420.55290.37060.061*
C240.47621 (16)0.60236 (16)0.44436 (18)0.0484 (9)
H24A0.51590.60590.45720.058*
C250.43235 (16)0.62933 (16)0.47723 (16)0.0416 (8)
C260.29740 (17)0.58320 (19)0.38533 (19)0.0557 (10)
H26A0.29390.54940.35820.084*
H26B0.28500.61890.36400.084*
H26C0.27230.57720.42080.084*
C270.44531 (18)0.6660 (2)0.53202 (19)0.0595 (11)
H27A0.48780.67260.53500.089*
H27B0.43160.64550.56830.089*
H27C0.42510.70380.52850.089*
C280.28413 (14)0.78984 (14)0.48403 (15)0.0336 (7)
C290.33785 (15)0.84179 (15)0.39740 (15)0.0379 (8)
C300.3369 (2)0.90266 (17)0.39382 (19)0.0561 (11)
C310.3725 (2)0.9281 (2)0.3494 (2)0.0757 (15)
H31A0.37400.96960.34590.091*
C320.4051 (2)0.8944 (3)0.3108 (3)0.0823 (17)
H32A0.42880.91270.28100.099*
C330.4039 (2)0.8343 (2)0.31477 (19)0.0681 (13)
H33A0.42640.81150.28730.082*
C340.37032 (16)0.80637 (18)0.35809 (16)0.0480 (9)
C350.2992 (2)0.9377 (2)0.4359 (3)0.0824 (15)
H35A0.25790.92740.42960.124*
H35B0.30490.97970.42790.124*
H35C0.31030.92910.47780.124*
C360.37023 (19)0.74102 (18)0.36375 (18)0.0538 (10)
H36A0.39120.72380.32930.081*
H36B0.32960.72670.36420.081*
H36C0.38990.72970.40140.081*
C370.21572 (14)0.71260 (14)0.63360 (15)0.0334 (7)
C380.18414 (16)0.68108 (16)0.73982 (15)0.0378 (8)
C390.13717 (17)0.64340 (18)0.74923 (16)0.0441 (9)
C400.12119 (18)0.63289 (17)0.8089 (2)0.0526 (10)
H40A0.08910.60760.81750.063*
C410.1512 (2)0.65865 (19)0.8557 (2)0.0599 (12)
H41A0.13910.65150.89620.072*
C420.19816 (19)0.69438 (18)0.84504 (17)0.0515 (10)
H42A0.21860.71130.87820.062*
C430.21659 (16)0.70640 (16)0.78663 (15)0.0419 (8)
C440.10581 (18)0.6151 (2)0.6972 (2)0.0645 (12)
H44A0.08890.64550.67110.097*
H44B0.07440.58980.71260.097*
H44C0.13370.59140.67370.097*
C450.26886 (19)0.7437 (2)0.77305 (19)0.0587 (10)
H45A0.28640.75730.81100.088*
H45B0.25670.77770.74890.088*
H45C0.29780.72060.75040.088*
C460.17313 (16)0.77903 (14)0.51357 (14)0.0363 (8)
C470.08296 (16)0.83284 (17)0.47315 (17)0.0432 (9)
C480.0383 (2)0.8439 (2)0.5139 (2)0.0655 (13)
C490.0087 (2)0.8771 (3)0.4928 (3)0.105 (2)
H49A0.04020.88630.51930.126*
C500.0101 (3)0.8965 (3)0.4348 (3)0.114 (2)
H50A0.04280.91890.42140.137*
C510.0338 (3)0.8848 (2)0.3958 (2)0.0849 (17)
H51A0.03120.89850.35530.102*
C520.0821 (2)0.85342 (17)0.41383 (17)0.0533 (11)
C530.0428 (3)0.8235 (3)0.5781 (2)0.103 (2)
H53A0.04980.78110.57890.154*
H53B0.00620.83250.59950.154*
H53C0.07560.84380.59800.154*
C540.1317 (2)0.8423 (2)0.3714 (2)0.0801 (15)
H54A0.12700.86700.33530.120*
H54B0.13180.80090.35950.120*
H54C0.16890.85190.39140.120*
C550.23719 (14)0.82285 (14)0.60144 (14)0.0345 (7)
C560.22834 (15)0.91500 (14)0.66724 (14)0.0347 (8)
C570.18251 (16)0.91861 (16)0.70904 (15)0.0400 (8)
C580.1798 (2)0.9686 (2)0.74417 (18)0.0558 (12)
H58A0.14900.97320.77280.067*
C590.2208 (2)1.0113 (2)0.7381 (2)0.0666 (14)
H59A0.21841.04510.76320.080*
C600.2660 (2)1.00723 (19)0.69679 (19)0.0635 (11)
H60A0.29401.03800.69370.076*
C610.27067 (18)0.95816 (17)0.65963 (17)0.0493 (10)
C620.13768 (18)0.8711 (2)0.7169 (2)0.0597 (11)
H62A0.13540.86000.75960.090*
H62B0.14900.83680.69270.090*
H62C0.09930.88540.70330.090*
C630.3188 (2)0.9542 (2)0.6138 (2)0.0766 (14)
H63A0.32800.91280.60610.115*
H63B0.35390.97420.62920.115*
H63C0.30610.97290.57610.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05314 (19)0.04626 (18)0.03514 (15)0.0039 (2)0.0000.000
I20.03786 (16)0.05501 (18)0.04666 (17)0.00683 (17)0.0000.000
V10.0307 (3)0.0269 (3)0.0236 (2)0.0003 (2)0.0009 (2)0.0013 (2)
N10.0376 (16)0.0347 (15)0.0313 (15)0.0023 (13)0.0026 (13)0.0044 (12)
N20.0390 (16)0.0391 (17)0.0296 (15)0.0026 (14)0.0014 (12)0.0029 (12)
N30.0428 (17)0.0365 (16)0.034 (2)0.0044 (14)0.0025 (12)0.0009 (12)
N40.0433 (16)0.0432 (17)0.0282 (15)0.0006 (13)0.0017 (14)0.0002 (14)
N50.0429 (16)0.0430 (16)0.0327 (17)0.0026 (13)0.0016 (14)0.0005 (14)
N60.0494 (18)0.0392 (16)0.052 (2)0.0027 (14)0.0146 (16)0.0060 (15)
N70.0428 (16)0.0335 (15)0.0316 (15)0.0014 (13)0.0034 (12)0.0007 (13)
C10.0408 (19)0.0314 (17)0.0289 (17)0.0003 (15)0.0042 (15)0.0033 (14)
C20.0327 (17)0.0440 (19)0.0239 (17)0.0018 (15)0.0010 (13)0.0037 (14)
C30.052 (2)0.052 (2)0.036 (2)0.0121 (18)0.0012 (18)0.0058 (17)
C40.062 (3)0.078 (3)0.042 (2)0.017 (2)0.005 (2)0.020 (2)
C50.045 (2)0.089 (3)0.0414 (19)0.011 (3)0.008 (3)0.012 (2)
C60.048 (2)0.066 (3)0.031 (2)0.020 (2)0.0001 (15)0.0045 (17)
C70.0408 (19)0.044 (2)0.0293 (18)0.0070 (16)0.0057 (14)0.0009 (15)
C80.111 (4)0.047 (3)0.074 (3)0.022 (3)0.013 (3)0.001 (2)
C90.069 (3)0.039 (2)0.059 (2)0.0055 (19)0.005 (2)0.0039 (19)
C100.0349 (18)0.038 (2)0.0255 (18)0.0025 (17)0.0010 (14)0.0041 (14)
C110.0385 (19)0.0396 (19)0.0275 (18)0.0096 (16)0.0007 (14)0.0024 (14)
C120.045 (2)0.045 (2)0.036 (2)0.0044 (17)0.0067 (16)0.0104 (16)
C130.064 (3)0.038 (2)0.057 (3)0.005 (2)0.005 (2)0.0139 (19)
C140.077 (3)0.039 (2)0.055 (2)0.015 (2)0.003 (3)0.004 (2)
C150.057 (2)0.056 (2)0.054 (2)0.022 (3)0.0118 (16)0.007 (3)
C160.041 (2)0.045 (2)0.043 (2)0.0074 (16)0.0003 (18)0.0064 (18)
C170.058 (3)0.053 (2)0.076 (3)0.003 (2)0.026 (2)0.017 (2)
C180.039 (2)0.059 (3)0.074 (3)0.002 (2)0.0104 (19)0.014 (2)
C190.0340 (17)0.0283 (17)0.031 (2)0.0014 (15)0.0039 (14)0.0005 (13)
C200.0376 (18)0.0294 (17)0.0323 (19)0.0053 (14)0.0048 (14)0.0028 (13)
C210.047 (2)0.0309 (18)0.038 (2)0.0073 (16)0.0025 (16)0.0020 (15)
C220.065 (3)0.040 (2)0.039 (2)0.0068 (18)0.0034 (18)0.0064 (16)
C230.053 (2)0.042 (2)0.057 (3)0.0152 (18)0.012 (2)0.0009 (19)
C240.0407 (19)0.049 (2)0.055 (2)0.0071 (16)0.0029 (18)0.0055 (19)
C250.046 (2)0.043 (2)0.0351 (19)0.0054 (18)0.0010 (15)0.0003 (15)
C260.057 (3)0.062 (3)0.048 (2)0.005 (2)0.014 (2)0.009 (2)
C270.051 (2)0.080 (3)0.047 (2)0.000 (2)0.0006 (19)0.016 (2)
C280.0370 (19)0.0343 (18)0.0293 (18)0.0048 (15)0.0025 (14)0.0034 (14)
C290.0404 (19)0.046 (2)0.0273 (17)0.0083 (15)0.0071 (15)0.0086 (15)
C300.071 (3)0.047 (2)0.050 (2)0.007 (2)0.018 (2)0.0131 (19)
C310.101 (4)0.059 (3)0.067 (3)0.027 (3)0.024 (3)0.031 (3)
C320.086 (4)0.110 (5)0.050 (3)0.037 (3)0.001 (3)0.028 (3)
C330.068 (3)0.100 (4)0.036 (2)0.014 (3)0.009 (2)0.013 (2)
C340.045 (2)0.071 (3)0.0272 (19)0.0097 (19)0.0018 (16)0.0037 (18)
C350.108 (4)0.051 (3)0.087 (4)0.020 (3)0.016 (3)0.001 (3)
C360.062 (2)0.058 (3)0.041 (2)0.006 (2)0.0020 (19)0.0055 (19)
C370.0378 (19)0.0358 (18)0.0267 (18)0.0015 (14)0.0013 (14)0.0004 (14)
C380.043 (2)0.040 (2)0.0299 (17)0.0090 (15)0.0067 (16)0.0048 (16)
C390.040 (2)0.052 (3)0.041 (2)0.0081 (17)0.0056 (15)0.0107 (16)
C400.053 (2)0.051 (2)0.054 (2)0.0049 (19)0.015 (2)0.013 (2)
C410.079 (3)0.061 (3)0.040 (2)0.015 (2)0.017 (2)0.010 (2)
C420.065 (3)0.055 (2)0.034 (2)0.014 (2)0.0021 (19)0.0038 (18)
C430.048 (2)0.047 (2)0.0310 (19)0.0097 (17)0.0032 (15)0.0021 (15)
C440.048 (2)0.076 (3)0.069 (3)0.021 (2)0.003 (2)0.004 (3)
C450.065 (3)0.066 (3)0.046 (2)0.004 (2)0.0022 (19)0.012 (2)
C460.044 (2)0.0310 (17)0.034 (2)0.0023 (16)0.0044 (15)0.0044 (14)
C470.042 (2)0.048 (2)0.040 (2)0.0003 (18)0.0146 (16)0.0049 (16)
C480.055 (3)0.094 (3)0.048 (3)0.007 (2)0.008 (2)0.003 (2)
C490.056 (3)0.168 (6)0.091 (4)0.034 (4)0.011 (4)0.039 (4)
C500.094 (5)0.146 (6)0.102 (5)0.070 (4)0.055 (4)0.024 (4)
C510.118 (4)0.083 (4)0.054 (3)0.036 (3)0.044 (3)0.001 (3)
C520.076 (3)0.045 (2)0.038 (2)0.009 (2)0.015 (2)0.0031 (17)
C530.100 (4)0.155 (6)0.053 (3)0.049 (4)0.010 (3)0.014 (3)
C540.111 (4)0.087 (4)0.043 (3)0.005 (3)0.011 (3)0.004 (2)
C550.0384 (19)0.0357 (18)0.0295 (18)0.0005 (15)0.0042 (14)0.0033 (15)
C560.050 (2)0.0285 (17)0.0251 (17)0.0064 (15)0.0068 (15)0.0016 (13)
C570.042 (2)0.045 (2)0.0323 (19)0.0097 (16)0.0055 (15)0.0071 (15)
C580.062 (3)0.058 (3)0.047 (3)0.028 (3)0.0029 (19)0.0160 (19)
C590.091 (4)0.049 (3)0.060 (3)0.019 (3)0.015 (2)0.023 (2)
C600.091 (3)0.041 (2)0.059 (2)0.013 (2)0.014 (2)0.001 (2)
C610.068 (3)0.045 (2)0.035 (2)0.0026 (19)0.0012 (18)0.0061 (16)
C620.047 (2)0.079 (3)0.053 (3)0.009 (2)0.0072 (19)0.012 (2)
C630.095 (4)0.073 (3)0.062 (3)0.024 (3)0.025 (3)0.006 (2)
Geometric parameters (Å, º) top
V1—C102.002 (4)C27—H27B0.9800
V1—C192.008 (3)C27—H27C0.9800
V1—C372.020 (3)C29—C301.388 (5)
V1—C462.048 (3)C29—C341.397 (5)
V1—C282.062 (4)C30—C311.398 (6)
V1—C12.062 (3)C30—C351.497 (7)
V1—C552.107 (3)C31—C321.366 (8)
N1—C11.165 (4)C31—H31A0.9500
N1—C21.406 (4)C32—C331.371 (7)
N2—C101.162 (4)C32—H32A0.9500
N2—C111.405 (4)C33—C341.379 (5)
N3—C191.164 (4)C33—H33A0.9500
N3—C201.396 (4)C34—C361.493 (6)
N4—C281.164 (4)C35—H35A0.9800
N4—C291.399 (4)C35—H35B0.9800
N5—C371.162 (4)C35—H35C0.9800
N5—C381.401 (4)C36—H36A0.9800
N6—C461.160 (4)C36—H36B0.9800
N6—C471.396 (4)C36—H36C0.9800
N7—C551.152 (4)C38—C391.387 (5)
N7—C561.409 (4)C38—C431.396 (5)
C2—C31.380 (5)C39—C401.390 (6)
C2—C71.391 (5)C39—C441.500 (6)
C3—C41.378 (5)C40—C411.371 (6)
C3—C81.499 (6)C40—H40A0.9500
C4—C51.367 (6)C41—C421.363 (6)
C4—H4A0.9500C41—H41A0.9500
C5—C61.380 (6)C42—C431.385 (5)
C5—H5A0.9500C42—H42A0.9500
C6—C71.399 (5)C43—C451.492 (6)
C6—H6A0.9500C44—H44A0.9800
C7—C91.488 (5)C44—H44B0.9800
C8—H8A0.9800C44—H44C0.9800
C8—H8B0.9800C45—H45A0.9800
C8—H8C0.9800C45—H45B0.9800
C9—H9A0.9800C45—H45C0.9800
C9—H9B0.9800C47—C481.382 (6)
C9—H9C0.9800C47—C521.392 (5)
C11—C121.392 (5)C48—C491.390 (7)
C11—C161.393 (5)C48—C531.497 (7)
C12—C131.377 (5)C49—C501.355 (8)
C12—C171.512 (5)C49—H49A0.9500
C13—C141.377 (6)C50—C511.345 (8)
C13—H13A0.9500C50—H50A0.9500
C14—C151.366 (6)C51—C521.371 (6)
C14—H14A0.9500C51—H51A0.9500
C15—C161.396 (6)C52—C541.489 (6)
C15—H15A0.9500C53—H53A0.9800
C16—C181.484 (5)C53—H53B0.9800
C17—H17A0.9800C53—H53C0.9800
C17—H17B0.9800C54—H54A0.9800
C17—H17C0.9800C54—H54B0.9800
C18—H18A0.9800C54—H54C0.9800
C18—H18B0.9800C56—C611.386 (5)
C18—H18C0.9800C56—C571.396 (5)
C20—C211.399 (5)C57—C581.380 (5)
C20—C251.403 (5)C57—C621.497 (5)
C21—C221.388 (5)C58—C591.354 (6)
C21—C261.501 (5)C58—H58A0.9500
C22—C231.368 (5)C59—C601.379 (7)
C22—H22A0.9500C59—H59A0.9500
C23—C241.376 (6)C60—C611.391 (6)
C23—H23A0.9500C60—H60A0.9500
C24—C251.379 (5)C61—C631.495 (6)
C24—H24A0.9500C62—H62A0.9800
C25—C271.500 (5)C62—H62B0.9800
C26—H26A0.9800C62—H62C0.9800
C26—H26B0.9800C63—H63A0.9800
C26—H26C0.9800C63—H63B0.9800
C27—H27A0.9800C63—H63C0.9800
C10—V1—C1972.81 (13)C30—C29—N4118.8 (3)
C10—V1—C3773.26 (13)C34—C29—N4117.9 (3)
C19—V1—C37112.67 (13)C29—C30—C31116.4 (4)
C10—V1—C4677.46 (14)C29—C30—C35120.4 (4)
C19—V1—C46122.46 (14)C31—C30—C35123.2 (4)
C37—V1—C46103.92 (13)C32—C31—C30121.4 (4)
C10—V1—C28119.75 (13)C32—C31—H31A119.3
C19—V1—C2874.78 (12)C30—C31—H31A119.3
C37—V1—C28166.93 (13)C31—C32—C33120.6 (5)
C46—V1—C2879.25 (13)C31—C32—H32A119.7
C10—V1—C1122.88 (13)C33—C32—H32A119.7
C19—V1—C175.66 (13)C32—C33—C34121.0 (5)
C37—V1—C176.87 (13)C32—C33—H33A119.5
C46—V1—C1157.87 (13)C34—C33—H33A119.5
C28—V1—C195.38 (13)C33—C34—C29117.3 (4)
C10—V1—C55138.05 (14)C33—C34—C36121.2 (4)
C19—V1—C55148.71 (13)C29—C34—C36121.5 (3)
C37—V1—C5580.02 (12)C30—C35—H35A109.5
C46—V1—C5578.36 (13)C30—C35—H35B109.5
C28—V1—C5588.33 (12)H35A—C35—H35B109.5
C1—V1—C5580.05 (12)C30—C35—H35C109.5
C1—N1—C2177.8 (3)H35A—C35—H35C109.5
C10—N2—C11161.0 (3)H35B—C35—H35C109.5
C19—N3—C20169.7 (3)C34—C36—H36A109.5
C28—N4—C29175.3 (3)C34—C36—H36B109.5
C37—N5—C38172.6 (3)H36A—C36—H36B109.5
C46—N6—C47174.1 (4)C34—C36—H36C109.5
C55—N7—C56178.1 (4)H36A—C36—H36C109.5
N1—C1—V1175.7 (3)H36B—C36—H36C109.5
C3—C2—C7123.7 (3)N5—C37—V1177.7 (3)
C3—C2—N1117.9 (3)C39—C38—C43123.5 (3)
C7—C2—N1118.4 (3)C39—C38—N5119.0 (3)
C4—C3—C2117.2 (4)C43—C38—N5117.5 (3)
C4—C3—C8122.6 (4)C38—C39—C40116.8 (4)
C2—C3—C8120.2 (4)C38—C39—C44121.2 (3)
C5—C4—C3121.5 (4)C40—C39—C44122.0 (4)
C5—C4—H4A119.2C41—C40—C39120.8 (4)
C3—C4—H4A119.2C41—C40—H40A119.6
C4—C5—C6120.5 (4)C39—C40—H40A119.6
C4—C5—H5A119.8C42—C41—C40121.0 (4)
C6—C5—H5A119.8C42—C41—H41A119.5
C5—C6—C7120.4 (4)C40—C41—H41A119.5
C5—C6—H6A119.8C41—C42—C43121.1 (4)
C7—C6—H6A119.8C41—C42—H42A119.4
C2—C7—C6116.8 (3)C43—C42—H42A119.4
C2—C7—C9122.3 (3)C42—C43—C38116.7 (4)
C6—C7—C9120.9 (4)C42—C43—C45122.8 (4)
C3—C8—H8A109.5C38—C43—C45120.5 (3)
C3—C8—H8B109.5C39—C44—H44A109.5
H8A—C8—H8B109.5C39—C44—H44B109.5
C3—C8—H8C109.5H44A—C44—H44B109.5
H8A—C8—H8C109.5C39—C44—H44C109.5
H8B—C8—H8C109.5H44A—C44—H44C109.5
C7—C9—H9A109.5H44B—C44—H44C109.5
C7—C9—H9B109.5C43—C45—H45A109.5
H9A—C9—H9B109.5C43—C45—H45B109.5
C7—C9—H9C109.5H45A—C45—H45B109.5
H9A—C9—H9C109.5C43—C45—H45C109.5
H9B—C9—H9C109.5H45A—C45—H45C109.5
N2—C10—V1176.3 (3)H45B—C45—H45C109.5
C12—C11—C16122.5 (3)N6—C46—V1176.3 (3)
C12—C11—N2118.5 (3)C48—C47—C52122.8 (4)
C16—C11—N2119.0 (3)C48—C47—N6119.0 (3)
C13—C12—C11117.6 (4)C52—C47—N6118.1 (4)
C13—C12—C17121.7 (3)C47—C48—C49116.5 (4)
C11—C12—C17120.6 (3)C47—C48—C53120.7 (4)
C12—C13—C14121.6 (4)C49—C48—C53122.7 (5)
C12—C13—H13A119.2C50—C49—C48120.8 (5)
C14—C13—H13A119.2C50—C49—H49A119.6
C15—C14—C13119.6 (4)C48—C49—H49A119.6
C15—C14—H14A120.2C51—C50—C49121.6 (5)
C13—C14—H14A120.2C51—C50—H50A119.2
C14—C15—C16121.7 (4)C49—C50—H50A119.2
C14—C15—H15A119.1C50—C51—C52120.9 (5)
C16—C15—H15A119.1C50—C51—H51A119.6
C11—C16—C15116.9 (3)C52—C51—H51A119.6
C11—C16—C18122.9 (3)C51—C52—C47117.3 (4)
C15—C16—C18120.2 (3)C51—C52—C54120.9 (4)
C12—C17—H17A109.5C47—C52—C54121.7 (4)
C12—C17—H17B109.5C48—C53—H53A109.5
H17A—C17—H17B109.5C48—C53—H53B109.5
C12—C17—H17C109.5H53A—C53—H53B109.5
H17A—C17—H17C109.5C48—C53—H53C109.5
H17B—C17—H17C109.5H53A—C53—H53C109.5
C16—C18—H18A109.5H53B—C53—H53C109.5
C16—C18—H18B109.5C52—C54—H54A109.5
H18A—C18—H18B109.5C52—C54—H54B109.5
C16—C18—H18C109.5H54A—C54—H54B109.5
H18A—C18—H18C109.5C52—C54—H54C109.5
H18B—C18—H18C109.5H54A—C54—H54C109.5
N3—C19—V1177.6 (3)H54B—C54—H54C109.5
N3—C20—C21119.2 (3)N7—C55—V1176.1 (3)
N3—C20—C25118.1 (3)C61—C56—C57123.9 (3)
C21—C20—C25122.7 (3)C61—C56—N7117.4 (3)
C22—C21—C20116.8 (3)C57—C56—N7118.6 (3)
C22—C21—C26122.4 (3)C58—C57—C56117.0 (4)
C20—C21—C26120.8 (3)C58—C57—C62120.1 (4)
C23—C22—C21121.3 (4)C56—C57—C62122.9 (3)
C23—C22—H22A119.3C59—C58—C57120.4 (4)
C21—C22—H22A119.3C59—C58—H58A119.8
C22—C23—C24120.8 (4)C57—C58—H58A119.8
C22—C23—H23A119.6C58—C59—C60122.2 (4)
C24—C23—H23A119.6C58—C59—H59A118.9
C23—C24—C25120.9 (4)C60—C59—H59A118.9
C23—C24—H24A119.6C59—C60—C61120.1 (4)
C25—C24—H24A119.6C59—C60—H60A119.9
C24—C25—C20117.4 (3)C61—C60—H60A119.9
C24—C25—C27122.0 (3)C56—C61—C60116.4 (4)
C20—C25—C27120.5 (3)C56—C61—C63123.3 (4)
C21—C26—H26A109.5C60—C61—C63120.3 (4)
C21—C26—H26B109.5C57—C62—H62A109.5
H26A—C26—H26B109.5C57—C62—H62B109.5
C21—C26—H26C109.5H62A—C62—H62B109.5
H26A—C26—H26C109.5C57—C62—H62C109.5
H26B—C26—H26C109.5H62A—C62—H62C109.5
C25—C27—H27A109.5H62B—C62—H62C109.5
C25—C27—H27B109.5C61—C63—H63A109.5
H27A—C27—H27B109.5C61—C63—H63B109.5
C25—C27—H27C109.5H63A—C63—H63B109.5
H27A—C27—H27C109.5C61—C63—H63C109.5
H27B—C27—H27C109.5H63A—C63—H63C109.5
N4—C28—V1177.5 (3)H63B—C63—H63C109.5
C30—C29—C34123.3 (4)
C7—C2—C3—C40.3 (5)C35—C30—C31—C32178.3 (5)
N1—C2—C3—C4179.3 (3)C30—C31—C32—C330.1 (8)
C7—C2—C3—C8178.6 (4)C31—C32—C33—C340.8 (8)
N1—C2—C3—C80.4 (5)C32—C33—C34—C290.1 (6)
C2—C3—C4—C50.3 (6)C32—C33—C34—C36178.2 (4)
C8—C3—C4—C5179.1 (4)C30—C29—C34—C331.5 (5)
C3—C4—C5—C60.6 (6)N4—C29—C34—C33176.1 (3)
C4—C5—C6—C70.4 (6)C30—C29—C34—C36179.7 (4)
C3—C2—C7—C60.4 (5)N4—C29—C34—C362.1 (5)
N1—C2—C7—C6179.4 (3)C43—C38—C39—C402.5 (6)
C3—C2—C7—C9178.8 (3)N5—C38—C39—C40177.1 (3)
N1—C2—C7—C90.2 (5)C43—C38—C39—C44176.9 (4)
C5—C6—C7—C20.1 (5)N5—C38—C39—C443.5 (6)
C5—C6—C7—C9179.2 (4)C38—C39—C40—C410.4 (6)
C10—N2—C11—C1220.2 (11)C44—C39—C40—C41179.0 (4)
C10—N2—C11—C16157.7 (9)C39—C40—C41—C421.2 (6)
C16—C11—C12—C132.7 (6)C40—C41—C42—C430.8 (6)
N2—C11—C12—C13175.2 (4)C41—C42—C43—C381.1 (6)
C16—C11—C12—C17176.0 (4)C41—C42—C43—C45178.0 (4)
N2—C11—C12—C176.1 (5)C39—C38—C43—C422.9 (6)
C11—C12—C13—C140.7 (7)N5—C38—C43—C42176.8 (3)
C17—C12—C13—C14178.0 (4)C39—C38—C43—C45176.3 (4)
C12—C13—C14—C150.9 (7)N5—C38—C43—C454.0 (5)
C13—C14—C15—C160.4 (6)C52—C47—C48—C490.1 (7)
C12—C11—C16—C153.0 (5)N6—C47—C48—C49177.0 (4)
N2—C11—C16—C15174.8 (3)C52—C47—C48—C53176.6 (5)
C12—C11—C16—C18176.3 (4)N6—C47—C48—C530.3 (7)
N2—C11—C16—C185.8 (5)C47—C48—C49—C500.9 (9)
C14—C15—C16—C111.4 (6)C53—C48—C49—C50177.6 (6)
C14—C15—C16—C18177.9 (4)C48—C49—C50—C510.4 (11)
C19—N3—C20—C21124.1 (17)C49—C50—C51—C521.0 (10)
C19—N3—C20—C2554.8 (19)C50—C51—C52—C471.9 (8)
N3—C20—C21—C22176.4 (3)C50—C51—C52—C54177.7 (5)
C25—C20—C21—C222.4 (5)C48—C47—C52—C511.5 (6)
N3—C20—C21—C262.8 (5)N6—C47—C52—C51178.4 (4)
C25—C20—C21—C26178.5 (3)C48—C47—C52—C54178.1 (4)
C20—C21—C22—C230.4 (5)N6—C47—C52—C541.2 (6)
C26—C21—C22—C23179.6 (4)C61—C56—C57—C580.4 (5)
C21—C22—C23—C241.4 (6)N7—C56—C57—C58180.0 (3)
C22—C23—C24—C251.4 (6)C61—C56—C57—C62179.3 (4)
C23—C24—C25—C200.5 (5)N7—C56—C57—C620.3 (5)
C23—C24—C25—C27178.0 (4)C56—C57—C58—C590.9 (6)
N3—C20—C25—C24176.4 (3)C62—C57—C58—C59178.8 (4)
C21—C20—C25—C242.4 (5)C57—C58—C59—C600.8 (7)
N3—C20—C25—C271.1 (5)C58—C59—C60—C610.1 (7)
C21—C20—C25—C27179.9 (3)C57—C56—C61—C600.3 (5)
C34—C29—C30—C312.3 (6)N7—C56—C61—C60179.3 (3)
N4—C29—C30—C31175.3 (3)C57—C56—C61—C63178.8 (4)
C34—C29—C30—C35177.5 (4)N7—C56—C61—C631.6 (5)
N4—C29—C30—C354.9 (6)C59—C60—C61—C560.5 (6)
C29—C30—C31—C321.5 (7)C59—C60—C61—C63178.6 (4)
 

Acknowledgements

This research was supported by the US National Science Foundation and the Petroleum Research Fund. The authors are grateful to William W. Brennessel and to Victor G. Young, Jr, for assistance with the X-ray study.

References

First citationBarybin, M. V., Brennessel, W. W., Kucera, B. E., Minyaev, M. E., Sussman, V. J., Young, V. G. Jr & Ellis, J. E. (2007). J. Am. Chem. Soc. 129, 1141–1150.  CSD CrossRef PubMed CAS Google Scholar
First citationBarybin, M. V., Young, V. G. Jr & Ellis, J. E. (1998). J. Am. Chem. Soc. 120, 429–430.  CSD CrossRef CAS Google Scholar
First citationBarybin, M. V., Young, V. G. Jr & Ellis, J. E. (1999). J. Am. Chem. Soc. 121, 9237–9238.  CSD CrossRef CAS Google Scholar
First citationBarybin, M. V., Young, V. G. Jr & Ellis, J. E. (2000). J. Am. Chem. Soc. 122, 4678–4691.  CSD CrossRef CAS Google Scholar
First citationBöttcher, C., Rodewald, D. & Rehder, D. (1995). J. Organomet. Chem. 496, 43–48.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollazo, C., Rodewald, D., Schmidt, H. & Rehder, D. (1996). Organometallics, 15, 4884–4887.  CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevenson, R. A. & Towns, R. L. R. (1974). Inorg. Chem. 13, 105–109.  CrossRef CAS Google Scholar
First citationMaseras, F. & Eisenstein, O. (1997). New J. Chem. 21, 961–967.  CAS Google Scholar
First citationRehder, D., Böttcher, C., Collazo, C., Hedelt, R. & Schmidt, H. (1999). J. Organomet. Chem. 585, 294–307.  CSD CrossRef CAS Google Scholar
First citationRicks, A. M., Reed, Z. D. & Duncan, M. A. (2009). J. Am. Chem. Soc. 131, 9176–9177.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverman, L. D., Corfield, P. W. R. & Lippard, S. J. (1981). Inorg. Chem. 20, 3106–3109.  CSD CrossRef CAS Google Scholar
First citationSilverman, L. D., Dewan, J. C., Giandomenico, C. M. & Lippard, S. J. (1980). Inorg. Chem. 19, 3379–3383.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 431-434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds