research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 380-384

Crystal structure of {2,2′-[N,N′-bis­­(pyridin-2-yl­meth­yl)cyclo­hexane-trans-1,2-diyldi(nitrilo)]di­acetato}­cobalt(III) hexa­fluorido­phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA, and bDepartment of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626, USA
*Correspondence e-mail: mclauchlan@illinoisstate.edu

Edited by M. Zeller, Youngstown State University, USA (Received 24 February 2015; accepted 13 March 2015; online 21 March 2015)

The title compound [Co(C22H26N4O4)]PF6, commonly known as [Co(bpcd)]PF6, where bpcd2− is derived from the historical ligand name N,N′-bis­(2-pyridyl­meth­yl)-trans-1,2-di­amino­cyclo­hexane-N,N′-di­acetate, crystallized by slow evaporation of a saturated aceto­nitrile solution in air. The cation of the hexa­fluorido­phosphate salt has the CoIII atom in a distorted octa­hedral coordination geometry provided by an N4O2 donor atom set. The acetate groups, which are oriented trans with respect to each other, exhibit monodentate coordination whereas the pyridyl N atoms are coordinating in a cis configuration. The geometry of the cation is compared to the geometries of other di­amino di­acetate complexes with CoIII.

1. Chemical context

Polyamino­carb­oxy­lic acids are of considerable inter­est as complexation reagents for a variety of metal ions in a wide range of applications (Weaver & Kappelmann, 1964[Weaver, B. & Kappelmann, F. A. (1964). Oak Ridge National Laboratory Report to the US Atomic Energy Commission, pp. 1-61.]; Weiner & Thakur, 1995[Weiner, R. E. & Thakur, M. L. (1995). Radiochim. Acta, 70, 273-287.]; Caravan et al., 1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.],b[Caravan, P., Mehrkhodavandi, P. & Orvig, C. (1997b). Inorg. Chem. 36, 1316-1321.]; Geraldes, 1999[Geraldes, C. F. G. C. (1999). Supramol. Chem. 526, 133-154.]; Heitzmann et al., 2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.]). The title compound, [Co(bpcd)]PF6, (I)[link], was prepared from N,N′-bis­(2-pyridyl­meth­yl)-trans-1,2-di­amino­cyclo­hexane-N,N′-di­acetic acid (H2bpcd), a sym­metrically disubstituted polyamino­carb­oxy­lic acid featuring a chiral trans-di­amino­cyclo­hexane backbone.

[Scheme 1]

The ligand precursor, H2bpcd, belongs to a relatively small group of di­amino di­acetic acids that contain softer aromatic nitro­gen donor groups (Fig. 1[link]) (Caravan et al., 1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.]; Heitzmann et al., 2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.]; Kissel et al., 2014[Kissel, D. S., Florian, J., McLauchlan, C. C. & Herlinger, A. W. (2014). Inorg. Chem. 53, 3404-3416.]). The preorganized ligand precursor H2bpcd is of inter­est as a novel candidate for selective and efficient actinide(III)/lanthanide(III) separations. Preorganization of a ligand can reduce the pre-orientation energy required for metal ion complexation and provide improved metal–ligand complex stability (Rizkalla et al., 1987[Rizkalla, E. N., Sullivan, J. C. & Choppin, G. R. (1987). Inorg. Chem. 26, 2318-2320.]; Choppin et al., 2006[Choppin, G. R., Thakur, P. & Mathur, J. N. (2006). Coord. Chem Rev. 250, 936-947.]; Ogden et al., 2012[Ogden, M. D., Sinkov, S. I., Meier, G. P., Lumetta, G. J. & Nash, K. L. (2012). J. Solution Chem. 41, 2138-2153.]). The addition of aromatic functionalities, such as pyridine and pyrazine, may increase ligand selectivity for softer metal ions and provide greater stability towards radiolysis (Heitzmann et al., 2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.]). The members of this group of di­acetic acids, however, differ in the nature of the di­amine backbone.

[Figure 1]
Figure 1
The di­amino di­acetic acids, H2bped (A) and gem-H2bped (B), where bped stands for bis­(2-pyridyl­meth­yl)-1,2-di­amino­ethane di­acetate, H2bpcd (C), and H2bppd (D), where bppd stands for bis­(2-pyridyl­meth­yl)-1,3-di­amino­propane di­acetate.

The ethyl­enedi­amine backbone is a classic scaffold that has been used for the construction of many polydentate ligands. The amine N atoms are ideal for functionalization, which allows different donor atom groups to be incorporated into a ligand's design. The close proximity of the di­amine nitro­gens also maximizes the number of possible five- and six-membered chelate rings capable of forming upon metal ion complexation. H2bped (A) is a hexa­dentate 2-pyridyl­methyl-substituted di­acetic acid based on this classic scaffold (Lacoste et al., 1965[Lacoste, R. G., Christoffers, G. V. & Martell, A. E. (1965). J. Am. Chem. Soc. 87, 2385-2388.]; Caravan et al., 1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.]). gem-H2bped (B) is a very closely related 2-pyridyl­methyl-substituted di­acetic acid that is also based on the ethyl­enedi­amine scaffold. In this case, however, both pyridine substituents are bonded to the same amine N atom (Heitzmann et al., 2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.]). The C—C chain length between the N atoms in the di­amine backbone of these ligands allows for the formation of five-membered chelate rings. Hancock has shown the formation of five-membered chelate rings to be more favourable for larger metal ions than for smaller metal ions (Hancock & Martell, 1989[Hancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.]). The ligand precursor, H2bpcd (C), for the title compound is similar to A and B, but it incorporates the ethyl­enedi­amine backbone into a cyclo­hexyl group. Restricted rotation about the C—C bonds in the cyclo­hexane ring fixes the positions of the trans di­amine nitro­gen atoms and favourably preorganizes these donor groups for metal ion complexation. Consequently, the trans amine groups are constrained into a conformation that is pre-oriented favorably for binding and results in a complex of increased stability (Rizkalla et al., 1987[Rizkalla, E. N., Sullivan, J. C. & Choppin, G. R. (1987). Inorg. Chem. 26, 2318-2320.]; Choppin et al., 2006[Choppin, G. R., Thakur, P. & Mathur, J. N. (2006). Coord. Chem Rev. 250, 936-947.]; Ogden et al., 2012[Ogden, M. D., Sinkov, S. I., Meier, G. P., Lumetta, G. J. & Nash, K. L. (2012). J. Solution Chem. 41, 2138-2153.]). In contrast, H2bppd (D) features a 1,3-di­amino­propane backbone that provides greater flexibility compared to A, B, or C with their shorter backbones. Further, the increased chain length of the propyl­ene linker allows a six-membered chelate ring to form upon metal complexation. Formation of six-membered chelate rings in complexes with smaller metal ions has been shown to increase the stability of the complex relative to five-membered rings (Hancock & Martell, 1989[Hancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.]). Here, we report the structure of a CoIII complex with bpcd2−, C.

2. Structural commentary

The structure of the [Co(bpcd)]+ cation in the title compound is shown in Fig. 2[link] and selected geometric parameters are listed in Table 1[link]. The cation is very similar to the structures of the [Co(bped)]+ and [Co(bppd)]+ complex ions. Nearly all of the Co—Oac bond lengths for the five structures given in Table 1[link] are within experimental error of each other. One of the Co—Oac bond lengths in the [Co(bppd)]+ cation, however, is slightly shorter than the others. The C—O and C=O bond lengths are also quite similar. There are, however, some variations in the bond lengths and angles as shown in Tables 1[link] and 2[link]. The Co—Nam bond length in the [Co(bpcd)]+ cation is slightly shorter than the Co—Nam bond lengths reported for the two [Co(bppd)]+ cations given in Table 1[link]. They are, however, slightly longer than those reported for the [Co(bped)]+ structures. Similarly, the Nam1—Co—Nam2 bond angle in [Co(bpcd)]+ is close to ideal (90°), whereas the Nam1—Co—Nam2 angles in the [Co(bppd)]+ structures are somewhat larger than ideal and somewhat smaller than ideal in the [Co(bped)]+ structures (Table 2[link]). The Oac1—Co—Oac2 bond angles for the five structures in Table 2[link] are all close to ideal (180°), with the largest deviation from linearity observed in the[Co(bpcd)]+ cation. The 176.1° Oac1—Co—Oac2 bond angle in [Co(bpcd)]+ is 2° smaller than the average (178.5°) of the bond angles reported for the [Co(bped)]+ and [Co(bppd)]+ cations. Finally, the CoIII in the title compound is situated directly in the N4 plane of the equatorial nitro­gen atoms, whereas in three of the other four structures the CoIII lays slightly out-of the plane (Table 1[link]). The solid-state structural parameters for [Co(bpcd)]+, which are very similar to those for Co(bped)+, suggest that the ligand precusor H2(bpcd), with its preorganized arrangement, may provide greater metal ion complex stability as well as be selective for actinides(III) over lanthanides(III) as demonstrated for gem-H2(bped). (Heitzmann et al., 2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.])

Table 1
Bond distances (Å) and experimental data for different [Co(bpad)]+ structures

Bond (Å) Co(bped)+ a Co(bped)+ b Co(bppd)+ c 1 Co(bppd)+ c 2 Co(bpcd)+ d
Co–Oac1 1.888 (1) 1.878 (2) 1.8828 (11) 1.8875 (10) 1.8869 (8)
Co–Oac2 1.889 (2) 1.888 (2) 1.8899 (11) 1.8830 (11) *
Co–Nam1 1.941 (2) 1.937 (2) 1.9625 (13) 1.9654 (12) 1.9548 (9)
Co–Nam2 1.974 (2) 1.941 (2) 1.9641 (13) 1.9645 (12) *
Co–Npyr1 1.944 (2) 1.960 (2) 1.9484 (13) 1.9403 (13) 1.9448 (9)
Co–Npyr2 1.954 (2) 1.958 (2) 1.9397 (13) 1.9576 (13) *
C–Oac1 1.294 (2) 1.298 (4) 1.2973 (18) 1.3054 (18) 1.3029 (13)
C=Oac1 1.212 (3) 1.218 (3) 1.2265 (18) 1.219 (2) 1.2212 (14)
C–Oac2 1.289 (3) 1.299 (3) 1.3035 (19) 1.2971 (19) *
C=Oac2 1.210 (3) 1.213 (3) 1.2201 (19) 0.0030 (6) *
Co above N/N/N/N plane 0.000 0.012 0.0026 (6) 0.0030 (6) 0**
Temp, K 298 293 100 100 100
Notes: (a) Mandel & Douglas (1989[Mandel, J. B. & Douglas, B. E. (1989). Inorg. Chim. Acta, 155, 55-69.]); (b) Caravan et al. (1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.]); (c) two cations in asymmetric unit (McLauchlan et al., 2013[McLauchlan, C. C., Kissel, D. S., Arnold, W. R. & Herlinger, A. W. (2013). Acta Cryst. E69, m296-m297.]); (d) this work; (*) N/A – symmetry equivalent; (†) standard uncertainty unavailable; (**) N/A – sits on a special position.

Table 2
Selected bond angles (°) for different [Co(bpad)]+ structures

Angle, ° Co(bped)+ a Co(bped)+ b Co(bppd)+ c 1 Co(bppd)+ c 2 Co(bpcd)+ d
Oac1–Co–Oac2 178.8 (1) 178.53 (8) 178.47 (5) 178.36 (5) 176.08 (5)
Nam1–Co–Nam2 82.0 (1) 88.87 (9) 95.91 (5) 95.92 (5) 89.33 (5)
Npyr1–Co–Npyr2 82.3 (1) 107.01 (9) 98.52 (6) 98.55 (5) 106.74 (5)
Nam1–Co–Npyr1 89.3 (1) 82.14 (9) 82.36 (6) 83.23 (5) 82.17 (4)
Nam2–Co–Npyr2 107.0 (1) 82.51 (9) 83.28 (6) 82.39 (5) *
Nam1–Co–Oac1 86.9 (1) 87.36 (9) 88.81 (5) 87.96 (5) 87.84 (4)
Npyr1–Co–Oac1 92.8 (1) 92.34 (8) 86.51 (5) 87.72 (5) 89.92 (4)
O=C–Oac 124.4 (2) 123.9 (3) 123.87 (14) 123.80 (14) 124.95 (10)
  124.7 (2) 124.8 (3) 123.95 (15) 123.82 (14) *
C(O)–Oac–Co 116.4 (1) 116.4 (2) 114.32 (9) 115.33 (10) 114.57 (7)
  115.9 (1) 115.3 (2) 115.11 (10) 114.38 (9) *
Notes: (a) Mandel & Douglas (1989[Mandel, J. B. & Douglas, B. E. (1989). Inorg. Chim. Acta, 155, 55-69.]); (b) Caravan et al. (1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.]); (c) two cations in asymmetric unit (McLauchlan et al., 2013[McLauchlan, C. C., Kissel, D. S., Arnold, W. R. & Herlinger, A. W. (2013). Acta Cryst. E69, m296-m297.]); (d) this work; (*) N/A – symmetry equivalent; (**) N/A – sits on a special position.
[Figure 2]
Figure 2
View of the cation of the title structure, [Co(bpcd)]+. Here and in subsequent figures, displacement ellipsoids are shown at the 50% probability level. H atoms are shown as circles of arbitrary size. [Symmetry code: (i) −x + 1, −y + [{1\over 2}], z.]

3. Supra­molecular features

The structure of the title compound (Fig. 3[link]) exists in the solid state as an intricate network of anions and cations closely associated through many short inter­actions. Hydrogen-bonding inter­actions are listed in Table 3[link]. Each PF6 anion is in close contact with six cations: three of the four unique F atoms inter­act with two neighboring cations while the remaining atom, F4, has a long inter­action (2.29 Å) with only the C—H9A bond of the cyclo­hexyl ring of one cation. This F4⋯H9A inter­action is the shortest of the F⋯H inter­actions present with two other weaker F⋯H inter­actions of 2.49 (F1⋯H10A) and 2.64 Å (F1⋯H9A) to cyclo­hexyl H atoms. There are also several inter­actions between pyrdidyl ring H atoms and carboxyl­ate O atoms from neighboring cations, i.e. a 2.408 Å inter­action with Co-bound oxygen O1, and a 2.700 Å inter­action with terminal oxygen O2. The short inter­action has a C—H⋯O angle of 140.7° so it does not appear in Table 3[link]. There also exists ππ stacking for each of the two pyridyl rings with neighboring cations stacked anti­parallel. Each has a distance of 3.829 (13) Å between ring centroids.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2ii 0.95 2.84 3.4475 (15) 122
C2—H2A⋯F3iii 0.95 2.51 3.2928 (15) 139
C4—H4A⋯O2iv 0.95 2.70 3.5907 (15) 157
C6—H6A⋯F2v 0.99 2.52 3.4243 (13) 152
C6—H6B⋯F1vi 0.99 2.74 3.3824 (13) 123
C6—H6B⋯F3vi 0.99 2.84 3.8229 (18) 170
C7—H7A⋯F4vii 0.99 2.68 3.3879 (13) 128
C7—H7A⋯F4iv 0.99 2.67 3.2436 (13) 117
C7—H7B⋯F3v 0.99 2.62 3.4982 (16) 147
C9—H9A⋯F1vi 1.00 2.64 3.2790 (12) 122
C9—H9A⋯F4vi 1.00 2.29 3.2336 (13) 157
C10—H10A⋯F1vi 0.99 2.49 3.1429 (15) 123
C10—H10A⋯F2v 0.99 2.35 3.0728 (14) 129
C10—H10B⋯F4iv 0.99 2.77 3.5399 (14) 135
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y, -z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, -y+1, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
View of the molecular components of the title structure, [Co(bpcd)]PF6. [Symmetry code: (i) −x + 1, −y + [{1\over 2}], z.]

4. Database survey

There is very little information in the literature about H2bpcd and its metal complexes. There is a structurally characterized hepta­coordinate [FeII(H2bpcd)(C3H6O)](ClO4)2 complex with trans pyridine N atoms and cis carb­oxy­lic acid groups (Oddon et al., 2012[Oddon, F., Girgenti, E., Lebrun, C., Marchi-Delapierre, C., Pécant, J. & Ménage, S. (2012). Eur. J. Inorg. Chem. 2012, 85-96.]). In that case, FeII is coordinated in a distorted penta­gonal–bipyramidal geometry with an unusual N4O3 donor atom set, including a bound acetone mol­ecule. The carb­oxy­lic acid moieties are fully protonated with the H2bpcd ligand coordinating through the carbonyl O atoms, which reside in the equatorial plane. The coordinating amine N atoms also lie in this plane, whereas the pyridyl N atoms are coordinating at the axial positions. This unique arrangement results in longer Fe—O and Fe—Npy bonds than are typically observed. In the present case, a fully deprotonated bpcd2− ligand binds CoIII in a pseudo-octa­hedral fashion with trans acetate groups to form a hexa­coordinate complex.

Although only one structure of a metal–H2bpcd complex has been reported in the literature, there are several structures reported for related pseudo-octa­hedral CoIII complexes with bis-2-pyridyl­methyl substituted di­amino di­acetic acids, i.e. H2bped (A) and H2bppd (D) in Fig. 1[link]. We previously reported the structure of [Co(bppd)]PF6 (McLauchlan et al., 2013[McLauchlan, C. C., Kissel, D. S., Arnold, W. R. & Herlinger, A. W. (2013). Acta Cryst. E69, m296-m297.]), and there are two structural reports for the [Co(bped)]+ complex ion with different counter-ions, e.g. BF4 and PF6 (Mandel & Douglas, 1989[Mandel, J. B. & Douglas, B. E. (1989). Inorg. Chim. Acta, 155, 55-69.]; Caravan et al., 1997a[Caravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306-1315.]). In these cases, the CoIII–bppd2− and CoIII–bped2− complexes form similar hexa­dentate structures with acetate O atoms in a trans orientation and pyridyl N atoms in a cis orientation.

5. Synthesis and crystallization

H2bpcd (C) was prepared from trans-1,2-di­amino­cyclo­hexane using the procedure reported for H2bppd (D) (Kissel et al., 2014[Kissel, D. S., Florian, J., McLauchlan, C. C. & Herlinger, A. W. (2014). Inorg. Chem. 53, 3404-3416.]). The title compound was prepared using methods analogous to those previously reported for [Co(bppd)]PF6 (McLauchlan et al., 2013[McLauchlan, C. C., Kissel, D. S., Arnold, W. R. & Herlinger, A. W. (2013). Acta Cryst. E69, m296-m297.]). Crystals suitable for diffraction were isolated by slow evaporation of a saturated aceto­nitrile solution (yield: 120 mg, 0.20 mmol, 40%).

Analysis observed (calculated) for CoC22H28N4O4PF6: C 42.56 (43.00), H 3.85 (4.26), N 8.94 (9.11). IR (ν cm−1, KBr): 3048 (m, C—H aryl str), 2945 (m, CH2 str), 1665 (vs, COO str), 1612 (m, py str), 1477 (w, py str), 1445 (m, CH2 def), 1384 (s, COO str).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The structure of the title complex can be solved and refined in Ibca with well-separated cations and anions. There is a small amount of disorder that can be modelled for the PF6 anion. F2 and F3 can be moved in the plane. R1 can be reduced to 0.0252 by modeling this disorder, but the occupancy is less than 10% and results in a less chemically satisfactory PF6 anion. Therefore, the disorder was not modelled. All H atoms were placed geometrically (C—H = 0.93–0.97 Å) and refined using a riding model.

Table 4
Experimental details

Crystal data
Chemical formula [Co(C22H26N4O4)]PF6
Mr 614.37
Crystal system, space group Orthorhombic, Ibca
Temperature (K) 100
a, b, c (Å) 13.9848 (4), 14.6221 (4), 22.2177 (6)
V3) 4543.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.44 × 0.36 × 0.21
 
Data collection
Diffractometer Bruker APEXII equipped with a CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.834
No. of measured, independent and observed [I > 2σ(I)] reflections 57644, 3630, 3401
Rint 0.017
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.12
No. of reflections 3630
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

{2,2'-[N,N'-Bis(pyridin-2-ylmethyl)cyclohexane-trans-1,2-diyldi(nitrilo)]diacetato}cobalt(III) hexafluoridophosphate top
Crystal data top
[Co(C22H26N4O4)]PF6Dx = 1.796 Mg m3
Mr = 614.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, IbcaCell parameters from 9742 reflections
a = 13.9848 (4) Åθ = 2.7–31.0°
b = 14.6221 (4) ŵ = 0.92 mm1
c = 22.2177 (6) ÅT = 100 K
V = 4543.2 (2) Å3Parallelipiped, translucent dark red
Z = 80.44 × 0.36 × 0.21 mm
F(000) = 2512
Data collection top
Bruker APEXII
diffractometer equipped with a CCD detector
3630 independent reflections
Radiation source: fine-focus sealed tube3401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3333 pixels mm-1θmax = 31.0°, θmin = 1.8°
φ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2121
Tmin = 0.691, Tmax = 0.834l = 3232
57644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0415P)2 + 5.6191P]
where P = (Fo2 + 2Fc2)/3
3630 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. There is a small amount of disorder that can be modeled for the PF6 anion. F2 and F3 can be moved in the plane, as one might imagine. R1 can be reduced to 0.0252 by modeling it, but the occupancy is less than 10% and results in a less chemically satisfactory PF6 anion. Therefore, the disorder was not modeled.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.25000.09254 (2)0.00761 (6)
N10.43958 (7)0.15960 (6)0.04005 (4)0.01066 (16)
N20.43848 (6)0.17734 (6)0.15480 (4)0.00930 (16)
O10.38813 (6)0.32200 (5)0.08964 (3)0.01162 (15)
O20.23055 (6)0.30823 (7)0.10495 (4)0.01942 (18)
C10.41181 (8)0.16885 (8)0.01758 (5)0.01342 (19)
H1A0.41890.22650.03690.016*
C20.37301 (8)0.09611 (8)0.04959 (5)0.0159 (2)
H2A0.35550.10350.09060.019*
C30.36018 (8)0.01258 (8)0.02102 (6)0.0160 (2)
H3A0.33560.03840.04260.019*
C40.38383 (8)0.00449 (8)0.03974 (5)0.0145 (2)
H4A0.37290.05110.06070.017*
C50.42361 (7)0.07927 (7)0.06891 (5)0.01135 (18)
C60.44904 (8)0.08027 (7)0.13472 (5)0.01223 (18)
H6A0.40550.03990.15770.015*
H6B0.51560.05900.14080.015*
C70.33453 (7)0.20455 (8)0.15563 (5)0.01188 (19)
H7A0.31640.22200.19710.014*
H7B0.29510.15130.14390.014*
C80.31295 (8)0.28378 (8)0.11346 (5)0.01202 (18)
C90.49132 (7)0.19846 (8)0.21257 (5)0.01084 (18)
H9A0.55510.16780.21020.013*
C100.44229 (8)0.16490 (8)0.27004 (5)0.0154 (2)
H10A0.43990.09720.27000.019*
H10B0.37580.18820.27140.019*
C110.49688 (8)0.19815 (10)0.32563 (5)0.0182 (2)
H11A0.46370.17720.36250.022*
H11B0.56210.17180.32560.022*
P10.30339 (3)0.50000.25000.01160 (8)
F10.41712 (9)0.50000.25000.0503 (5)
F20.19013 (9)0.50000.25000.0417 (4)
F30.30336 (11)0.49194 (7)0.32124 (4)0.0470 (3)
F40.30308 (5)0.60985 (5)0.25526 (4)0.01831 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00914 (10)0.00719 (10)0.00650 (10)0.00083 (6)0.0000.000
N10.0118 (4)0.0103 (4)0.0099 (4)0.0015 (3)0.0002 (3)0.0010 (3)
N20.0103 (4)0.0095 (4)0.0081 (4)0.0005 (3)0.0000 (3)0.0010 (3)
O10.0113 (3)0.0106 (3)0.0130 (3)0.0008 (3)0.0004 (3)0.0018 (3)
O20.0119 (4)0.0223 (4)0.0241 (4)0.0033 (3)0.0017 (3)0.0040 (3)
C10.0140 (4)0.0167 (5)0.0095 (4)0.0025 (4)0.0000 (3)0.0006 (3)
C20.0133 (5)0.0222 (5)0.0123 (4)0.0031 (4)0.0001 (4)0.0053 (4)
C30.0117 (4)0.0167 (5)0.0198 (5)0.0014 (4)0.0007 (4)0.0087 (4)
C40.0129 (4)0.0105 (4)0.0200 (5)0.0008 (3)0.0003 (4)0.0036 (4)
C50.0111 (4)0.0100 (4)0.0129 (4)0.0007 (3)0.0004 (3)0.0008 (3)
C60.0156 (4)0.0087 (4)0.0124 (4)0.0011 (3)0.0010 (4)0.0014 (3)
C70.0095 (4)0.0143 (5)0.0118 (4)0.0003 (3)0.0000 (3)0.0026 (3)
C80.0125 (4)0.0125 (4)0.0111 (4)0.0001 (4)0.0010 (3)0.0002 (3)
C90.0115 (4)0.0133 (5)0.0077 (4)0.0004 (3)0.0007 (3)0.0013 (3)
C100.0163 (5)0.0208 (5)0.0092 (4)0.0020 (4)0.0011 (4)0.0037 (4)
C110.0182 (5)0.0277 (6)0.0087 (4)0.0011 (4)0.0006 (4)0.0031 (4)
P10.01124 (17)0.01151 (17)0.01203 (17)0.0000.0000.00031 (13)
F10.0127 (5)0.0204 (6)0.1178 (16)0.0000.0000.0134 (8)
F20.0128 (5)0.0206 (6)0.0916 (13)0.0000.0000.0056 (7)
F30.1008 (10)0.0246 (5)0.0157 (4)0.0046 (5)0.0073 (5)0.0001 (3)
F40.0176 (3)0.0116 (3)0.0258 (4)0.0001 (2)0.0029 (3)0.0010 (3)
Geometric parameters (Å, º) top
Co1—O1i1.8869 (8)C5—C61.5050 (15)
Co1—O11.8869 (8)C6—H6A0.9900
Co1—N11.9548 (9)C6—H6B0.9900
Co1—N1i1.9548 (9)C7—C81.5201 (15)
Co1—N21.9448 (9)C7—H7A0.9900
Co1—N2i1.9449 (9)C7—H7B0.9900
N1—C11.3448 (14)C9—C9i1.527 (2)
N1—C51.3567 (14)C9—C101.5300 (15)
N2—C61.4951 (14)C9—H9A1.0000
N2—C71.5073 (14)C10—C111.5312 (16)
N2—C91.5130 (13)C10—H10A0.9900
O1—C81.3029 (13)C10—H10B0.9900
O2—C81.2212 (14)C11—C11i1.519 (3)
C1—C21.3898 (15)C11—H11A0.9900
C1—H1A0.9500C11—H11B0.9900
C2—C31.3882 (17)P1—F21.5840 (13)
C2—H2A0.9500P1—F31.5872 (9)
C3—C41.3949 (17)P1—F3ii1.5873 (9)
C3—H3A0.9500P1—F11.5905 (14)
C4—C51.3873 (15)P1—F41.6106 (7)
C4—H4A0.9500P1—F4ii1.6106 (7)
O1i—Co1—O1176.08 (5)C5—C6—H6B110.5
O1i—Co1—N294.95 (4)H6A—C6—H6B108.7
O1—Co1—N287.84 (4)N2—C7—C8112.65 (8)
O1i—Co1—N2i87.84 (4)N2—C7—H7A109.1
O1—Co1—N2i94.95 (4)C8—C7—H7A109.1
N2—Co1—N2i89.33 (5)N2—C7—H7B109.1
O1i—Co1—N187.75 (4)C8—C7—H7B109.1
O1—Co1—N189.92 (4)H7A—C7—H7B107.8
N2—Co1—N182.17 (4)O2—C8—O1124.95 (10)
N2i—Co1—N1170.04 (4)O2—C8—C7120.39 (10)
O1i—Co1—N1i89.92 (4)O1—C8—C7114.65 (9)
O1—Co1—N1i87.75 (4)N2—C9—C9i106.21 (7)
N2—Co1—N1i170.04 (4)N2—C9—C10115.07 (9)
N2i—Co1—N1i82.17 (4)C9i—C9—C10112.82 (7)
N1—Co1—N1i106.74 (5)N2—C9—H9A107.5
C1—N1—C5119.30 (9)C9i—C9—H9A107.5
C1—N1—Co1128.67 (8)C10—C9—H9A107.5
C5—N1—Co1112.01 (7)C9—C10—C11110.36 (9)
C6—N2—C7110.46 (8)C9—C10—H10A109.6
C6—N2—C9113.49 (8)C11—C10—H10A109.6
C7—N2—C9114.01 (8)C9—C10—H10B109.6
C6—N2—Co1105.23 (6)C11—C10—H10B109.6
C7—N2—Co1106.93 (6)H10A—C10—H10B108.1
C9—N2—Co1106.01 (6)C11i—C11—C10110.22 (9)
C8—O1—Co1114.57 (7)C11i—C11—H11A109.6
N1—C1—C2121.54 (10)C10—C11—H11A109.6
N1—C1—H1A119.2C11i—C11—H11B109.6
C2—C1—H1A119.2C10—C11—H11B109.6
C3—C2—C1119.32 (10)H11A—C11—H11B108.1
C3—C2—H2A120.3F2—P1—F389.98 (6)
C1—C2—H2A120.3F2—P1—F3ii89.98 (6)
C2—C3—C4119.11 (10)F3—P1—F3ii179.97 (11)
C2—C3—H3A120.4F2—P1—F1180.0
C4—C3—H3A120.4F3—P1—F190.02 (6)
C5—C4—C3118.70 (11)F3ii—P1—F190.02 (6)
C5—C4—H4A120.6F2—P1—F489.84 (3)
C3—C4—H4A120.6F3—P1—F490.09 (5)
N1—C5—C4121.85 (10)F3ii—P1—F489.91 (5)
N1—C5—C6114.31 (9)F1—P1—F490.16 (3)
C4—C5—C6123.80 (10)F2—P1—F4ii89.84 (3)
N2—C6—C5106.01 (8)F3—P1—F4ii89.91 (5)
N2—C6—H6A110.5F3ii—P1—F4ii90.09 (5)
C5—C6—H6A110.5F1—P1—F4ii90.16 (3)
N2—C6—H6B110.5F4—P1—F4ii179.69 (6)
N2—Co1—O1—C817.97 (8)N1—C5—C6—N227.33 (12)
N2i—Co1—O1—C8107.11 (8)C4—C5—C6—N2150.39 (10)
N1—Co1—O1—C864.20 (8)C6—N2—C7—C8119.41 (9)
N1i—Co1—O1—C8170.96 (8)C9—N2—C7—C8111.40 (10)
C5—N1—C1—C24.46 (16)Co1—N2—C7—C85.42 (10)
Co1—N1—C1—C2177.37 (8)Co1—O1—C8—O2162.99 (10)
N1—C1—C2—C31.77 (17)Co1—O1—C8—C718.41 (12)
C1—C2—C3—C41.97 (17)N2—C7—C8—O2173.28 (10)
C2—C3—C4—C52.94 (16)N2—C7—C8—O18.05 (13)
C1—N1—C5—C43.43 (16)C6—N2—C9—C9i156.93 (9)
Co1—N1—C5—C4178.11 (8)C7—N2—C9—C9i75.42 (11)
C1—N1—C5—C6174.34 (9)Co1—N2—C9—C9i41.93 (10)
Co1—N1—C5—C64.12 (11)C6—N2—C9—C1077.49 (11)
C3—C4—C5—N10.28 (16)C7—N2—C9—C1050.16 (12)
C3—C4—C5—C6177.83 (10)Co1—N2—C9—C10167.51 (8)
C7—N2—C6—C569.87 (10)N2—C9—C10—C11174.45 (9)
C9—N2—C6—C5160.66 (8)C9i—C9—C10—C1152.36 (14)
Co1—N2—C6—C545.20 (9)C9—C10—C11—C11i58.00 (14)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2iii0.952.843.4475 (15)122
C2—H2A···F3iv0.952.513.2928 (15)139
C4—H4A···O2v0.952.703.5907 (15)157
C6—H6A···F2vi0.992.523.4243 (13)152
C6—H6B···F1vii0.992.743.3824 (13)123
C6—H6B···F3vii0.992.843.8229 (18)170
C7—H7A···F4ii0.992.683.3879 (13)128
C7—H7A···F4v0.992.673.2436 (13)117
C7—H7B···F3vi0.992.623.4982 (16)147
C9—H9A···F1vii1.002.643.2790 (12)122
C9—H9A···F4vii1.002.293.2336 (13)157
C10—H10A···F1vii0.992.493.1429 (15)123
C10—H10A···F2vi0.992.353.0728 (14)129
C10—H10B···F4v0.992.773.5399 (14)135
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y, z; (iv) x, y+1/2, z1/2; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2.
Bond distances (Å) and experimental data for different [Co(bpad)]+ structures. top
Bond (Å)Co(bped)+ aCo(bped)+ bCo(bppd)+ c 1Co(bppd)+ c 2Co(bpcd)+ d
Co–Oac11.888 (1)1.878 (2)1.8828 (11)1.8875 (10)1.8869 (8)
Co–Oac21.889 (2)1.888 (2)1.8899 (11)1.8830 (11)*
Co–Nam11.941 (2)1.937 (2)1.9625 (13)1.9654 (12)1.9548 (9)
Co–Nam21.974 (2)1.941 (2)1.9641 (13)1.9645 (12)*
Co–Npyr11.944 (2)1.960 (2)1.9484 (13)1.9403 (13)1.9448 (9)
Co–Npyr21.954 (2)1.958 (2)1.9397 (13)1.9576 (13)*
C–Oac11.294 (2)1.298 (4)1.2973 (18)1.3054 (18)1.3029 (13)
COac11.212 (3)1.218 (3)1.2265 (18)1.219 (2)1.2212 (14)
C–Oac21.289 (3)1.299 (3)1.3035 (19)1.2971 (19)*
COac21.210 (3)1.213 (3)1.2201 (19)0.0030 (6)*
Co above N/N/N/N plane0.0000.0120.0026 (6)0.0030 (6)0**
Temp, K298293100100100
Notes: (a) Mandel & Douglas (1989); (b) Caravan et al. (1997a); (c) two cations in asymmetric unit (McLauchlan et al., 2013); (d) this work; (*) N/A – symmetry equivalent; (†) error unavailable; (**) N/A – sits on a special position.
Selected bond angles (°) for different [Co(bpad)]+ structures. top
Angle, °Co(bped)+ aCo(bped)+ bCo(bppd)+ c 1Co(bppd)+ c 2Co(bpcd)+ d
Oac1–Co–Oac2178.8 (1)178.53 (8)178.47 (5)178.36 (5)176.08 (5)
Nam1–Co–Nam282.0 (1)88.87 (9)95.91 (5)95.92 (5)89.33 (5)
Npyr1–Co–Npyr282.3 (1)107.01 (9)98.52 (6)98.55 (5)106.74 (5)
Nam1–Co–Npyr189.3 (1)82.14 (9)82.36 (6)83.23 (5)82.17 (4)
Nam2–Co–Npyr2107.0 (1)82.51 (9)83.28 (6)82.39 (5)*
Nam1–Co–Oac186.9 (1)87.36 (9)88.81 (5)87.96 (5)87.84 (4)
Npyr1–Co–Oac192.8 (1)92.34 (8)86.51 (5)87.72 (5)89.92 (4)
OC–Oac124.4 (2)123.9 (3)123.87 (14)123.80 (14)124.95 (10)
124.7 (2)124.8 (3)123.95 (15)123.82 (14)*
C(O)–Oac–Co116.4 (1)116.4 (2)114.32 (9)115.33 (10)114.57 (7)
115.9 (1)115.3 (2)115.11 (10)114.38 (9)*
Notes: (a) Mandel & Douglas (1989); (b) Caravan et al. (1997a); (c) two cations in asymmetric unit (McLauchlan et al., 2013); (d) this work; (*) N/A – symmetry equivalent; (**) N/A – sits on a special position.
 

Footnotes

Current address: Department of Chemistry, Lewis University, Romeoville, IL 60446, USA.

Acknowledgements

This work was supported by Illinois State University and Loyola University Chicago. CCM acknowledges the National Science Foundation for the purchase of the Bruker APEXII diffractometer (CHE-10-39689). DSK wishes to thank Loyola University Chicago and the Schmitt Foundation for fifth year fellowship support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaravan, P., Mehrkhodavandi, P. & Orvig, C. (1997b). Inorg. Chem. 36, 1316–1321.  CrossRef PubMed CAS Google Scholar
First citationCaravan, P., Rettig, S. J. & Orvig, C. (1997a). Inorg. Chem. 36, 1306–1315.  CSD CrossRef PubMed CAS Google Scholar
First citationChoppin, G. R., Thakur, P. & Mathur, J. N. (2006). Coord. Chem Rev. 250, 936–947.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeraldes, C. F. G. C. (1999). Supramol. Chem. 526, 133–154.  CAS Google Scholar
First citationHancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875–1914.  CrossRef CAS Web of Science Google Scholar
First citationHeitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246–256.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKissel, D. S., Florian, J., McLauchlan, C. C. & Herlinger, A. W. (2014). Inorg. Chem. 53, 3404–3416.  CSD CrossRef CAS PubMed Google Scholar
First citationLacoste, R. G., Christoffers, G. V. & Martell, A. E. (1965). J. Am. Chem. Soc. 87, 2385–2388.  CrossRef CAS Web of Science Google Scholar
First citationMandel, J. B. & Douglas, B. E. (1989). Inorg. Chim. Acta, 155, 55–69.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcLauchlan, C. C., Kissel, D. S., Arnold, W. R. & Herlinger, A. W. (2013). Acta Cryst. E69, m296–m297.  CSD CrossRef IUCr Journals Google Scholar
First citationOddon, F., Girgenti, E., Lebrun, C., Marchi-Delapierre, C., Pécant, J. & Ménage, S. (2012). Eur. J. Inorg. Chem. 2012, 85–96.  CSD CrossRef CAS Google Scholar
First citationOgden, M. D., Sinkov, S. I., Meier, G. P., Lumetta, G. J. & Nash, K. L. (2012). J. Solution Chem. 41, 2138–2153.  CrossRef CAS Google Scholar
First citationRizkalla, E. N., Sullivan, J. C. & Choppin, G. R. (1987). Inorg. Chem. 26, 2318–2320.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeaver, B. & Kappelmann, F. A. (1964). Oak Ridge National Laboratory Report to the US Atomic Energy Commission, pp. 1–61.  Google Scholar
First citationWeiner, R. E. & Thakur, M. L. (1995). Radiochim. Acta, 70, 273–287.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 380-384
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds