research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 360-362

Crystal structure of di-μ-hydroxido-bis­­[aqua­(1,10-phenanthroline-κ2N,N′)copper(II)] naphthalene-2,6-di­carboxyl­ate hexa­hydrate

CROSSMARK_Color_square_no_text.svg

aUVM Campus Toluca, Avenida las Palmas Poniente No. 439 San Jorge Pueblo Nuevo, CP 52164, Metepec, Estado de México, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. México, 04510, Coyoacán, México D.F., Mexico
*Correspondence e-mail: jvaldes@unam.mx

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 27 January 2015; accepted 2 March 2015; online 14 March 2015)

In the title compound, [Cu2(OH)2(C12H8N2)2(H2O)2](C12H6O4)·6H2O, the two hydroxide groups bridge the two CuII cations, forming a centrosymmetric binuclear complex cation, in which the CuII cation is coordinated by a 1,10-phenanthroline (phen) mol­ecule, one water mol­ecule and two bridging hydroxide O atoms in a distorted N2O3 square-pyramidal coordination geometry. The naphthalene-2,6-di­carboxyl­ate anion is also located on an inversion centre. In the crystal, O—H⋯O hydrogen bonds link the cations, anions and lattice water mol­ecules into a three-dimensional supra­molecular architecture. Extensive ππ stacking is observed between the parallel or nearly parallel aromatic rings of adjacent phen ligands and naphthalenedi­carboxyl­ate anions, the centroid-to-centroid distances ranging from 3.4990 (16) to 3.8895 (16) Å.

1. Chemical context

The designed arrangement of mol­ecules through inter­molecular inter­actions is one of the main purposes of crystal engineering. Among these inter­actions are hydrogen bonds and ππ stacking (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]). ππ stacking inter­actions are ubiquitous in biological systems, and organic mol­ecules (Riley & Hobza, 2013[Riley, K. E. & Hobza, P. (2013). Acc. Chem. Res. 46, 927-936.]; Klärner & Schrader, 2013[Klärner, F.-G. & Schrader, T. (2013). Acc. Chem. Res. 46, 967-978.]), and are present in many metal complexes (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Nevertheless, relatively few systems have been designed to be organized mainly by ππ inter­actions (Putta et al., 2014[Putta, A., Mottishaw, J. D., Wang, Z. & Sun, H. (2014). Cryst. Growth Des. 14, 350-356.]; Sebaoun et al., 2014[Sebaoun, L., Maurizot, V., Granier, T., Kauffmann, B. & Huc, I. (2014). J. Am. Chem. Soc. 136, 2168-2174.]; Valdés-Martínez et al., 2005[Valdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590-m1592.]). In most cases, they are secondary inter­actions helping to stabilize the network, not the main tool in the organization of the mol­ecules in the crystal. We have proved that it is possible to obtain designed non-centrosymmetric crystals through ππ stacking inter­actions (Serrano-Becerra et al., 2009[Serrano-Becerra, J. M., Hernández-Ortega, S., Morales-Morales, D. & Valdés-Martínez, J. (2009). CrystEngComm, 11, 226-228.]).

[Scheme 1]

As part of a systematic study of the possible organization of copper coordination compounds controlled by ππ stacking inter­actions, we decided to use aromatic amines, as blocking ligands, and naphthalene-2,6-di­carboxyl­ate as a possible bridging ligand between the [Cu(ammine)] moieties, as long as all of them may form ππ inter­actions. The reactions were done in water – the tendency of carboxyl­ates to form hydrogen bonds with water is well known, as is their tendency to coord­inate to CuII complexes – so these structures will give us an opportunity to evaluate the importance of water⋯ hydrogen bonding versus ππ inter­actions as the main inter­action controlling the organization of the mol­ecules in the crystal.

During these studies, the title compound was unexpectedly obtained. Its mol­ecular and crystal structure are described herein.

2. Structural commentary

The asymmetric unit of the title compound contains half of a [(phen)(H2O)Cu(OH)2Cu(H2O)(phen)] (phen is 1,10-phen­anthroline) dimer, half of an naphthalene-2,6-di­carboxyl­ate anion and three lattice water mol­ecules. The CuII cation is penta­coordinated with a square-pyramidal geometry, the phen coordinates as a bidentate ligand through the N atoms, the hydroxide groups bridge the two CuII cations and a water mol­ecule is coordinated in the apical position (Fig. 1[link]). The carboxyl­ate group of the naphthalene-2,6-di­carboxyl­ate anion is twisted at 12.4 (3)° with respect to the naphthalene ring system.

[Figure 1]
Figure 1
The structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as circles of arbitrary radius.

3. Supra­molecular features

An extensive network of hydrogen bonds is formed (Table 1[link]) in the crystal. Atom O4 of the coordinating water mol­ecule acts as a hydrogen-bond donor to O6 of a water mol­ecule and carboxyl­ate atom O1. The bridging hydroxide group hydrogen bonds to atom O5 of a water mol­ecule and acts as a hydrogen-bond acceptor with water oxygen atom O7. The carboxyl­ate atom O1 forms three hydrogen bonds while carboxyl­ate atom O2 forms two hydrogen bonds. Water oxygen atoms O6 and O7 form hydrogen bonds with each other as well as with the carboxyl­ate O atoms. The hydrogen-bond network extends into a three-dimensional structure, see Fig. 2[link]. The presence of a free naphthalene-2,6-di­carboxyl­ate with four hydrogen-bond acceptors requires the presence of water mol­ecules, but the tendency of the aromatic rings in the ligands to form inter­actions may also observed and this is an important factor in the organization of the mol­ecules in the crystal (Fig. 2[link]). Two phenanthroline units from two adjacent cations lie parallel, on top of each other, the distance between the centroids of the ligand rings N7–C8–C10–C17–C18 and C15–C19–C20–N16—C14–C13 being 3.4990 (16) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5i 0.76 (1) 2.24 (2) 2.977 (3) 166 (3)
O4—H4A⋯O6 0.76 (1) 2.07 (2) 2.821 (3) 168 (4)
O4—H4B⋯O1i 0.76 (1) 2.01 (1) 2.769 (3) 176 (4)
O5—H5A⋯O1 0.76 (1) 2.27 (2) 2.993 (3) 159 (4)
O5—H5B⋯O2ii 0.76 (1) 2.13 (2) 2.846 (3) 156 (4)
O6—H6A⋯O1 0.76 (1) 2.13 (2) 2.882 (3) 167 (4)
O6—H6B⋯O7 0.77 (1) 2.04 (2) 2.782 (4) 164 (4)
O7—H7A⋯O3iii 0.76 (1) 2.07 (1) 2.820 (3) 171 (4)
O7—H7B⋯O2iv 0.76 (1) 2.00 (2) 2.744 (3) 165 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound viewed along the b axis, showing the hydrogen bonding, as dashed lines, and ππ stacking.

4. Database survey

There are reports of structures with naphthalene-2,6-di­carboxyl­ate coordinating to CuII ions (Kanoo et al., 2009[Kanoo, P., Matsuda, R., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860-5866.]; Zhao et al., 2005[Zhao, D., Chen, J., Sun, J., Tu, B., Weng, L., Yin, Q., Yu, T., Zhou, Y. & Chen, Z. (2005). Private Communication (refcode KAKNOA). CCDC, Cambridge, England.]; Gomez et al., 2007[Gomez, L., Company, A., Fontrodona, X., Ribas, X. & Costas, M. (2007). Chem. Commun. pp. 4301-4424.]; He et al., 2005[He, X., Lu, C.-Z., Yuan, D.-Q., Chen, L.-J., Zhang, Q.-Z. & Wu, C.-D. (2005). Eur. J. Inorg. Chem. pp. 4598-4606.]; Chen et al., 2010[Chen, J.-X., Liu, B.-H. & Meng, W.-W. (2010). Chin. J. Inorg. Chem. 26, 885-890.]) as well as compounds with the naphthalene-2,6-di­carboxyl­ate not coordinating (Tao et al., 2003[Tao, J., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m614-m615.]; Han et al., 2012[Han, S., Lough, A. J. & Kim, J.-C. (2012). Bull. Korean Chem. Soc. 33, 2381-2384.]).

5. Synthesis and crystallization

Naphthalene-2,6-di­carb­oxy­lic acid (0.021 g, 0.10 mmol) was suspended in 10 ml of water; while stirring and heating, a concentrated solution of KOH was added until a transparent solution was obtained. A second solution was prepared by mixing 1,10-phenanthroline (0.018 g, 0.10 mmol) in MeOH (5 ml) and Cu(NO3)2·3H20 (0.018 g, 0.21 mmol) dissolved in water (5 ml). Both solutions were mixed and stirred under reflux for a period of 3 h. The clear-blue solution was slowly evaporated at room temperature. Blue crystals of the title compound were obtained after several days. The yield was not determined due to the poor stability of the compound out of solution.

6. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 2[link]. The hydroxide H and water H atoms were located in a difference Fourier map and positional parameters were refined with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions and refined in riding mode, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(OH)2(C12H8N2)2(H2O)2](C12H6O4)·6H2O
Mr 879.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 9.3626 (16), 10.5812 (18), 18.648 (3)
β (°) 100.961 (3)
V3) 1813.7 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.25
Crystal size (mm) 0.32 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 12102, 4168, 3164
Rint 0.040
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.03
No. of reflections 4168
No. of parameters 280
No. of restraints 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CIFTAB (Sheldrick, 2013[Sheldrick, G. M. (2013). CIFTAB. University of Göttingen.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).

Di-µ-hydroxido-bis[aqua(1,10-phenanthroline-κ2N,N')copper(II)] naphthalene-2,6-dicarboxylate hexahydrate top
Crystal data top
[Cu2(OH)2(C12H8N2)2(H2O)2](C12H6O4)·6H2OF(000) = 908
Mr = 879.80Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3626 (16) ÅCell parameters from 4729 reflections
b = 10.5812 (18) Åθ = 2.2–27.5°
c = 18.648 (3) ŵ = 1.25 mm1
β = 100.961 (3)°T = 298 K
V = 1813.7 (5) Å3Prism-hexagonal, blue
Z = 20.32 × 0.14 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4168 independent reflections
Radiation source: fine-focus sealed tube3164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.333 pixels mm-1θmax = 27.6°, θmin = 2.2°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.691, Tmax = 0.858l = 2424
12102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.9957P]
where P = (Fo2 + 2Fc2)/3
4168 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.41 e Å3
36 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36968 (3)0.07336 (3)0.50127 (2)0.02290 (10)
O10.5472 (2)0.60808 (19)0.36776 (11)0.0381 (5)
O20.6367 (2)0.5229 (2)0.27719 (11)0.0495 (6)
O30.52734 (18)0.00259 (17)0.57091 (9)0.0261 (4)
H3A0.571 (3)0.047 (2)0.5945 (15)0.039*
O40.4830 (2)0.26261 (19)0.50689 (11)0.0349 (5)
H4A0.456 (4)0.303 (3)0.4734 (12)0.052*
H4B0.472 (4)0.301 (3)0.5401 (13)0.052*
O50.3358 (3)0.8164 (2)0.31710 (13)0.0498 (6)
H5A0.387 (4)0.760 (3)0.319 (2)0.075*
H5B0.341 (4)0.855 (3)0.2833 (14)0.075*
O60.3821 (3)0.3788 (2)0.37053 (15)0.0525 (6)
H6A0.414 (4)0.4451 (19)0.371 (2)0.079*
H6B0.428 (4)0.333 (3)0.352 (2)0.079*
O70.5308 (3)0.1767 (2)0.32376 (12)0.0459 (6)
H7A0.519 (4)0.135 (3)0.3554 (15)0.069*
H7B0.491 (4)0.140 (3)0.2907 (14)0.069*
C10.7904 (3)0.5295 (2)0.39346 (14)0.0266 (6)
C20.9135 (3)0.4941 (3)0.36397 (14)0.0306 (6)
H20.90450.48530.31370.037*
C31.0446 (3)0.4728 (3)0.40805 (14)0.0304 (6)
H31.12420.45120.38740.036*
C40.9383 (3)0.5169 (2)0.51493 (14)0.0255 (5)
C50.8052 (3)0.5398 (2)0.46729 (14)0.0280 (6)
H50.72470.56270.48690.034*
C60.6480 (3)0.5557 (3)0.34251 (15)0.0308 (6)
N70.1858 (2)0.11609 (19)0.43037 (11)0.0232 (5)
C80.1602 (3)0.1156 (3)0.35799 (14)0.0290 (6)
H80.23620.09700.33410.035*
C90.0233 (3)0.1419 (3)0.31650 (15)0.0332 (6)
H90.00930.14030.26580.040*
C100.0906 (3)0.1702 (3)0.35005 (15)0.0320 (6)
H100.18210.18760.32250.038*
C110.1773 (3)0.2011 (2)0.46792 (16)0.0314 (6)
H110.27110.21980.44350.038*
C120.1477 (3)0.2013 (2)0.54136 (15)0.0304 (6)
H120.22140.22050.56670.037*
C130.0330 (3)0.1719 (3)0.65763 (15)0.0328 (6)
H130.03650.18900.68590.039*
C140.1731 (3)0.1457 (3)0.69029 (15)0.0341 (7)
H140.19990.14670.74090.041*
C150.2761 (3)0.1174 (3)0.64738 (14)0.0290 (6)
H150.37080.09850.67040.035*
N160.2434 (2)0.11657 (19)0.57492 (11)0.0230 (5)
C170.0737 (2)0.1444 (2)0.46436 (14)0.0217 (5)
C180.0673 (3)0.1726 (2)0.42647 (14)0.0251 (5)
C190.1051 (2)0.1448 (2)0.54237 (13)0.0215 (5)
C200.0055 (3)0.1728 (2)0.58126 (14)0.0256 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01878 (16)0.02928 (18)0.02090 (16)0.00393 (13)0.00440 (11)0.00009 (14)
O10.0302 (10)0.0441 (12)0.0373 (11)0.0069 (9)0.0002 (9)0.0061 (9)
O20.0487 (13)0.0674 (16)0.0277 (11)0.0166 (12)0.0042 (10)0.0074 (11)
O30.0238 (9)0.0330 (11)0.0208 (9)0.0057 (8)0.0022 (7)0.0031 (8)
O40.0370 (11)0.0312 (12)0.0372 (12)0.0013 (9)0.0087 (10)0.0018 (9)
O50.0523 (14)0.0594 (17)0.0414 (14)0.0069 (12)0.0186 (12)0.0011 (12)
O60.0476 (14)0.0491 (15)0.0640 (16)0.0027 (12)0.0191 (12)0.0028 (14)
O70.0475 (13)0.0484 (15)0.0392 (14)0.0100 (11)0.0014 (11)0.0018 (11)
C10.0296 (14)0.0209 (13)0.0275 (14)0.0008 (11)0.0008 (11)0.0012 (11)
C20.0365 (15)0.0322 (15)0.0234 (13)0.0000 (12)0.0064 (11)0.0002 (12)
C30.0314 (14)0.0313 (15)0.0298 (15)0.0036 (12)0.0089 (12)0.0016 (12)
C40.0285 (13)0.0197 (13)0.0281 (14)0.0028 (11)0.0052 (11)0.0008 (11)
C50.0296 (14)0.0258 (14)0.0298 (14)0.0055 (11)0.0090 (11)0.0011 (11)
C60.0349 (15)0.0251 (14)0.0306 (14)0.0007 (12)0.0016 (12)0.0001 (12)
N70.0212 (10)0.0248 (11)0.0238 (11)0.0006 (9)0.0051 (9)0.0010 (9)
C80.0284 (14)0.0328 (15)0.0263 (14)0.0013 (11)0.0069 (11)0.0026 (12)
C90.0389 (16)0.0334 (16)0.0244 (14)0.0006 (13)0.0015 (12)0.0050 (12)
C100.0265 (14)0.0296 (15)0.0355 (15)0.0007 (12)0.0049 (12)0.0039 (12)
C110.0179 (12)0.0284 (15)0.0468 (17)0.0033 (11)0.0032 (12)0.0039 (13)
C120.0229 (13)0.0282 (15)0.0425 (17)0.0005 (11)0.0122 (12)0.0039 (12)
C130.0340 (15)0.0335 (15)0.0348 (15)0.0025 (13)0.0166 (12)0.0080 (13)
C140.0397 (16)0.0379 (17)0.0261 (14)0.0018 (13)0.0096 (12)0.0050 (12)
C150.0284 (14)0.0307 (15)0.0266 (14)0.0011 (11)0.0023 (11)0.0034 (11)
N160.0194 (10)0.0239 (11)0.0257 (11)0.0003 (9)0.0042 (9)0.0011 (9)
C170.0188 (12)0.0171 (12)0.0292 (13)0.0001 (10)0.0047 (10)0.0008 (10)
C180.0210 (12)0.0195 (13)0.0334 (14)0.0014 (10)0.0012 (10)0.0017 (11)
C190.0186 (12)0.0195 (13)0.0269 (13)0.0016 (10)0.0053 (10)0.0018 (10)
C200.0233 (13)0.0210 (13)0.0344 (15)0.0030 (10)0.0106 (11)0.0050 (11)
Geometric parameters (Å, º) top
Cu1—O31.9448 (17)C4—C4ii1.420 (5)
Cu1—O3i1.9482 (17)C5—H50.9300
Cu1—N72.012 (2)N7—C81.325 (3)
Cu1—N162.028 (2)N7—C171.358 (3)
Cu1—O42.259 (2)C8—C91.394 (4)
Cu1—Cu1i2.9002 (7)C8—H80.9300
O1—C61.261 (3)C9—C101.368 (4)
O2—C61.251 (3)C9—H90.9300
O3—Cu1i1.9481 (17)C10—C181.400 (4)
O3—H3A0.757 (13)C10—H100.9300
O4—H4A0.762 (13)C11—C121.345 (4)
O4—H4B0.762 (13)C11—C181.432 (4)
O5—H5A0.760 (13)C11—H110.9300
O5—H5B0.763 (13)C12—C201.429 (3)
O6—H6A0.763 (13)C12—H120.9300
O6—H6B0.766 (13)C13—C141.365 (4)
O7—H7A0.762 (13)C13—C201.401 (4)
O7—H7B0.761 (13)C13—H130.9300
C1—C51.362 (4)C14—C151.398 (4)
C1—C21.419 (4)C14—H140.9300
C1—C61.508 (4)C15—N161.328 (3)
C2—C31.359 (4)C15—H150.9300
C2—H20.9300N16—C191.355 (3)
C3—C4ii1.419 (4)C17—C181.406 (3)
C3—H30.9300C17—C191.428 (3)
C4—C51.407 (4)C19—C201.404 (3)
C4—C3ii1.419 (4)
O3—Cu1—O3i83.69 (8)C8—N7—C17118.0 (2)
O3—Cu1—N7167.78 (8)C8—N7—Cu1129.39 (17)
O3i—Cu1—N796.11 (8)C17—N7—Cu1112.53 (16)
O3—Cu1—N1696.16 (8)N7—C8—C9122.3 (2)
O3i—Cu1—N16169.61 (8)N7—C8—H8118.9
N7—Cu1—N1681.84 (8)C9—C8—H8118.9
O3—Cu1—O492.59 (8)C10—C9—C8120.3 (3)
O3i—Cu1—O494.76 (8)C10—C9—H9119.9
N7—Cu1—O499.61 (8)C8—C9—H9119.9
N16—Cu1—O495.62 (8)C9—C10—C18119.0 (2)
O3—Cu1—Cu1i41.89 (5)C9—C10—H10120.5
O3i—Cu1—Cu1i41.80 (5)C18—C10—H10120.5
N7—Cu1—Cu1i136.62 (6)C12—C11—C18121.3 (2)
N16—Cu1—Cu1i137.11 (6)C12—C11—H11119.3
O4—Cu1—Cu1i94.93 (6)C18—C11—H11119.3
Cu1—O3—Cu1i96.31 (8)C11—C12—C20121.4 (2)
Cu1—O3—H3A111 (2)C11—C12—H12119.3
Cu1i—O3—H3A112 (2)C20—C12—H12119.3
Cu1—O4—H4A112 (3)C14—C13—C20119.6 (2)
Cu1—O4—H4B112 (3)C14—C13—H13120.2
H4A—O4—H4B107 (4)C20—C13—H13120.2
H5A—O5—H5B108 (4)C13—C14—C15119.8 (3)
H6A—O6—H6B109 (4)C13—C14—H14120.1
H7A—O7—H7B102 (4)C15—C14—H14120.1
C5—C1—C2118.6 (2)N16—C15—C14122.2 (2)
C5—C1—C6122.0 (2)N16—C15—H15118.9
C2—C1—C6119.4 (2)C14—C15—H15118.9
C3—C2—C1121.1 (2)C15—N16—C19118.1 (2)
C3—C2—H2119.5C15—N16—Cu1129.74 (17)
C1—C2—H2119.5C19—N16—Cu1112.16 (16)
C2—C3—C4ii121.0 (2)N7—C17—C18123.2 (2)
C2—C3—H3119.5N7—C17—C19116.7 (2)
C4ii—C3—H3119.5C18—C17—C19120.2 (2)
C5—C4—C3ii122.8 (2)C10—C18—C17117.2 (2)
C5—C4—C4ii119.0 (3)C10—C18—C11124.3 (2)
C3ii—C4—C4ii118.2 (3)C17—C18—C11118.4 (2)
C1—C5—C4122.1 (2)N16—C19—C20123.4 (2)
C1—C5—H5118.9N16—C19—C17116.7 (2)
C4—C5—H5118.9C20—C19—C17119.9 (2)
O2—C6—O1123.7 (3)C13—C20—C19116.8 (2)
O2—C6—C1117.6 (2)C13—C20—C12124.4 (2)
O1—C6—C1118.7 (2)C19—C20—C12118.8 (2)
C5—C1—C2—C31.1 (4)C9—C10—C18—C170.5 (4)
C6—C1—C2—C3178.3 (3)C9—C10—C18—C11179.9 (3)
C1—C2—C3—C4ii1.1 (4)N7—C17—C18—C100.3 (4)
C2—C1—C5—C40.2 (4)C19—C17—C18—C10179.9 (2)
C6—C1—C5—C4179.2 (2)N7—C17—C18—C11180.0 (2)
C3ii—C4—C5—C1180.0 (3)C19—C17—C18—C110.2 (4)
C4ii—C4—C5—C10.6 (5)C12—C11—C18—C10179.8 (3)
C5—C1—C6—O2167.8 (3)C12—C11—C18—C170.1 (4)
C2—C1—C6—O212.9 (4)C15—N16—C19—C201.1 (4)
C5—C1—C6—O111.8 (4)Cu1—N16—C19—C20177.23 (19)
C2—C1—C6—O1167.6 (3)C15—N16—C19—C17179.4 (2)
C17—N7—C8—C90.5 (4)Cu1—N16—C19—C172.3 (3)
Cu1—N7—C8—C9176.7 (2)N7—C17—C19—N160.2 (3)
N7—C8—C9—C100.3 (4)C18—C17—C19—N16179.9 (2)
C8—C9—C10—C180.2 (4)N7—C17—C19—C20179.8 (2)
C18—C11—C12—C200.2 (4)C18—C17—C19—C200.4 (4)
C20—C13—C14—C151.4 (4)C14—C13—C20—C190.6 (4)
C13—C14—C15—N161.0 (4)C14—C13—C20—C12178.7 (3)
C14—C15—N16—C190.3 (4)N16—C19—C20—C130.6 (4)
C14—C15—N16—Cu1177.7 (2)C17—C19—C20—C13179.8 (2)
C8—N7—C17—C180.2 (4)N16—C19—C20—C12180.0 (2)
Cu1—N7—C17—C18177.50 (19)C17—C19—C20—C120.5 (4)
C8—N7—C17—C19179.7 (2)C11—C12—C20—C13179.7 (3)
Cu1—N7—C17—C192.7 (3)C11—C12—C20—C190.4 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5iii0.76 (1)2.24 (2)2.977 (3)166 (3)
O4—H4A···O60.76 (1)2.07 (2)2.821 (3)168 (4)
O4—H4B···O1iii0.76 (1)2.01 (1)2.769 (3)176 (4)
O5—H5A···O10.76 (1)2.27 (2)2.993 (3)159 (4)
O5—H5B···O2iv0.76 (1)2.13 (2)2.846 (3)156 (4)
O6—H6A···O10.76 (1)2.13 (2)2.882 (3)167 (4)
O6—H6B···O70.77 (1)2.04 (2)2.782 (4)164 (4)
O7—H7A···O3i0.76 (1)2.07 (1)2.820 (3)171 (4)
O7—H7B···O2v0.76 (1)2.00 (2)2.744 (3)165 (4)
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

DAZ acknowledges CONACYT–México for the SNI scholarship.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-X., Liu, B.-H. & Meng, W.-W. (2010). Chin. J. Inorg. Chem. 26, 885–890.  CAS Google Scholar
First citationGomez, L., Company, A., Fontrodona, X., Ribas, X. & Costas, M. (2007). Chem. Commun. pp. 4301–4424.  Google Scholar
First citationHan, S., Lough, A. J. & Kim, J.-C. (2012). Bull. Korean Chem. Soc. 33, 2381–2384.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, X., Lu, C.-Z., Yuan, D.-Q., Chen, L.-J., Zhang, Q.-Z. & Wu, C.-D. (2005). Eur. J. Inorg. Chem. pp. 4598–4606.  Web of Science CSD CrossRef Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKanoo, P., Matsuda, R., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860–5866.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlärner, F.-G. & Schrader, T. (2013). Acc. Chem. Res. 46, 967–978.  Web of Science PubMed Google Scholar
First citationPutta, A., Mottishaw, J. D., Wang, Z. & Sun, H. (2014). Cryst. Growth Des. 14, 350–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationRiley, K. E. & Hobza, P. (2013). Acc. Chem. Res. 46, 927–936.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSebaoun, L., Maurizot, V., Granier, T., Kauffmann, B. & Huc, I. (2014). J. Am. Chem. Soc. 136, 2168–2174.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSerrano-Becerra, J. M., Hernández-Ortega, S., Morales-Morales, D. & Valdés-Martínez, J. (2009). CrystEngComm, 11, 226–228.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2013). CIFTAB. University of Göttingen.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTao, J., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m614–m615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590–m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, D., Chen, J., Sun, J., Tu, B., Weng, L., Yin, Q., Yu, T., Zhou, Y. & Chen, Z. (2005). Private Communication (refcode KAKNOA). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 360-362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds