research communications
μ-hydroxido-bis[aqua(1,10-phenanthroline-κ2N,N′)copper(II)] naphthalene-2,6-dicarboxylate hexahydrate
of di-aUVM Campus Toluca, Avenida las Palmas Poniente No. 439 San Jorge Pueblo Nuevo, CP 52164, Metepec, Estado de México, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. México, 04510, Coyoacán, México D.F., Mexico
*Correspondence e-mail: jvaldes@unam.mx
In the title compound, [Cu2(OH)2(C12H8N2)2(H2O)2](C12H6O4)·6H2O, the two hydroxide groups bridge the two CuII cations, forming a centrosymmetric binuclear complex cation, in which the CuII cation is coordinated by a 1,10-phenanthroline (phen) molecule, one water molecule and two bridging hydroxide O atoms in a distorted N2O3 square-pyramidal coordination geometry. The naphthalene-2,6-dicarboxylate anion is also located on an inversion centre. In the crystal, O—H⋯O hydrogen bonds link the cations, anions and lattice water molecules into a three-dimensional supramolecular architecture. Extensive π–π stacking is observed between the parallel or nearly parallel aromatic rings of adjacent phen ligands and naphthalenedicarboxylate anions, the centroid-to-centroid distances ranging from 3.4990 (16) to 3.8895 (16) Å.
Keywords: crystal structure; binuclear copper(II) complex; crystal engineering; hydrogen bonding; π–π stacking.
CCDC reference: 1051837
1. Chemical context
The designed arrangement of molecules through intermolecular interactions is one of the main purposes of crystal engineering. Among these interactions are hydrogen bonds and π–π stacking (Hunter & Sanders, 1990). π–π stacking interactions are ubiquitous in biological systems, and organic molecules (Riley & Hobza, 2013; Klärner & Schrader, 2013), and are present in many metal complexes (Janiak, 2000). Nevertheless, relatively few systems have been designed to be organized mainly by π–π interactions (Putta et al., 2014; Sebaoun et al., 2014; Valdés-Martínez et al., 2005). In most cases, they are secondary interactions helping to stabilize the network, not the main tool in the organization of the molecules in the crystal. We have proved that it is possible to obtain designed non-centrosymmetric crystals through π–π stacking interactions (Serrano-Becerra et al., 2009).
As part of a systematic study of the possible organization of copper coordination compounds controlled by π–π stacking interactions, we decided to use aromatic as blocking ligands, and naphthalene-2,6-dicarboxylate as a possible bridging ligand between the [Cu(ammine)] moieties, as long as all of them may form π–π interactions. The reactions were done in water – the tendency of carboxylates to form hydrogen bonds with water is well known, as is their tendency to coordinate to CuII complexes – so these structures will give us an opportunity to evaluate the importance of water⋯ hydrogen bonding versus π–π interactions as the main interaction controlling the organization of the molecules in the crystal.
During these studies, the title compound was unexpectedly obtained. Its molecular and
are described herein.2. Structural commentary
The 2O)Cu(OH)2Cu(H2O)(phen)] (phen is 1,10-phenanthroline) dimer, half of an naphthalene-2,6-dicarboxylate anion and three lattice water molecules. The CuII cation is pentacoordinated with a square-pyramidal geometry, the phen coordinates as a bidentate ligand through the N atoms, the hydroxide groups bridge the two CuII cations and a water molecule is coordinated in the apical position (Fig. 1). The carboxylate group of the naphthalene-2,6-dicarboxylate anion is twisted at 12.4 (3)° with respect to the naphthalene ring system.
of the title compound contains half of a [(phen)(H3. Supramolecular features
An extensive network of hydrogen bonds is formed (Table 1) in the crystal. Atom O4 of the coordinating water molecule acts as a hydrogen-bond donor to O6 of a water molecule and carboxylate atom O1. The bridging hydroxide group hydrogen bonds to atom O5 of a water molecule and acts as a hydrogen-bond acceptor with water oxygen atom O7. The carboxylate atom O1 forms three hydrogen bonds while carboxylate atom O2 forms two hydrogen bonds. Water oxygen atoms O6 and O7 form hydrogen bonds with each other as well as with the carboxylate O atoms. The hydrogen-bond network extends into a three-dimensional structure, see Fig. 2. The presence of a free naphthalene-2,6-dicarboxylate with four hydrogen-bond acceptors requires the presence of water molecules, but the tendency of the aromatic rings in the ligands to form interactions may also observed and this is an important factor in the organization of the molecules in the crystal (Fig. 2). Two phenanthroline units from two adjacent cations lie parallel, on top of each other, the distance between the centroids of the ligand rings N7–C8–C10–C17–C18 and C15–C19–C20–N16—C14–C13 being 3.4990 (16) Å.
4. Database survey
There are reports of structures with naphthalene-2,6-dicarboxylate coordinating to CuII ions (Kanoo et al., 2009; Zhao et al., 2005; Gomez et al., 2007; He et al., 2005; Chen et al., 2010) as well as compounds with the naphthalene-2,6-dicarboxylate not coordinating (Tao et al., 2003; Han et al., 2012).
5. Synthesis and crystallization
Naphthalene-2,6-dicarboxylic acid (0.021 g, 0.10 mmol) was suspended in 10 ml of water; while stirring and heating, a concentrated solution of KOH was added until a transparent solution was obtained. A second solution was prepared by mixing 1,10-phenanthroline (0.018 g, 0.10 mmol) in MeOH (5 ml) and Cu(NO3)2·3H20 (0.018 g, 0.21 mmol) dissolved in water (5 ml). Both solutions were mixed and stirred under reflux for a period of 3 h. The clear-blue solution was slowly evaporated at room temperature. Blue crystals of the title compound were obtained after several days. The yield was not determined due to the poor stability of the compound out of solution.
6. Refinement
Crystal data, data collection and . The hydroxide H and water H atoms were located in a difference Fourier map and positional parameters were refined with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions and refined in riding mode, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1051837
10.1107/S2056989015004338/xu5835sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015004338/xu5835Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).[Cu2(OH)2(C12H8N2)2(H2O)2](C12H6O4)·6H2O | F(000) = 908 |
Mr = 879.80 | Dx = 1.611 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3626 (16) Å | Cell parameters from 4729 reflections |
b = 10.5812 (18) Å | θ = 2.2–27.5° |
c = 18.648 (3) Å | µ = 1.25 mm−1 |
β = 100.961 (3)° | T = 298 K |
V = 1813.7 (5) Å3 | Prism-hexagonal, blue |
Z = 2 | 0.32 × 0.14 × 0.13 mm |
Bruker SMART APEX CCD diffractometer | 4168 independent reflections |
Radiation source: fine-focus sealed tube | 3164 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.6°, θmin = 2.2° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −13→13 |
Tmin = 0.691, Tmax = 0.858 | l = −24→24 |
12102 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.9957P] where P = (Fo2 + 2Fc2)/3 |
4168 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.41 e Å−3 |
36 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.36968 (3) | 0.07336 (3) | 0.50127 (2) | 0.02290 (10) | |
O1 | 0.5472 (2) | 0.60808 (19) | 0.36776 (11) | 0.0381 (5) | |
O2 | 0.6367 (2) | 0.5229 (2) | 0.27719 (11) | 0.0495 (6) | |
O3 | 0.52734 (18) | −0.00259 (17) | 0.57091 (9) | 0.0261 (4) | |
H3A | 0.571 (3) | 0.047 (2) | 0.5945 (15) | 0.039* | |
O4 | 0.4830 (2) | 0.26261 (19) | 0.50689 (11) | 0.0349 (5) | |
H4A | 0.456 (4) | 0.303 (3) | 0.4734 (12) | 0.052* | |
H4B | 0.472 (4) | 0.301 (3) | 0.5401 (13) | 0.052* | |
O5 | 0.3358 (3) | 0.8164 (2) | 0.31710 (13) | 0.0498 (6) | |
H5A | 0.387 (4) | 0.760 (3) | 0.319 (2) | 0.075* | |
H5B | 0.341 (4) | 0.855 (3) | 0.2833 (14) | 0.075* | |
O6 | 0.3821 (3) | 0.3788 (2) | 0.37053 (15) | 0.0525 (6) | |
H6A | 0.414 (4) | 0.4451 (19) | 0.371 (2) | 0.079* | |
H6B | 0.428 (4) | 0.333 (3) | 0.352 (2) | 0.079* | |
O7 | 0.5308 (3) | 0.1767 (2) | 0.32376 (12) | 0.0459 (6) | |
H7A | 0.519 (4) | 0.135 (3) | 0.3554 (15) | 0.069* | |
H7B | 0.491 (4) | 0.140 (3) | 0.2907 (14) | 0.069* | |
C1 | 0.7904 (3) | 0.5295 (2) | 0.39346 (14) | 0.0266 (6) | |
C2 | 0.9135 (3) | 0.4941 (3) | 0.36397 (14) | 0.0306 (6) | |
H2 | 0.9045 | 0.4853 | 0.3137 | 0.037* | |
C3 | 1.0446 (3) | 0.4728 (3) | 0.40805 (14) | 0.0304 (6) | |
H3 | 1.1242 | 0.4512 | 0.3874 | 0.036* | |
C4 | 0.9383 (3) | 0.5169 (2) | 0.51493 (14) | 0.0255 (5) | |
C5 | 0.8052 (3) | 0.5398 (2) | 0.46729 (14) | 0.0280 (6) | |
H5 | 0.7247 | 0.5627 | 0.4869 | 0.034* | |
C6 | 0.6480 (3) | 0.5557 (3) | 0.34251 (15) | 0.0308 (6) | |
N7 | 0.1858 (2) | 0.11609 (19) | 0.43037 (11) | 0.0232 (5) | |
C8 | 0.1602 (3) | 0.1156 (3) | 0.35799 (14) | 0.0290 (6) | |
H8 | 0.2362 | 0.0970 | 0.3341 | 0.035* | |
C9 | 0.0233 (3) | 0.1419 (3) | 0.31650 (15) | 0.0332 (6) | |
H9 | 0.0093 | 0.1403 | 0.2658 | 0.040* | |
C10 | −0.0906 (3) | 0.1702 (3) | 0.35005 (15) | 0.0320 (6) | |
H10 | −0.1821 | 0.1876 | 0.3225 | 0.038* | |
C11 | −0.1773 (3) | 0.2011 (2) | 0.46792 (16) | 0.0314 (6) | |
H11 | −0.2711 | 0.2198 | 0.4435 | 0.038* | |
C12 | −0.1477 (3) | 0.2013 (2) | 0.54136 (15) | 0.0304 (6) | |
H12 | −0.2214 | 0.2205 | 0.5667 | 0.037* | |
C13 | 0.0330 (3) | 0.1719 (3) | 0.65763 (15) | 0.0328 (6) | |
H13 | −0.0365 | 0.1890 | 0.6859 | 0.039* | |
C14 | 0.1731 (3) | 0.1457 (3) | 0.69029 (15) | 0.0341 (7) | |
H14 | 0.1999 | 0.1467 | 0.7409 | 0.041* | |
C15 | 0.2761 (3) | 0.1174 (3) | 0.64738 (14) | 0.0290 (6) | |
H15 | 0.3708 | 0.0985 | 0.6704 | 0.035* | |
N16 | 0.2434 (2) | 0.11657 (19) | 0.57492 (11) | 0.0230 (5) | |
C17 | 0.0737 (2) | 0.1444 (2) | 0.46436 (14) | 0.0217 (5) | |
C18 | −0.0673 (3) | 0.1726 (2) | 0.42647 (14) | 0.0251 (5) | |
C19 | 0.1051 (2) | 0.1448 (2) | 0.54237 (13) | 0.0215 (5) | |
C20 | −0.0055 (3) | 0.1728 (2) | 0.58126 (14) | 0.0256 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01878 (16) | 0.02928 (18) | 0.02090 (16) | 0.00393 (13) | 0.00440 (11) | 0.00009 (14) |
O1 | 0.0302 (10) | 0.0441 (12) | 0.0373 (11) | 0.0069 (9) | −0.0002 (9) | −0.0061 (9) |
O2 | 0.0487 (13) | 0.0674 (16) | 0.0277 (11) | 0.0166 (12) | −0.0042 (10) | −0.0074 (11) |
O3 | 0.0238 (9) | 0.0330 (11) | 0.0208 (9) | 0.0057 (8) | 0.0022 (7) | −0.0031 (8) |
O4 | 0.0370 (11) | 0.0312 (12) | 0.0372 (12) | 0.0013 (9) | 0.0087 (10) | −0.0018 (9) |
O5 | 0.0523 (14) | 0.0594 (17) | 0.0414 (14) | 0.0069 (12) | 0.0186 (12) | 0.0011 (12) |
O6 | 0.0476 (14) | 0.0491 (15) | 0.0640 (16) | −0.0027 (12) | 0.0191 (12) | 0.0028 (14) |
O7 | 0.0475 (13) | 0.0484 (15) | 0.0392 (14) | −0.0100 (11) | 0.0014 (11) | 0.0018 (11) |
C1 | 0.0296 (14) | 0.0209 (13) | 0.0275 (14) | −0.0008 (11) | 0.0008 (11) | 0.0012 (11) |
C2 | 0.0365 (15) | 0.0322 (15) | 0.0234 (13) | 0.0000 (12) | 0.0064 (11) | 0.0002 (12) |
C3 | 0.0314 (14) | 0.0313 (15) | 0.0298 (15) | 0.0036 (12) | 0.0089 (12) | −0.0016 (12) |
C4 | 0.0285 (13) | 0.0197 (13) | 0.0281 (14) | 0.0028 (11) | 0.0052 (11) | −0.0008 (11) |
C5 | 0.0296 (14) | 0.0258 (14) | 0.0298 (14) | 0.0055 (11) | 0.0090 (11) | −0.0011 (11) |
C6 | 0.0349 (15) | 0.0251 (14) | 0.0306 (14) | 0.0007 (12) | 0.0016 (12) | 0.0001 (12) |
N7 | 0.0212 (10) | 0.0248 (11) | 0.0238 (11) | 0.0006 (9) | 0.0051 (9) | 0.0010 (9) |
C8 | 0.0284 (14) | 0.0328 (15) | 0.0263 (14) | 0.0013 (11) | 0.0069 (11) | 0.0026 (12) |
C9 | 0.0389 (16) | 0.0334 (16) | 0.0244 (14) | −0.0006 (13) | −0.0015 (12) | 0.0050 (12) |
C10 | 0.0265 (14) | 0.0296 (15) | 0.0355 (15) | 0.0007 (12) | −0.0049 (12) | 0.0039 (12) |
C11 | 0.0179 (12) | 0.0284 (15) | 0.0468 (17) | 0.0033 (11) | 0.0032 (12) | −0.0039 (13) |
C12 | 0.0229 (13) | 0.0282 (15) | 0.0425 (17) | 0.0005 (11) | 0.0122 (12) | −0.0039 (12) |
C13 | 0.0340 (15) | 0.0335 (15) | 0.0348 (15) | −0.0025 (13) | 0.0166 (12) | −0.0080 (13) |
C14 | 0.0397 (16) | 0.0379 (17) | 0.0261 (14) | −0.0018 (13) | 0.0096 (12) | −0.0050 (12) |
C15 | 0.0284 (14) | 0.0307 (15) | 0.0266 (14) | −0.0011 (11) | 0.0023 (11) | −0.0034 (11) |
N16 | 0.0194 (10) | 0.0239 (11) | 0.0257 (11) | 0.0003 (9) | 0.0042 (9) | −0.0011 (9) |
C17 | 0.0188 (12) | 0.0171 (12) | 0.0292 (13) | −0.0001 (10) | 0.0047 (10) | 0.0008 (10) |
C18 | 0.0210 (12) | 0.0195 (13) | 0.0334 (14) | −0.0014 (10) | 0.0012 (10) | 0.0017 (11) |
C19 | 0.0186 (12) | 0.0195 (13) | 0.0269 (13) | −0.0016 (10) | 0.0053 (10) | −0.0018 (10) |
C20 | 0.0233 (13) | 0.0210 (13) | 0.0344 (15) | −0.0030 (10) | 0.0106 (11) | −0.0050 (11) |
Cu1—O3 | 1.9448 (17) | C4—C4ii | 1.420 (5) |
Cu1—O3i | 1.9482 (17) | C5—H5 | 0.9300 |
Cu1—N7 | 2.012 (2) | N7—C8 | 1.325 (3) |
Cu1—N16 | 2.028 (2) | N7—C17 | 1.358 (3) |
Cu1—O4 | 2.259 (2) | C8—C9 | 1.394 (4) |
Cu1—Cu1i | 2.9002 (7) | C8—H8 | 0.9300 |
O1—C6 | 1.261 (3) | C9—C10 | 1.368 (4) |
O2—C6 | 1.251 (3) | C9—H9 | 0.9300 |
O3—Cu1i | 1.9481 (17) | C10—C18 | 1.400 (4) |
O3—H3A | 0.757 (13) | C10—H10 | 0.9300 |
O4—H4A | 0.762 (13) | C11—C12 | 1.345 (4) |
O4—H4B | 0.762 (13) | C11—C18 | 1.432 (4) |
O5—H5A | 0.760 (13) | C11—H11 | 0.9300 |
O5—H5B | 0.763 (13) | C12—C20 | 1.429 (3) |
O6—H6A | 0.763 (13) | C12—H12 | 0.9300 |
O6—H6B | 0.766 (13) | C13—C14 | 1.365 (4) |
O7—H7A | 0.762 (13) | C13—C20 | 1.401 (4) |
O7—H7B | 0.761 (13) | C13—H13 | 0.9300 |
C1—C5 | 1.362 (4) | C14—C15 | 1.398 (4) |
C1—C2 | 1.419 (4) | C14—H14 | 0.9300 |
C1—C6 | 1.508 (4) | C15—N16 | 1.328 (3) |
C2—C3 | 1.359 (4) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | N16—C19 | 1.355 (3) |
C3—C4ii | 1.419 (4) | C17—C18 | 1.406 (3) |
C3—H3 | 0.9300 | C17—C19 | 1.428 (3) |
C4—C5 | 1.407 (4) | C19—C20 | 1.404 (3) |
C4—C3ii | 1.419 (4) | ||
O3—Cu1—O3i | 83.69 (8) | C8—N7—C17 | 118.0 (2) |
O3—Cu1—N7 | 167.78 (8) | C8—N7—Cu1 | 129.39 (17) |
O3i—Cu1—N7 | 96.11 (8) | C17—N7—Cu1 | 112.53 (16) |
O3—Cu1—N16 | 96.16 (8) | N7—C8—C9 | 122.3 (2) |
O3i—Cu1—N16 | 169.61 (8) | N7—C8—H8 | 118.9 |
N7—Cu1—N16 | 81.84 (8) | C9—C8—H8 | 118.9 |
O3—Cu1—O4 | 92.59 (8) | C10—C9—C8 | 120.3 (3) |
O3i—Cu1—O4 | 94.76 (8) | C10—C9—H9 | 119.9 |
N7—Cu1—O4 | 99.61 (8) | C8—C9—H9 | 119.9 |
N16—Cu1—O4 | 95.62 (8) | C9—C10—C18 | 119.0 (2) |
O3—Cu1—Cu1i | 41.89 (5) | C9—C10—H10 | 120.5 |
O3i—Cu1—Cu1i | 41.80 (5) | C18—C10—H10 | 120.5 |
N7—Cu1—Cu1i | 136.62 (6) | C12—C11—C18 | 121.3 (2) |
N16—Cu1—Cu1i | 137.11 (6) | C12—C11—H11 | 119.3 |
O4—Cu1—Cu1i | 94.93 (6) | C18—C11—H11 | 119.3 |
Cu1—O3—Cu1i | 96.31 (8) | C11—C12—C20 | 121.4 (2) |
Cu1—O3—H3A | 111 (2) | C11—C12—H12 | 119.3 |
Cu1i—O3—H3A | 112 (2) | C20—C12—H12 | 119.3 |
Cu1—O4—H4A | 112 (3) | C14—C13—C20 | 119.6 (2) |
Cu1—O4—H4B | 112 (3) | C14—C13—H13 | 120.2 |
H4A—O4—H4B | 107 (4) | C20—C13—H13 | 120.2 |
H5A—O5—H5B | 108 (4) | C13—C14—C15 | 119.8 (3) |
H6A—O6—H6B | 109 (4) | C13—C14—H14 | 120.1 |
H7A—O7—H7B | 102 (4) | C15—C14—H14 | 120.1 |
C5—C1—C2 | 118.6 (2) | N16—C15—C14 | 122.2 (2) |
C5—C1—C6 | 122.0 (2) | N16—C15—H15 | 118.9 |
C2—C1—C6 | 119.4 (2) | C14—C15—H15 | 118.9 |
C3—C2—C1 | 121.1 (2) | C15—N16—C19 | 118.1 (2) |
C3—C2—H2 | 119.5 | C15—N16—Cu1 | 129.74 (17) |
C1—C2—H2 | 119.5 | C19—N16—Cu1 | 112.16 (16) |
C2—C3—C4ii | 121.0 (2) | N7—C17—C18 | 123.2 (2) |
C2—C3—H3 | 119.5 | N7—C17—C19 | 116.7 (2) |
C4ii—C3—H3 | 119.5 | C18—C17—C19 | 120.2 (2) |
C5—C4—C3ii | 122.8 (2) | C10—C18—C17 | 117.2 (2) |
C5—C4—C4ii | 119.0 (3) | C10—C18—C11 | 124.3 (2) |
C3ii—C4—C4ii | 118.2 (3) | C17—C18—C11 | 118.4 (2) |
C1—C5—C4 | 122.1 (2) | N16—C19—C20 | 123.4 (2) |
C1—C5—H5 | 118.9 | N16—C19—C17 | 116.7 (2) |
C4—C5—H5 | 118.9 | C20—C19—C17 | 119.9 (2) |
O2—C6—O1 | 123.7 (3) | C13—C20—C19 | 116.8 (2) |
O2—C6—C1 | 117.6 (2) | C13—C20—C12 | 124.4 (2) |
O1—C6—C1 | 118.7 (2) | C19—C20—C12 | 118.8 (2) |
C5—C1—C2—C3 | −1.1 (4) | C9—C10—C18—C17 | −0.5 (4) |
C6—C1—C2—C3 | 178.3 (3) | C9—C10—C18—C11 | 179.9 (3) |
C1—C2—C3—C4ii | 1.1 (4) | N7—C17—C18—C10 | 0.3 (4) |
C2—C1—C5—C4 | 0.2 (4) | C19—C17—C18—C10 | −179.9 (2) |
C6—C1—C5—C4 | −179.2 (2) | N7—C17—C18—C11 | −180.0 (2) |
C3ii—C4—C5—C1 | −180.0 (3) | C19—C17—C18—C11 | −0.2 (4) |
C4ii—C4—C5—C1 | 0.6 (5) | C12—C11—C18—C10 | 179.8 (3) |
C5—C1—C6—O2 | −167.8 (3) | C12—C11—C18—C17 | 0.1 (4) |
C2—C1—C6—O2 | 12.9 (4) | C15—N16—C19—C20 | −1.1 (4) |
C5—C1—C6—O1 | 11.8 (4) | Cu1—N16—C19—C20 | 177.23 (19) |
C2—C1—C6—O1 | −167.6 (3) | C15—N16—C19—C17 | 179.4 (2) |
C17—N7—C8—C9 | −0.5 (4) | Cu1—N16—C19—C17 | −2.3 (3) |
Cu1—N7—C8—C9 | 176.7 (2) | N7—C17—C19—N16 | −0.2 (3) |
N7—C8—C9—C10 | 0.3 (4) | C18—C17—C19—N16 | 179.9 (2) |
C8—C9—C10—C18 | 0.2 (4) | N7—C17—C19—C20 | −179.8 (2) |
C18—C11—C12—C20 | −0.2 (4) | C18—C17—C19—C20 | 0.4 (4) |
C20—C13—C14—C15 | −1.4 (4) | C14—C13—C20—C19 | 0.6 (4) |
C13—C14—C15—N16 | 1.0 (4) | C14—C13—C20—C12 | −178.7 (3) |
C14—C15—N16—C19 | 0.3 (4) | N16—C19—C20—C13 | 0.6 (4) |
C14—C15—N16—Cu1 | −177.7 (2) | C17—C19—C20—C13 | −179.8 (2) |
C8—N7—C17—C18 | 0.2 (4) | N16—C19—C20—C12 | 180.0 (2) |
Cu1—N7—C17—C18 | −177.50 (19) | C17—C19—C20—C12 | −0.5 (4) |
C8—N7—C17—C19 | −179.7 (2) | C11—C12—C20—C13 | 179.7 (3) |
Cu1—N7—C17—C19 | 2.7 (3) | C11—C12—C20—C19 | 0.4 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5iii | 0.76 (1) | 2.24 (2) | 2.977 (3) | 166 (3) |
O4—H4A···O6 | 0.76 (1) | 2.07 (2) | 2.821 (3) | 168 (4) |
O4—H4B···O1iii | 0.76 (1) | 2.01 (1) | 2.769 (3) | 176 (4) |
O5—H5A···O1 | 0.76 (1) | 2.27 (2) | 2.993 (3) | 159 (4) |
O5—H5B···O2iv | 0.76 (1) | 2.13 (2) | 2.846 (3) | 156 (4) |
O6—H6A···O1 | 0.76 (1) | 2.13 (2) | 2.882 (3) | 167 (4) |
O6—H6B···O7 | 0.77 (1) | 2.04 (2) | 2.782 (4) | 164 (4) |
O7—H7A···O3i | 0.76 (1) | 2.07 (1) | 2.820 (3) | 171 (4) |
O7—H7B···O2v | 0.76 (1) | 2.00 (2) | 2.744 (3) | 165 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
DAZ acknowledges CONACYT–México for the SNI scholarship.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, J.-X., Liu, B.-H. & Meng, W.-W. (2010). Chin. J. Inorg. Chem. 26, 885–890. CAS Google Scholar
Gomez, L., Company, A., Fontrodona, X., Ribas, X. & Costas, M. (2007). Chem. Commun. pp. 4301–4424. Google Scholar
Han, S., Lough, A. J. & Kim, J.-C. (2012). Bull. Korean Chem. Soc. 33, 2381–2384. Web of Science CSD CrossRef CAS Google Scholar
He, X., Lu, C.-Z., Yuan, D.-Q., Chen, L.-J., Zhang, Q.-Z. & Wu, C.-D. (2005). Eur. J. Inorg. Chem. pp. 4598–4606. Web of Science CSD CrossRef Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kanoo, P., Matsuda, R., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860–5866. Web of Science CSD CrossRef CAS Google Scholar
Klärner, F.-G. & Schrader, T. (2013). Acc. Chem. Res. 46, 967–978. Web of Science PubMed Google Scholar
Putta, A., Mottishaw, J. D., Wang, Z. & Sun, H. (2014). Cryst. Growth Des. 14, 350–356. Web of Science CSD CrossRef CAS Google Scholar
Riley, K. E. & Hobza, P. (2013). Acc. Chem. Res. 46, 927–936. Web of Science CrossRef CAS PubMed Google Scholar
Sebaoun, L., Maurizot, V., Granier, T., Kauffmann, B. & Huc, I. (2014). J. Am. Chem. Soc. 136, 2168–2174. Web of Science CrossRef CAS PubMed Google Scholar
Serrano-Becerra, J. M., Hernández-Ortega, S., Morales-Morales, D. & Valdés-Martínez, J. (2009). CrystEngComm, 11, 226–228. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2013). CIFTAB. University of Göttingen. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tao, J., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m614–m615. Web of Science CSD CrossRef IUCr Journals Google Scholar
Valdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590–m1592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, D., Chen, J., Sun, J., Tu, B., Weng, L., Yin, Q., Yu, T., Zhou, Y. & Chen, Z. (2005). Private Communication (refcode KAKNOA). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.