metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m95-m96

Crystal structure of a binuclear nickel(II) complex constructed of 1H-imidazo[4,5-f][1,10]phenanthroline and doubly deprotonated benzene-1,3,5-tri­carb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, People's Republic of China
*Correspondence e-mail: hxr8086@sina.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 3 November 2014; accepted 28 February 2015; online 21 March 2015)

The title complex, [Ni2(C9H4O6)2(C13H8N4)2(H2O)4]·2H2O, bis­(μ-5-carb­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O1′)bis­[di­aqua(1H-imidazo[4,5-f][1,10]phenanthroline-κ2N7,N8)nickel(II)] di­hydrate, was obtained under solvothermal conditions by the reaction of benzene-1,3,5-tricarboxylic acid (H3BTC) with Ni(NO3)2 in the presence of 1H-imidazo[4,5-f][1,10]phenanthroline (IP). The crystal has triclinic (P-1) symmetry with a centrosymmetric binuclear nickel(II) cluster. The NiII atom is coordinated by two N atoms from a chelating 1H-imidazo[4,5-f][1,10]phenanthroline ligand, two carboxyl­ate O atoms from two 5-carb­oxy­benzene-1,3-di­carboxyl­ate ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. Two carboxyl­ate groups bridge two NiII cations, forming the binuclear complex. Extensive N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure, forming a three-dimensional supermolecular framework. Weak ππ stacking is observed between parallel HBTC2− and IP ring systems, the face-to-face separation being 3.695 (2) Å.

1. Related literature

For general background, see: Stephenson et al. (2008[Stephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des. 8, 643-653.]). For details of the synthesis, see: Liu et al. (2009[Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. Kh. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365-5378.]); Wu et al. (1997[Wu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395-1402.]); Yang et al. (2010[Yang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun. 13, 1043-1046.]); Che et al. (2013[Che, G. B., Wang, S. S., Zha, X. X., Li, X. Y., Liu, C. B., Zhang, X. J., Xu, Z. L. & Wang, Q. W. (2013). Inorg. Chim. Acta, 394, 481-487.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni2(C9H4O6)2(C13H8N4)2(H2O)4]·2H2O

  • Mr = 1082.22

  • Triclinic, [P \overline 1]

  • a = 8.581 (5) Å

  • b = 9.032 (5) Å

  • c = 14.278 (5) Å

  • α = 82.222 (5)°

  • β = 87.729 (5)°

  • γ = 73.117 (5)°

  • V = 1049.2 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.28 × 0.16 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 0.867

  • 5594 measured reflections

  • 3851 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 0.95

  • 3851 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O6i 0.86 1.93 2.772 (3) 165
O1—H1WA⋯O5ii 0.88 1.82 2.676 (2) 165
O1—H1WB⋯O8iii 0.84 1.94 2.741 (2) 161
O2—H2WA⋯N3iv 0.89 1.94 2.798 (3) 160
O2—H2WB⋯O4 0.89 1.86 2.630 (2) 144
O7—H7O⋯O9iii 0.85 1.72 2.558 (2) 166
O9—H9WA⋯O5ii 0.86 1.88 2.684 (2) 153
O9—H9WB⋯O6v 0.87 1.99 2.813 (3) 159
Symmetry codes: (i) x, y-1, z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x-1, y+1, z; (v) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Introduction top

Imidazo[4,5-f][1,10]phenanthroline (IP) derivatives have been used to recognize the secondary structure of DNA in Ru(II) complexes. IP also an important heteroaromatic N-donor ligands for the construction of coordination polymers. A handful of comcpounds based on IP and carboxyl­ate ligands have been described (Liu et al., 2009; Stephenson et al., 2008; Wu et al., 1997; Yang et al., 2010). The title compound was prepared during an attempt to prepare a coordination polymer containing both benzene­tri­carboxyl­ate (BTC) and IP ligands, however, an simple dinuclear complex obtained.

Synthesis and crystallization top

Nickel nitrate hexahydrate and benzene­tri­carboxyl­ate acid were obtained commercially. imidazo[4,5-f][1,10]phenanthroline was prepared via a published procedure (Wu et al. (1997). A mixture of Nickel nitrate hexahydrate (133 mg, 0.50 mmol), benzene­tri­carboxyl­ate acid (105 mg, 0.50 mmol), imidazo[4,5-f][1,10]phenanthroline (0.110 g,0.5 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 398 K for 72 h, then cooled to RT at a rate of 5 °c/h. The resulting green crystals of the title compound were obtained.

Refinement top

All H atoms were found in a difference Fourier map. The H atoms bound to C or N atoms were placed in calculated positions, with C—H= 0.93Å (CH) or N—H=0.86Å (NH)), Uiso(H)= 1.2 times Ueq(C or N). The H atoms bound to O atoms were restrained with O—H = 0.85 Å, and refined with Uiso(H)= 1.5 times Ueq(O).

Related literature top

For general background, see: Stephenson et al. (2008). For details of the synthesis, see: Liu et al. (2009); Wu et al. (1997); Yang et al. (2010); Che et al. (2013).

Structure description top

Imidazo[4,5-f][1,10]phenanthroline (IP) derivatives have been used to recognize the secondary structure of DNA in Ru(II) complexes. IP also an important heteroaromatic N-donor ligands for the construction of coordination polymers. A handful of comcpounds based on IP and carboxyl­ate ligands have been described (Liu et al., 2009; Stephenson et al., 2008; Wu et al., 1997; Yang et al., 2010). The title compound was prepared during an attempt to prepare a coordination polymer containing both benzene­tri­carboxyl­ate (BTC) and IP ligands, however, an simple dinuclear complex obtained.

For general background, see: Stephenson et al. (2008). For details of the synthesis, see: Liu et al. (2009); Wu et al. (1997); Yang et al. (2010); Che et al. (2013).

Synthesis and crystallization top

Nickel nitrate hexahydrate and benzene­tri­carboxyl­ate acid were obtained commercially. imidazo[4,5-f][1,10]phenanthroline was prepared via a published procedure (Wu et al. (1997). A mixture of Nickel nitrate hexahydrate (133 mg, 0.50 mmol), benzene­tri­carboxyl­ate acid (105 mg, 0.50 mmol), imidazo[4,5-f][1,10]phenanthroline (0.110 g,0.5 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 398 K for 72 h, then cooled to RT at a rate of 5 °c/h. The resulting green crystals of the title compound were obtained.

Refinement details top

All H atoms were found in a difference Fourier map. The H atoms bound to C or N atoms were placed in calculated positions, with C—H= 0.93Å (CH) or N—H=0.86Å (NH)), Uiso(H)= 1.2 times Ueq(C or N). The H atoms bound to O atoms were restrained with O—H = 0.85 Å, and refined with Uiso(H)= 1.5 times Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids with the atom numbering. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. A packing view of the three-dimensional supermolecular framework of the title compound viewed along the a axis.
Bis(µ-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O1')bis[diaqua(1H-imidazo[4,5-f][1,10]phenanthroline-κ2N7,N8)nickel(II)] dihydrate top
Crystal data top
[Ni2(C9H4O6)2(C13H8N4)2(H2O)4]·2H2OZ = 1
Mr = 1082.22F(000) = 556
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.581 (5) ÅCell parameters from 2586 reflections
b = 9.032 (5) Åθ = 3.6–24.9°
c = 14.278 (5) ŵ = 0.99 mm1
α = 82.222 (5)°T = 293 K
β = 87.729 (5)°Block, yellow-green
γ = 73.117 (5)°0.28 × 0.16 × 0.15 mm
V = 1049.2 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3851 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 610
Tmin = 0.805, Tmax = 0.867k = 1010
5594 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0333P)2]
where P = (Fo2 + 2Fc2)/3
3851 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni2(C9H4O6)2(C13H8N4)2(H2O)4]·2H2Oγ = 73.117 (5)°
Mr = 1082.22V = 1049.2 (9) Å3
Triclinic, P1Z = 1
a = 8.581 (5) ÅMo Kα radiation
b = 9.032 (5) ŵ = 0.99 mm1
c = 14.278 (5) ÅT = 293 K
α = 82.222 (5)°0.28 × 0.16 × 0.15 mm
β = 87.729 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3050 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.867Rint = 0.048
5594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.95Δρmax = 0.30 e Å3
3851 reflectionsΔρmin = 0.43 e Å3
325 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6312 (3)0.3200 (3)0.81421 (15)0.0288 (6)
H10.54730.41270.81240.035*
C20.6567 (3)0.2172 (3)0.89778 (16)0.0338 (6)
H20.59120.24130.95030.041*
C30.7796 (3)0.0801 (3)0.90156 (16)0.0310 (6)
H30.79760.00920.95650.037*
C40.8778 (3)0.0478 (3)0.82195 (15)0.0227 (5)
C50.8443 (3)0.1596 (2)0.74049 (15)0.0209 (5)
C60.9472 (3)0.1389 (2)0.65729 (15)0.0207 (5)
C71.0812 (3)0.0055 (3)0.65371 (15)0.0231 (5)
C81.1781 (3)0.0002 (3)0.57196 (16)0.0270 (5)
H81.26760.08610.56640.032*
C91.1399 (3)0.1215 (3)0.50060 (16)0.0280 (6)
H91.20380.11900.44640.034*
C101.0050 (3)0.2493 (3)0.50942 (15)0.0258 (5)
H100.98110.33150.46050.031*
C111.1089 (3)0.1101 (3)0.73572 (15)0.0252 (5)
C121.0117 (3)0.0873 (3)0.81472 (15)0.0243 (5)
C131.2023 (3)0.3077 (3)0.83840 (17)0.0369 (6)
H131.26560.40310.86820.044*
C140.5942 (3)0.6540 (2)0.43305 (15)0.0220 (5)
C150.6305 (3)0.7419 (3)0.34261 (15)0.0212 (5)
C160.7606 (3)0.6785 (3)0.28582 (15)0.0234 (5)
H160.83260.58140.30610.028*
C170.7849 (3)0.7588 (3)0.19821 (15)0.0223 (5)
C180.6787 (3)0.9059 (3)0.17046 (16)0.0264 (5)
H180.69330.96010.11220.032*
C190.5521 (3)0.9727 (3)0.22814 (15)0.0243 (5)
C200.5259 (3)0.8897 (3)0.31353 (15)0.0249 (5)
H200.43840.93290.35150.030*
C220.9187 (3)0.6874 (3)0.13265 (15)0.0240 (5)
C230.4356 (3)1.1296 (3)0.19953 (17)0.0288 (6)
Ni10.70279 (4)0.43502 (3)0.609962 (19)0.02230 (10)
N10.7200 (2)0.2927 (2)0.73743 (12)0.0229 (4)
N20.9089 (2)0.2582 (2)0.58513 (12)0.0217 (4)
N31.2298 (2)0.2516 (2)0.75156 (13)0.0329 (5)
N41.0757 (2)0.2163 (2)0.88009 (13)0.0315 (5)
H41.04090.23410.93660.038*
O10.83799 (18)0.55829 (17)0.66524 (10)0.0274 (4)
H1WA0.89740.51750.71620.041*
H1WB0.77040.62880.69030.041*
O20.48839 (19)0.60135 (19)0.63947 (11)0.0368 (4)
H2WA0.42260.66110.67850.055*
H2WB0.43060.62950.58650.055*
O30.71191 (18)0.56435 (17)0.48112 (10)0.0257 (4)
O40.44422 (18)0.67849 (17)0.45611 (10)0.0249 (4)
O51.0320 (2)0.57271 (19)0.16548 (11)0.0346 (4)
O60.9071 (2)0.74669 (19)0.04712 (11)0.0365 (4)
O70.4671 (2)1.19600 (19)0.11669 (12)0.0474 (5)
H7O0.38281.26790.09560.071*
O80.3214 (2)1.18626 (19)0.24846 (12)0.0436 (5)
O90.7523 (2)0.56589 (19)0.96006 (11)0.0404 (5)
H9WA0.82630.55050.91680.061*
H9WB0.77620.62950.99330.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (13)0.0318 (14)0.0252 (13)0.0005 (11)0.0062 (11)0.0021 (10)
C20.0336 (15)0.0396 (15)0.0225 (12)0.0044 (12)0.0105 (11)0.0014 (11)
C30.0342 (15)0.0327 (14)0.0205 (12)0.0051 (12)0.0044 (11)0.0044 (10)
C40.0225 (12)0.0254 (12)0.0193 (11)0.0073 (10)0.0023 (10)0.0007 (9)
C50.0202 (12)0.0238 (12)0.0181 (11)0.0062 (10)0.0009 (10)0.0007 (9)
C60.0190 (12)0.0242 (12)0.0186 (11)0.0064 (10)0.0004 (9)0.0010 (9)
C70.0211 (12)0.0260 (12)0.0216 (12)0.0066 (10)0.0024 (10)0.0027 (10)
C80.0240 (13)0.0257 (13)0.0286 (13)0.0039 (11)0.0050 (11)0.0028 (10)
C90.0266 (13)0.0334 (14)0.0217 (12)0.0068 (11)0.0088 (10)0.0021 (10)
C100.0276 (13)0.0297 (13)0.0192 (11)0.0090 (11)0.0029 (10)0.0012 (10)
C110.0252 (13)0.0224 (12)0.0252 (12)0.0040 (11)0.0023 (11)0.0001 (10)
C120.0249 (13)0.0258 (12)0.0201 (11)0.0061 (11)0.0023 (10)0.0009 (10)
C130.0355 (15)0.0277 (14)0.0354 (15)0.0038 (12)0.0040 (12)0.0084 (11)
C140.0252 (13)0.0221 (12)0.0179 (11)0.0054 (11)0.0030 (10)0.0034 (9)
C150.0205 (12)0.0250 (12)0.0171 (11)0.0063 (10)0.0003 (10)0.0005 (9)
C160.0212 (12)0.0223 (12)0.0224 (12)0.0016 (10)0.0021 (10)0.0024 (9)
C170.0197 (12)0.0258 (12)0.0198 (11)0.0051 (10)0.0002 (10)0.0003 (9)
C180.0273 (13)0.0277 (13)0.0208 (12)0.0062 (11)0.0017 (10)0.0037 (10)
C190.0229 (13)0.0240 (12)0.0235 (12)0.0046 (11)0.0003 (10)0.0013 (10)
C200.0214 (12)0.0286 (13)0.0228 (12)0.0045 (11)0.0051 (10)0.0041 (10)
C220.0237 (13)0.0253 (13)0.0224 (12)0.0071 (11)0.0016 (10)0.0010 (10)
C230.0291 (14)0.0255 (13)0.0290 (13)0.0050 (11)0.0001 (12)0.0003 (11)
Ni10.01924 (16)0.02540 (17)0.01782 (16)0.00195 (13)0.00227 (12)0.00200 (12)
N10.0193 (10)0.0253 (10)0.0215 (10)0.0036 (9)0.0017 (8)0.0006 (8)
N20.0219 (10)0.0243 (10)0.0166 (9)0.0055 (9)0.0021 (8)0.0017 (8)
N30.0295 (12)0.0291 (11)0.0283 (11)0.0053 (10)0.0070 (9)0.0043 (9)
N40.0333 (12)0.0313 (12)0.0214 (10)0.0019 (10)0.0070 (9)0.0077 (9)
O10.0260 (9)0.0286 (9)0.0230 (8)0.0014 (7)0.0001 (7)0.0022 (7)
O20.0285 (10)0.0466 (11)0.0211 (9)0.0106 (8)0.0009 (7)0.0027 (8)
O30.0202 (8)0.0312 (9)0.0202 (8)0.0030 (7)0.0009 (7)0.0065 (7)
O40.0200 (8)0.0314 (9)0.0201 (8)0.0044 (7)0.0038 (7)0.0001 (7)
O50.0287 (10)0.0391 (10)0.0238 (9)0.0074 (8)0.0002 (7)0.0006 (8)
O60.0357 (10)0.0424 (11)0.0201 (9)0.0012 (9)0.0069 (8)0.0063 (8)
O70.0398 (11)0.0397 (11)0.0407 (11)0.0114 (9)0.0098 (9)0.0172 (9)
O80.0469 (12)0.0290 (10)0.0425 (11)0.0061 (9)0.0138 (10)0.0032 (8)
O90.0411 (11)0.0382 (10)0.0320 (10)0.0021 (9)0.0049 (8)0.0016 (8)
Geometric parameters (Å, º) top
C1—N11.319 (3)C15—C161.384 (3)
C1—C21.392 (3)C15—C201.394 (3)
C1—H10.9300C16—C171.399 (3)
C2—C31.370 (3)C16—H160.9300
C2—H20.9300C17—C181.391 (3)
C3—C41.399 (3)C17—C221.503 (3)
C3—H30.9300C18—C191.381 (3)
C4—C51.413 (3)C18—H180.9300
C4—C121.425 (3)C19—C201.388 (3)
C5—N11.353 (3)C19—C231.492 (3)
C5—C61.451 (3)C20—H200.9300
C6—N21.361 (3)C22—O51.248 (3)
C6—C71.408 (3)C22—O61.261 (3)
C7—C81.404 (3)C23—O81.209 (3)
C7—C111.437 (3)C23—O71.307 (3)
C8—C91.367 (3)Ni1—O32.0531 (16)
C8—H80.9300Ni1—N12.0652 (19)
C9—C101.392 (3)Ni1—N22.066 (2)
C9—H90.9300Ni1—O12.0662 (17)
C10—N21.330 (3)Ni1—O22.0794 (18)
C10—H100.9300Ni1—O4i2.1540 (17)
C11—C121.378 (3)N4—H40.8600
C11—N31.390 (3)O1—H1WA0.8794
C12—N41.380 (3)O1—H1WB0.8376
C13—N31.314 (3)O2—H2WA0.8944
C13—N41.333 (3)O2—H2WB0.8873
C13—H130.9300O4—Ni1i2.1540 (17)
C14—O31.255 (3)O7—H7O0.8528
C14—O41.279 (3)O9—H9WA0.8627
C14—C151.493 (3)O9—H9WB0.8651
N1—C1—C2123.3 (2)C19—C18—C17121.0 (2)
N1—C1—H1118.3C19—C18—H18119.5
C2—C1—H1118.3C17—C18—H18119.5
C3—C2—C1119.0 (2)C18—C19—C20119.7 (2)
C3—C2—H2120.5C18—C19—C23122.0 (2)
C1—C2—H2120.5C20—C19—C23118.2 (2)
C2—C3—C4119.3 (2)C19—C20—C15120.2 (2)
C2—C3—H3120.3C19—C20—H20119.9
C4—C3—H3120.3C15—C20—H20119.9
C3—C4—C5117.8 (2)O5—C22—O6124.3 (2)
C3—C4—C12126.4 (2)O5—C22—C17118.4 (2)
C5—C4—C12115.84 (19)O6—C22—C17117.2 (2)
N1—C5—C4122.0 (2)O8—C23—O7124.1 (2)
N1—C5—C6117.03 (19)O8—C23—C19122.2 (2)
C4—C5—C6120.9 (2)O7—C23—C19113.7 (2)
N2—C6—C7122.7 (2)O3—Ni1—N1173.78 (7)
N2—C6—C5115.78 (19)O3—Ni1—N294.05 (7)
C7—C6—C5121.52 (19)N1—Ni1—N280.10 (7)
C8—C7—C6117.2 (2)O3—Ni1—O188.33 (7)
C8—C7—C11126.1 (2)N1—Ni1—O189.79 (7)
C6—C7—C11116.7 (2)N2—Ni1—O192.10 (8)
C9—C8—C7119.5 (2)O3—Ni1—O289.01 (6)
C9—C8—H8120.2N1—Ni1—O296.93 (7)
C7—C8—H8120.2N2—Ni1—O2176.09 (7)
C8—C9—C10119.8 (2)O1—Ni1—O290.43 (8)
C8—C9—H9120.1O3—Ni1—O4i87.63 (6)
C10—C9—H9120.1N1—Ni1—O4i94.41 (7)
N2—C10—C9122.6 (2)N2—Ni1—O4i89.96 (8)
N2—C10—H10118.7O1—Ni1—O4i175.58 (6)
C9—C10—H10118.7O2—Ni1—O4i87.72 (8)
C12—C11—N3109.89 (19)C1—N1—C5118.49 (19)
C12—C11—C7121.0 (2)C1—N1—Ni1128.11 (16)
N3—C11—C7129.1 (2)C5—N1—Ni1113.32 (14)
C11—C12—N4105.6 (2)C10—N2—C6118.2 (2)
C11—C12—C4123.9 (2)C10—N2—Ni1128.14 (16)
N4—C12—C4130.4 (2)C6—N2—Ni1113.64 (14)
N3—C13—N4114.2 (2)C13—N3—C11103.84 (19)
N3—C13—H13122.9C13—N4—C12106.45 (19)
N4—C13—H13122.9C13—N4—H4126.8
O3—C14—O4125.1 (2)C12—N4—H4126.8
O3—C14—C15118.1 (2)Ni1—O1—H1WA120.3
O4—C14—C15116.79 (19)Ni1—O1—H1WB105.6
C16—C15—C20119.6 (2)H1WA—O1—H1WB96.1
C16—C15—C14121.87 (19)Ni1—O2—H2WA152.1
C20—C15—C14118.51 (19)Ni1—O2—H2WB106.7
C15—C16—C17120.7 (2)H2WA—O2—H2WB101.2
C15—C16—H16119.7C14—O3—Ni1127.43 (14)
C17—C16—H16119.7C14—O4—Ni1i119.27 (14)
C18—C17—C16118.7 (2)C23—O7—H7O109.8
C18—C17—C22119.7 (2)H9WA—O9—H9WB105.2
C16—C17—C22121.5 (2)
N1—C1—C2—C30.1 (4)C18—C19—C23—O8177.5 (2)
C1—C2—C3—C40.9 (4)C20—C19—C23—O80.7 (4)
C2—C3—C4—C50.2 (4)C18—C19—C23—O70.9 (3)
C2—C3—C4—C12178.8 (2)C20—C19—C23—O7177.7 (2)
C3—C4—C5—N11.4 (3)C2—C1—N1—C51.4 (4)
C12—C4—C5—N1179.49 (19)C2—C1—N1—Ni1177.93 (17)
C3—C4—C5—C6176.1 (2)C4—C5—N1—C12.2 (3)
C12—C4—C5—C63.1 (3)C6—C5—N1—C1175.4 (2)
N1—C5—C6—N21.3 (3)C4—C5—N1—Ni1179.18 (17)
C4—C5—C6—N2176.32 (19)C6—C5—N1—Ni11.6 (2)
N1—C5—C6—C7179.14 (19)O3—Ni1—N1—C1154.2 (5)
C4—C5—C6—C71.6 (3)N2—Ni1—N1—C1174.0 (2)
N2—C6—C7—C80.9 (3)O1—Ni1—N1—C181.8 (2)
C5—C6—C7—C8176.9 (2)O2—Ni1—N1—C18.6 (2)
N2—C6—C7—C11178.9 (2)O4i—Ni1—N1—C196.8 (2)
C5—C6—C7—C111.1 (3)O3—Ni1—N1—C522.5 (7)
C6—C7—C8—C90.2 (3)N2—Ni1—N1—C52.66 (15)
C11—C7—C8—C9177.6 (2)O1—Ni1—N1—C594.83 (16)
C7—C8—C9—C100.4 (4)O2—Ni1—N1—C5174.76 (15)
C8—C9—C10—N20.5 (4)O4i—Ni1—N1—C586.53 (15)
C8—C7—C11—C12175.6 (2)C9—C10—N2—C61.5 (3)
C6—C7—C11—C122.2 (3)C9—C10—N2—Ni1178.89 (16)
C8—C7—C11—N32.5 (4)C7—C6—N2—C101.7 (3)
C6—C7—C11—N3179.7 (2)C5—C6—N2—C10176.17 (19)
N3—C11—C12—N40.7 (3)C7—C6—N2—Ni1178.65 (16)
C7—C11—C12—N4177.7 (2)C5—C6—N2—Ni13.5 (2)
N3—C11—C12—C4179.1 (2)O3—Ni1—N2—C101.62 (19)
C7—C11—C12—C40.7 (4)N1—Ni1—N2—C10176.3 (2)
C3—C4—C12—C11177.0 (2)O1—Ni1—N2—C1086.85 (19)
C5—C4—C12—C112.0 (3)O2—Ni1—N2—C10142.9 (9)
C3—C4—C12—N40.9 (4)O4i—Ni1—N2—C1089.23 (19)
C5—C4—C12—N4179.9 (2)O3—Ni1—N2—C6178.76 (15)
O3—C14—C15—C1634.7 (3)N1—Ni1—N2—C63.35 (15)
O4—C14—C15—C16146.4 (2)O1—Ni1—N2—C692.77 (15)
O3—C14—C15—C20147.8 (2)O2—Ni1—N2—C637.4 (10)
O4—C14—C15—C2031.1 (3)O4i—Ni1—N2—C691.14 (15)
C20—C15—C16—C172.2 (3)N4—C13—N3—C110.1 (3)
C14—C15—C16—C17175.4 (2)C12—C11—N3—C130.4 (3)
C15—C16—C17—C182.0 (3)C7—C11—N3—C13177.8 (2)
C15—C16—C17—C22175.8 (2)N3—C13—N4—C120.5 (3)
C16—C17—C18—C190.4 (3)C11—C12—N4—C130.7 (3)
C22—C17—C18—C19178.3 (2)C4—C12—N4—C13178.9 (2)
C17—C18—C19—C202.6 (3)O4—C14—O3—Ni11.4 (3)
C17—C18—C19—C23179.4 (2)C15—C14—O3—Ni1177.45 (13)
C18—C19—C20—C152.3 (3)N1—Ni1—O3—C14168.8 (6)
C23—C19—C20—C15179.2 (2)N2—Ni1—O3—C14149.23 (18)
C16—C15—C20—C190.0 (3)O1—Ni1—O3—C14118.78 (18)
C14—C15—C20—C19177.6 (2)O2—Ni1—O3—C1428.32 (18)
C18—C17—C22—O5165.0 (2)O4i—Ni1—O3—C1459.44 (18)
C16—C17—C22—O517.2 (3)O3—C14—O4—Ni1i101.9 (2)
C18—C17—C22—O616.0 (3)C15—C14—O4—Ni1i79.2 (2)
C16—C17—C22—O6161.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6ii0.861.932.772 (3)165
O1—H1WA···O5iii0.881.822.676 (2)165
O1—H1WB···O8iv0.841.942.741 (2)161
O2—H2WA···N3v0.891.942.798 (3)160
O2—H2WB···O40.891.862.630 (2)144
O7—H7O···O9iv0.851.722.558 (2)166
O9—H9WA···O5iii0.861.882.684 (2)153
O9—H9WB···O6vi0.871.992.813 (3)159
Symmetry codes: (ii) x, y1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x1, y+1, z; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6i0.861.932.772 (3)164.8
O1—H1WA···O5ii0.881.822.676 (2)164.5
O1—H1WB···O8iii0.841.942.741 (2)160.8
O2—H2WA···N3iv0.891.942.798 (3)159.5
O2—H2WB···O40.891.862.630 (2)143.8
O7—H7O···O9iii0.851.722.558 (2)165.8
O9—H9WA···O5ii0.861.882.684 (2)153.4
O9—H9WB···O6v0.871.992.813 (3)159.4
Symmetry codes: (i) x, y1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x1, y+1, z; (v) x, y, z+1.
 

Acknowledgements

This work was supported financially by Education Committee of Jilin Province `12th Five-year Plan' Natural Science Foundation (Nos. 2013491 and 2013396).

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G. B., Wang, S. S., Zha, X. X., Li, X. Y., Liu, C. B., Zhang, X. J., Xu, Z. L. & Wang, Q. W. (2013). Inorg. Chim. Acta, 394, 481–487.  CSD CrossRef CAS Google Scholar
First citationLiu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. Kh. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365–5378.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des. 8, 643–653.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395–1402.  CSD CrossRef Google Scholar
First citationYang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun. 13, 1043–1046.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m95-m96
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds