metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m79-m80

Crystal structure of catena-poly[[silver(I)-{μ-2,6-bis­­[(1H-pyrazol-1-yl)meth­yl]pyridine-κ3N1,N2:N2′}] nitrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by O. Blacque, University of Zürich, Switzerland (Received 6 February 2015; accepted 26 February 2015; online 7 March 2015)

In the title complex, {[Ag(C13H13N5)]NO3}n, the AgI atom is coordinated by three N atoms from two bidentate/monodentate pyrazolylpyridyl ligands to form a distorted trigonal–planar geometry [range of angles: 83.34 (6) (chelate ring) to 139.15 (7) °]. The chelate ring has a distorted boat conformation. The dihedral angle between the pyridyl ring and the coordinating pyrazolyl ring is 67.22 (6)°. The non-coordinating pyrazolyl ring is twisted by 62.97 (7)° from the pyridyl ring. In the crystal, the complex cations are arranged in polymeric chains along the c-axis direction, with the nitrate counter-anions situated in between. Weak C—H⋯O hydrogen bonds link the ions into a three-dimensional network.

1. Related literature

For related metal complexes, see: Reger et al. (2005[Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181-1190.]); Sharma et al. (2011[Sharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327-332.]); Hurtado et al. (2011[Hurtado, J., Ugarte, J., Rojas, R., Valderrama, M., MacLeod Carey, D., Muñoz-Castro, A., Arratia-Pérez, R. & Fröhlich, R. (2011). Inorg. Chim. Acta, 378, 218-223.]). For the synthesis of 2,6-bis­[(1H-pyrazol-1-yl)meth­yl]pyridine, see: Singh et al. (2003[Singh, S., Mishra, V., Seethalekshmi, M. N. & Mukherjee, R. (2003). Dalton Trans. pp. 3392-3397.]); Son et al. (2014[Son, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.]); Watson et al. (1987[Watson, A. A., House, D. A. & Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167-176.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ag(C13H13N5)]NO3

  • Mr = 409.16

  • Monoclinic, P 21 /c

  • a = 9.9604 (6) Å

  • b = 14.3192 (9) Å

  • c = 10.6878 (7) Å

  • β = 98.9100 (9)°

  • V = 1505.95 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.726

  • 12683 measured reflections

  • 3618 independent reflections

  • 3087 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.04

  • 3618 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.49 3.206 (3) 134
C4—H4A⋯O1i 0.97 2.48 3.347 (3) 149
C10—H10A⋯O3 0.97 2.38 3.277 (3) 154
C11—H11⋯O3ii 0.93 2.43 3.195 (3) 140
C13—H13⋯O1iii 0.93 2.44 3.355 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

The metal complex with the tridentate ligand 2,6-bis­((1H-pyrazol-1-yl)methyl)­pyridine is reported as a catalyst of polyethyl­ene polymerization (Hurtado et al., 2011; Watson et al., 1987). As a contribution to this field, we report herein the crystal structure of the title compound. In the cation part of the title compound, two ligands are linked by one silver atom. One pyrazolyl ring and the central pyridyl ring are coordinated to a second silver atom, as pictured in Fig 1. This bridging structure has shown that silver(I) complex can produce sophisticated coordination architectures and supra­molecular arrays. The Ag—N distances are within the range of 2.165 (2) - 2.313 (2) Å with the silver atom in an almost trigonal planar arrangement and the sum of N—Ag—N angles being 359.5 ° with the range of 83.34 (6) - 139.15 (7) °. The crystal structure features π-π stacking inter­actions between pyridyl rings [centroid-centroid distance = 3.700 (3) Å] and geometric constraints imposed by coordination of the ligand to the silver atoms, as pictured in Fig 2.

Synthesis and crystallization top

To a stirred solution of Ag(NO3) (0.051g, 0.3 mmol) in aceto­nitrile (5 ml) was added a solution of 2,6-bis­((1H-pyrazol-1-yl)methyl)­pyridine (0.072 g, 0.3 mmol) in aceto­nitrile (5 ml) at room temperature. After 24 h of stirring, a white powder was formed. The product was washed with di­ethyl ether. Single crystals of the title complex were obtained from its aceto­nitrile solution by slow evaporation of the solvent at room temperature within 2 weeks.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Related literature top

For related metal complexes, see: Reger et al. (2005); Sharma et al. (2011); Hurtado et al. (2011). For the synthesis of 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine, see: Singh et al. (2003); Son et al. (2014); Watson et al. (1987).

Structure description top

The metal complex with the tridentate ligand 2,6-bis­((1H-pyrazol-1-yl)methyl)­pyridine is reported as a catalyst of polyethyl­ene polymerization (Hurtado et al., 2011; Watson et al., 1987). As a contribution to this field, we report herein the crystal structure of the title compound. In the cation part of the title compound, two ligands are linked by one silver atom. One pyrazolyl ring and the central pyridyl ring are coordinated to a second silver atom, as pictured in Fig 1. This bridging structure has shown that silver(I) complex can produce sophisticated coordination architectures and supra­molecular arrays. The Ag—N distances are within the range of 2.165 (2) - 2.313 (2) Å with the silver atom in an almost trigonal planar arrangement and the sum of N—Ag—N angles being 359.5 ° with the range of 83.34 (6) - 139.15 (7) °. The crystal structure features π-π stacking inter­actions between pyridyl rings [centroid-centroid distance = 3.700 (3) Å] and geometric constraints imposed by coordination of the ligand to the silver atoms, as pictured in Fig 2.

For related metal complexes, see: Reger et al. (2005); Sharma et al. (2011); Hurtado et al. (2011). For the synthesis of 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine, see: Singh et al. (2003); Son et al. (2014); Watson et al. (1987).

Synthesis and crystallization top

To a stirred solution of Ag(NO3) (0.051g, 0.3 mmol) in aceto­nitrile (5 ml) was added a solution of 2,6-bis­((1H-pyrazol-1-yl)methyl)­pyridine (0.072 g, 0.3 mmol) in aceto­nitrile (5 ml) at room temperature. After 24 h of stirring, a white powder was formed. The product was washed with di­ethyl ether. Single crystals of the title complex were obtained from its aceto­nitrile solution by slow evaporation of the solvent at room temperature within 2 weeks.

Refinement details top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids [symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, -y + 1/2, z - 1/2].
[Figure 2] Fig. 2. Part of the crystal structure of the title complex, showing the 3-D network of molecules linked by weak C—H···O hydrogen bonds (dashed lines).
catena-Poly[[silver(I)-{µ-2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine-κ3N1,N2:N2'}] nitrate] top
Crystal data top
[Ag(C13H13N5)]NO3F(000) = 816
Mr = 409.16Dx = 1.805 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6606 reflections
a = 9.9604 (6) Åθ = 2.4–28.3°
b = 14.3192 (9) ŵ = 1.36 mm1
c = 10.6878 (7) ÅT = 296 K
β = 98.9100 (9)°Block, colourless
V = 1505.95 (16) Å30.25 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.546, Tmax = 0.726k = 1819
12683 measured reflectionsl = 1410
3618 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.685P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3618 reflectionsΔρmax = 0.43 e Å3
208 parametersΔρmin = 0.39 e Å3
Crystal data top
[Ag(C13H13N5)]NO3V = 1505.95 (16) Å3
Mr = 409.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9604 (6) ŵ = 1.36 mm1
b = 14.3192 (9) ÅT = 296 K
c = 10.6878 (7) Å0.25 × 0.23 × 0.21 mm
β = 98.9100 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3618 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3087 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.726Rint = 0.017
12683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
3618 reflectionsΔρmin = 0.39 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.11928 (2)0.23756 (2)0.31490 (2)0.04028 (7)
N10.04629 (18)0.16608 (14)0.17705 (18)0.0399 (4)
N20.17162 (18)0.15774 (13)0.20861 (17)0.0370 (4)
N30.00565 (16)0.17147 (12)0.46594 (15)0.0297 (4)
N40.30868 (17)0.12786 (13)0.70046 (17)0.0341 (4)
N50.28527 (18)0.16529 (13)0.81157 (16)0.0358 (4)
C10.0480 (2)0.11349 (17)0.0749 (2)0.0433 (5)
H10.02530.1060.03140.052*
C20.1733 (3)0.07115 (19)0.0413 (3)0.0516 (6)
H20.19960.03080.02630.062*
C30.2497 (2)0.10127 (19)0.1282 (2)0.0494 (6)
H30.33970.08550.13130.059*
C40.2034 (2)0.20274 (17)0.3231 (2)0.0397 (5)
H4A0.30060.19940.32370.048*
H4B0.17820.26810.32250.048*
C50.1295 (2)0.15704 (15)0.4414 (2)0.0330 (5)
C60.1955 (2)0.10294 (17)0.5200 (2)0.0434 (6)
H60.28920.09490.5030.052*
C70.1202 (2)0.06098 (17)0.6244 (2)0.0446 (6)
H70.16250.02350.67770.053*
C80.0186 (2)0.07517 (15)0.6487 (2)0.0371 (5)
H80.0710.04720.71830.044*
C90.0783 (2)0.13177 (14)0.56789 (19)0.0302 (4)
C100.2274 (2)0.15549 (16)0.58221 (19)0.0349 (5)
H10A0.26490.12620.51350.042*
H10B0.2360.22250.57280.042*
C110.4251 (2)0.07940 (18)0.7160 (3)0.0478 (6)
H110.46250.04850.6530.057*
C120.4785 (3)0.08368 (19)0.8407 (3)0.0569 (7)
H120.55840.0560.88020.068*
C130.3895 (2)0.13761 (18)0.8967 (2)0.0472 (6)
H130.40080.15260.98240.057*
N60.3934 (2)0.12375 (14)0.2741 (2)0.0463 (5)
O10.46828 (19)0.16474 (15)0.21131 (19)0.0656 (5)
O20.2747 (2)0.10663 (15)0.2250 (3)0.0822 (7)
O30.4345 (3)0.10089 (19)0.3834 (2)0.1001 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03190 (10)0.04830 (12)0.04040 (12)0.00783 (7)0.00483 (8)0.00771 (8)
N10.0312 (10)0.0513 (11)0.0371 (11)0.0051 (8)0.0042 (8)0.0017 (9)
N20.0272 (9)0.0495 (11)0.0323 (10)0.0015 (8)0.0017 (8)0.0004 (8)
N30.0264 (9)0.0379 (9)0.0242 (9)0.0010 (7)0.0022 (7)0.0021 (7)
N40.0288 (9)0.0437 (10)0.0286 (9)0.0067 (7)0.0004 (7)0.0031 (8)
N50.0343 (10)0.0439 (10)0.0273 (10)0.0078 (8)0.0011 (8)0.0022 (8)
C10.0387 (13)0.0558 (14)0.0350 (13)0.0032 (11)0.0039 (10)0.0005 (11)
C20.0455 (15)0.0637 (16)0.0419 (15)0.0022 (12)0.0052 (12)0.0141 (12)
C30.0292 (12)0.0692 (17)0.0460 (15)0.0055 (11)0.0058 (11)0.0096 (12)
C40.0275 (11)0.0533 (13)0.0368 (13)0.0064 (9)0.0005 (9)0.0047 (10)
C50.0266 (11)0.0411 (12)0.0309 (12)0.0005 (8)0.0031 (9)0.0066 (9)
C60.0282 (11)0.0580 (15)0.0448 (14)0.0100 (10)0.0077 (10)0.0079 (11)
C70.0483 (15)0.0517 (14)0.0354 (13)0.0156 (11)0.0121 (11)0.0005 (11)
C80.0428 (13)0.0395 (12)0.0284 (11)0.0035 (9)0.0039 (10)0.0006 (9)
C90.0308 (11)0.0341 (10)0.0254 (10)0.0001 (8)0.0032 (8)0.0048 (8)
C100.0291 (11)0.0501 (13)0.0246 (11)0.0002 (9)0.0011 (9)0.0001 (9)
C110.0329 (12)0.0548 (15)0.0540 (16)0.0134 (11)0.0018 (11)0.0095 (12)
C120.0395 (14)0.0646 (17)0.0591 (18)0.0201 (12)0.0158 (13)0.0025 (13)
C130.0441 (14)0.0576 (15)0.0340 (13)0.0079 (11)0.0125 (10)0.0022 (11)
N60.0419 (12)0.0504 (12)0.0502 (13)0.0160 (9)0.0181 (11)0.0031 (10)
O10.0448 (11)0.0948 (15)0.0613 (13)0.0115 (10)0.0212 (10)0.0002 (11)
O20.0391 (11)0.0674 (14)0.141 (2)0.0078 (10)0.0174 (13)0.0111 (13)
O30.138 (2)0.119 (2)0.0488 (13)0.0729 (18)0.0331 (14)0.0239 (13)
Geometric parameters (Å, º) top
Ag1—N5i2.1652 (17)C4—H4A0.97
Ag1—N12.2772 (19)C4—H4B0.97
Ag1—N32.3126 (16)C5—C61.382 (3)
N1—C11.325 (3)C6—C71.381 (3)
N1—N21.348 (3)C6—H60.93
N2—C31.338 (3)C7—C81.382 (3)
N2—C41.461 (3)C7—H70.93
N3—C91.338 (3)C8—C91.384 (3)
N3—C51.347 (2)C8—H80.93
N4—C111.340 (3)C9—C101.508 (3)
N4—N51.356 (2)C10—H10A0.97
N4—C101.446 (3)C10—H10B0.97
N5—C131.331 (3)C11—C121.358 (4)
N5—Ag1ii2.1652 (17)C11—H110.93
C1—C21.384 (3)C12—C131.380 (4)
C1—H10.93C12—H120.93
C2—C31.359 (4)C13—H130.93
C2—H20.93N6—O31.222 (3)
C3—H30.93N6—O11.227 (3)
C4—C51.510 (3)N6—O21.241 (3)
N5i—Ag1—N1139.15 (7)N3—C5—C6121.5 (2)
N5i—Ag1—N3137.05 (6)N3—C5—C4116.07 (18)
N1—Ag1—N383.34 (6)C6—C5—C4122.41 (19)
C1—N1—N2105.18 (18)C7—C6—C5119.0 (2)
C1—N1—Ag1134.79 (16)C7—C6—H6120.5
N2—N1—Ag1118.94 (14)C5—C6—H6120.5
C3—N2—N1111.20 (19)C6—C7—C8119.4 (2)
C3—N2—C4128.7 (2)C6—C7—H7120.3
N1—N2—C4120.01 (18)C8—C7—H7120.3
C9—N3—C5119.42 (17)C7—C8—C9118.8 (2)
C9—N3—Ag1118.76 (13)C7—C8—H8120.6
C5—N3—Ag1120.62 (13)C9—C8—H8120.6
C11—N4—N5111.05 (18)N3—C9—C8121.82 (19)
C11—N4—C10127.36 (19)N3—C9—C10112.75 (18)
N5—N4—C10120.55 (17)C8—C9—C10125.43 (19)
C13—N5—N4105.05 (18)N4—C10—C9115.87 (18)
C13—N5—Ag1ii134.18 (16)N4—C10—H10A108.3
N4—N5—Ag1ii120.26 (13)C9—C10—H10A108.3
N1—C1—C2111.0 (2)N4—C10—H10B108.3
N1—C1—H1124.5C9—C10—H10B108.3
C2—C1—H1124.5H10A—C10—H10B107.4
C3—C2—C1105.2 (2)N4—C11—C12107.3 (2)
C3—C2—H2127.4N4—C11—H11126.3
C1—C2—H2127.4C12—C11—H11126.3
N2—C3—C2107.4 (2)C11—C12—C13105.7 (2)
N2—C3—H3126.3C11—C12—H12127.1
C2—C3—H3126.3C13—C12—H12127.1
N2—C4—C5111.67 (18)N5—C13—C12110.8 (2)
N2—C4—H4A109.3N5—C13—H13124.6
C5—C4—H4A109.3C12—C13—H13124.6
N2—C4—H4B109.3O3—N6—O1120.6 (3)
C5—C4—H4B109.3O3—N6—O2120.5 (3)
H4A—C4—H4B107.9O1—N6—O2118.9 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1iii0.932.493.206 (3)134
C4—H4A···O1iii0.972.483.347 (3)149
C10—H10A···O30.972.383.277 (3)154
C11—H11···O3iv0.932.433.195 (3)140
C13—H13···O1v0.932.443.355 (3)167
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.493.206 (3)134
C4—H4A···O1i0.972.483.347 (3)149
C10—H10A···O30.972.383.277 (3)154
C11—H11···O3ii0.932.433.195 (3)140
C13—H13···O1iii0.932.443.355 (3)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHurtado, J., Ugarte, J., Rojas, R., Valderrama, M., MacLeod Carey, D., Muñoz-Castro, A., Arratia-Pérez, R. & Fröhlich, R. (2011). Inorg. Chim. Acta, 378, 218–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327–332.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S., Mishra, V., Seethalekshmi, M. N. & Mukherjee, R. (2003). Dalton Trans. pp. 3392–3397.  Web of Science CSD CrossRef Google Scholar
First citationSon, K., Woo, J. O., Kim, D. & Kang, S. K. (2014). Acta Cryst. E70, o973.  CSD CrossRef IUCr Journals Google Scholar
First citationWatson, A. A., House, D. A. & Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167–176.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m79-m80
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds