research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 414-417

Crystal structures of 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one and 2-(2-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 February 2015; accepted 4 March 2015; online 25 March 2015)

The crystal structures are reported of the isomeric compounds 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one, (I), and 2-(2-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one, (II), both C20H14N2O3S, being the para-nitro and ortho-nitro forms, respectively, the meta-form of which is known [Yennawar et al. (2013). Acta Cryst. E69, o1679]. The six-membered thia­zone ring fused with a benzene ring displays a screw-boat conformation with a total puckering amplitude of 0.627 (1) Å in (I), and a near screw-boat conformation with a total puckering amplitude of 0.600 (1) Å in (II). The dihedral angles between the planes of the substituent nitrophenyl and phenyl and rings with the benzene ring of the parent benzo­thia­zone moiety are 75.93 (5) and 82.61 (5)° [in (I)], and 76.79 (6) and 71.66 (6)° [in (II)]. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions between aromatic H-atom donors and both a nitro-O atom and a thia­zone O-atom acceptor in (I) and a thia­zone O atom in (II) are present, forming in (I) a centrosymmetric 22-membered cyclic dimer which is extended through a similar inversion-related 14-membered cyclic hydrogen-bonding association into a zigzag chain structure extending along c. In (II), a single inter­molecular C—H⋯O hydrogen bond gives a chain structure extending along b. In addition, weak C—H⋯π inter­actions are present in both structures [minimum C⋯ring-centroid separations = 3.630 (2) and 3.581 (2) Å, respectively].

1. Chemical context

In earlier reports, we described the T3P-promoted synthesis and crystal structures of 2-(3-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (III) (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]) and 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (IV) (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]). In compound (III), the phenyl ring substituent on the 2-position of the thia­zinone ring has a nitro group in the meta position.

[Scheme 1]

Here we report the synthesis and crystal structures of the para- and ortho-nitro analogs of C20H14N2O3S, the title compounds, 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one, (I)[link] and (II)[link], respectively, completing the set and allowing for comparison of the structural effects of the differently positioned nitro substituent groups.

2. Structural commentary

The crystal structures of the two racemic isomers (I)[link] and (II)[link] show some differences and some similarities among themselves as well as with the meta-form (III) reported earlier (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]). The para-nitro form (I)[link] (Fig. 1[link]) is triclinic, space group P[\overline1], while the ortho-nitro form (II)[link] (Fig. 2[link]) is monoclinic, space group P21/n, as was the meta-form. The structures show screw-boat (I)[link] or near screw-boat (II)[link] conformations for the thia­zine ring, as compared to an envelope conformation in the meta-form (III) and the unsubstituted 2,3-diphenyl compound (IV). In both (I)[link] and (II)[link], the three phenyl-ring planes are close to orthogonal with each other, with dihedral angles between the planes of the two substituent groups (C9–C14 = 4-nitrophenyl ring and C15–C20 = phenyl ring) with the benzene ring (C3–C8) of the parent benzo­thia­zine moiety of 75.93 (5) and 82.61 (5)° in (I)[link], and 76.79 (6) and 71.66 (6)° in (II)[link], compared with 81.33 (15) and 75.73 (15)° in the meta-isomer (III) and 76.96 (5) and 88.99 (6)° in the unsubstituted 2,3-diphenyl compound (IV) (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]).

[Figure 1]
Figure 1
Mol­ecular conformation and atom-numbering scheme for (I)[link]. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2]
Figure 2
Mol­ecular conformation and atom-numbering scheme for (II)[link]. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In (I)[link], as in the meta-form (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]), one of the O atoms of the nitro group accepts a weak aromatic C20—H20⋯O3i hydrogen bond (Table 1[link]), forming a large centrosymmetric cyclic dimer through an R22(22) association. A further set of weak inversion-related C14—H14⋯O1ii inter­actions with carbonyl O-atom acceptors give a second cyclic dimer [graph set R22(14)], forming a zigzag chain structure extending along c (Fig. 3[link]). In (II)[link], a weak inter­molecular C17—H17⋯O1iii hydrogen bond to the thia­zinone O-atom acceptor (Table 2[link]) gives rise to a chain extending along the b-axis direction (Fig. 4[link]). In addition, C—H⋯π inter­actions are present in both (I)[link] (Table 1[link]) and (II)[link] (Table 2[link]) [minimum C⋯ring-centroid separations of 3.630 (2) and 3.581 (2) Å, respectively], linking the chains to form sheets in the bc plane in (I) and a three-dimensional structure in (II). There are no other significant interactions present in either structure.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 and C3–C8, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O3i 0.93 2.68 3.468 (2) 143
C14—H14⋯O1ii 0.93 2.65 3.4886 (17) 150
C11—H11⋯Cg1iii 0.93 2.85 3.646 (2) 144
C17—H17⋯Cg2iv 0.93 2.77 3.630 (2) 154
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1v 0.93 2.58 3.234 (2) 128
C6—H6⋯Cg3vi 0.93 2.68 3.581 (2) 163
Symmetry codes: (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing in (I)[link] showing inter­molecular hydrogen-bonding inter­actions as dashed lines.
[Figure 4]
Figure 4
Crystal packing in (II)[link] showing inter­molecular hydrogen-bonding inter­actions as dashed lines.

4. Database survey

Along with 2-(3-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]), we have also previously reported the structure of the non-nitro-substituted analog 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]).

5. Synthesis and crystallization

The syntheses were achieved in the manner previously reported, by condensation of thio­salicylic acid with a diaryl imine (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]), as follows:

A two-necked 25 ml round-bottomed flask was oven-dried, cooled under N2, and charged with a stir bar and the imine (6 mmol). Tetra­hydro­furan (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added after which thio­salicylic acid (0.93 g, 6 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxa­tri­phospho­rinane 2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50% w/w; 7.3 ml, 12 mmol) was added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous fraction was then extracted twice with di­chloro­methane. The organic fractions were combined and washed with saturated aqueous solutions of sodium bicarbonate and then saturated sodium chloride. The organic fraction was dried over sodium sulfate and concentrated under vacuum. The crude solid was chromatographed on 30 g flash silica gel and then recrystallized as described below.

(I): 2-(4-Nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one: Recrystallized twice, first from ethanol and then from hexa­nes. Yield: 0.162 g (7.4%); m.p. 453–456 K. Rf = 0.55 (40% ethyl acetate/hexa­nes). Crystals for X-ray crystallography were grown by slow evaporation from ethanol.

(II): 2-(2-Nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzothia­zin-4-one: Recrystallized from ethanol. Yield: 0.301 g (13.8%); m.p. 445–450 K. Rf = 0.33 (30% ethyl acetate/hexa­nes). Crystals for X-ray crystallography were grown by slow evaporation from ethyl acetate.

6. Refinement details

Crystal data, data collection and structure refinement details for structures (I)[link] and (II)[link] are summarized in Table 3[link]. The H atoms were placed geometrically, with C—H = 0.93–0.97 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H14N2O3S C20H14N2O3S
Mr 362.39 362.39
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 298 298
a, b, c (Å) 8.1787 (12), 9.6190 (14), 12.0881 (18) 10.7396 (19), 11.778 (2), 13.532 (2)
α, β, γ (°) 73.673 (3), 71.158 (3), 86.167 (3) 90, 96.933 (3), 90
V3) 863.4 (2) 1699.2 (5)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.21 0.21
Crystal size (mm) 0.22 × 0.20 × 0.11 0.24 × 0.13 × 0.13
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.980 0.951, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 6717, 4134, 3740 15447, 4192, 3307
Rint 0.011 0.027
(sin θ/λ)max−1) 0.667 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.04 0.051, 0.128, 1.03
No. of reflections 4134 4192
No. of parameters 235 235
H-atom treatment H-atom parameters constrained H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.27, −0.22 0.32, −0.24
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: SMART (Bruker, 2001). Cell refinement: SAINT (Bruker, 2001) for (I); SMART (Bruker, 2001) for (II). For both compounds, data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009). Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009) for (I); SHELXTL (Sheldrick, 2008) for (II).

(I) 2-(4-Nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one top
Crystal data top
C20H14N2O3SZ = 2
Mr = 362.39F(000) = 376
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Melting point = 453–456 K
a = 8.1787 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6190 (14) ÅCell parameters from 4358 reflections
c = 12.0881 (18) Åθ = 2.5–28.3°
α = 73.673 (3)°µ = 0.21 mm1
β = 71.158 (3)°T = 298 K
γ = 86.167 (3)°Block, colorless
V = 863.4 (2) Å30.22 × 0.20 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4134 independent reflections
Radiation source: fine-focus sealed tube3740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS;Bruker, 2001)
k = 1212
Tmin = 0.944, Tmax = 0.980l = 1516
6717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1897P]
where P = (Fo2 + 2Fc2)/3
4134 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40466 (16)0.89852 (13)0.24333 (11)0.0341 (2)
H10.49940.95380.17500.041*
C20.24767 (17)0.93163 (15)0.44754 (11)0.0391 (3)
C30.20773 (17)0.77262 (15)0.49057 (12)0.0410 (3)
C40.0634 (2)0.7216 (2)0.59206 (15)0.0564 (4)
H40.00950.78690.62690.068*
C50.0280 (2)0.5748 (2)0.64110 (17)0.0680 (5)
H50.06950.54180.70810.082*
C60.1362 (3)0.47728 (19)0.59128 (18)0.0648 (5)
H60.11300.37840.62620.078*
C70.2786 (2)0.52435 (16)0.49030 (16)0.0524 (4)
H70.35060.45770.45660.063*
C80.31425 (17)0.67210 (15)0.43888 (12)0.0401 (3)
C90.26990 (16)0.87025 (13)0.18964 (11)0.0341 (2)
C100.32579 (18)0.81159 (17)0.09111 (13)0.0453 (3)
H100.44210.79160.06100.054*
C110.2116 (2)0.78271 (18)0.03749 (14)0.0506 (4)
H110.24900.74270.02790.061*
C120.03947 (18)0.81485 (15)0.08353 (13)0.0426 (3)
C130.01978 (17)0.87506 (15)0.17920 (12)0.0417 (3)
H130.13570.89700.20750.050*
C140.09643 (17)0.90258 (14)0.23300 (12)0.0382 (3)
H140.05830.94280.29820.046*
C150.40376 (17)1.13574 (13)0.28246 (11)0.0365 (3)
C160.5298 (2)1.18389 (18)0.31737 (16)0.0568 (4)
H160.57491.12110.37360.068*
C170.5879 (3)1.3269 (2)0.26738 (18)0.0690 (5)
H170.67111.36060.29150.083*
C180.5242 (3)1.41946 (17)0.18278 (15)0.0614 (4)
H180.56501.51500.14920.074*
C190.4004 (2)1.37082 (17)0.14789 (14)0.0547 (4)
H190.35711.43360.09060.066*
C200.33929 (19)1.22879 (16)0.19738 (12)0.0440 (3)
H200.25511.19610.17350.053*
N10.34692 (14)0.98628 (11)0.32873 (9)0.0368 (2)
N20.08292 (19)0.78339 (17)0.02700 (13)0.0568 (3)
O10.19567 (15)1.00925 (12)0.51528 (9)0.0529 (3)
O20.22860 (15)0.82895 (17)0.05535 (12)0.0707 (4)
O30.0330 (2)0.7167 (3)0.0480 (2)0.1181 (8)
S10.49691 (4)0.73128 (4)0.31028 (3)0.04094 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (6)0.0353 (6)0.0318 (6)0.0012 (5)0.0101 (5)0.0094 (5)
C20.0393 (6)0.0450 (7)0.0332 (6)0.0048 (5)0.0138 (5)0.0093 (5)
C30.0388 (6)0.0456 (7)0.0347 (6)0.0016 (5)0.0123 (5)0.0041 (5)
C40.0453 (8)0.0621 (9)0.0467 (8)0.0013 (7)0.0056 (6)0.0021 (7)
C50.0507 (9)0.0703 (11)0.0587 (10)0.0111 (8)0.0054 (8)0.0090 (9)
C60.0646 (10)0.0487 (9)0.0688 (11)0.0133 (8)0.0243 (9)0.0098 (8)
C70.0548 (9)0.0413 (7)0.0595 (9)0.0001 (6)0.0244 (7)0.0035 (6)
C80.0381 (6)0.0409 (7)0.0405 (7)0.0000 (5)0.0170 (5)0.0046 (5)
C90.0367 (6)0.0336 (6)0.0319 (6)0.0023 (5)0.0120 (5)0.0079 (5)
C100.0407 (7)0.0593 (8)0.0430 (7)0.0136 (6)0.0167 (6)0.0241 (6)
C110.0530 (8)0.0646 (9)0.0479 (8)0.0154 (7)0.0239 (7)0.0306 (7)
C120.0445 (7)0.0454 (7)0.0425 (7)0.0000 (6)0.0212 (6)0.0102 (6)
C130.0340 (6)0.0467 (7)0.0407 (7)0.0005 (5)0.0102 (5)0.0079 (6)
C140.0374 (6)0.0417 (6)0.0340 (6)0.0014 (5)0.0080 (5)0.0118 (5)
C150.0420 (6)0.0358 (6)0.0334 (6)0.0015 (5)0.0128 (5)0.0115 (5)
C160.0738 (11)0.0524 (8)0.0566 (9)0.0065 (8)0.0390 (8)0.0114 (7)
C170.0899 (13)0.0618 (10)0.0694 (11)0.0207 (9)0.0350 (10)0.0233 (9)
C180.0889 (13)0.0397 (7)0.0505 (9)0.0095 (8)0.0105 (8)0.0156 (7)
C190.0682 (10)0.0441 (8)0.0421 (8)0.0071 (7)0.0120 (7)0.0044 (6)
C200.0447 (7)0.0478 (7)0.0372 (7)0.0013 (6)0.0141 (6)0.0070 (6)
N10.0433 (6)0.0359 (5)0.0319 (5)0.0005 (4)0.0117 (4)0.0104 (4)
N20.0553 (8)0.0679 (9)0.0579 (8)0.0003 (6)0.0305 (7)0.0190 (7)
O10.0624 (7)0.0565 (6)0.0385 (5)0.0077 (5)0.0104 (5)0.0191 (5)
O20.0425 (6)0.1119 (11)0.0615 (7)0.0054 (6)0.0213 (5)0.0225 (7)
O30.1007 (13)0.1719 (19)0.1604 (18)0.0508 (12)0.0875 (13)0.1248 (17)
S10.03605 (18)0.04201 (19)0.04357 (19)0.00672 (13)0.01346 (14)0.01027 (14)
Geometric parameters (Å, º) top
C1—N11.4570 (15)C11—C121.386 (2)
C1—C91.5203 (17)C11—H110.9300
C1—S11.8200 (13)C12—C131.373 (2)
C1—H10.9800C12—N21.4695 (18)
C2—O11.2186 (17)C13—C141.3878 (19)
C2—N11.3702 (17)C13—H130.9300
C2—C31.4921 (19)C14—H140.9300
C3—C41.394 (2)C15—C201.3807 (19)
C3—C81.400 (2)C15—C161.3817 (19)
C4—C51.379 (3)C15—N11.4371 (16)
C4—H40.9300C16—C171.385 (2)
C5—C61.374 (3)C16—H160.9300
C5—H50.9300C17—C181.371 (3)
C6—C71.376 (3)C17—H170.9300
C6—H60.9300C18—C191.368 (3)
C7—C81.390 (2)C18—H180.9300
C7—H70.9300C19—C201.383 (2)
C8—S11.7574 (14)C19—H190.9300
C9—C141.3916 (18)C20—H200.9300
C9—C101.3920 (18)N2—O31.205 (2)
C10—C111.377 (2)N2—O21.2166 (19)
C10—H100.9300
N1—C1—C9114.94 (10)C12—C11—H11120.9
N1—C1—S1110.58 (8)C13—C12—C11122.37 (12)
C9—C1—S1111.83 (8)C13—C12—N2119.26 (13)
N1—C1—H1106.3C11—C12—N2118.37 (13)
C9—C1—H1106.3C12—C13—C14118.81 (13)
S1—C1—H1106.3C12—C13—H13120.6
O1—C2—N1121.47 (13)C14—C13—H13120.6
O1—C2—C3121.52 (12)C13—C14—C9120.22 (12)
N1—C2—C3117.00 (11)C13—C14—H14119.9
C4—C3—C8118.67 (14)C9—C14—H14119.9
C4—C3—C2118.08 (13)C20—C15—C16120.19 (13)
C8—C3—C2123.11 (12)C20—C15—N1119.55 (12)
C5—C4—C3120.44 (17)C16—C15—N1120.15 (12)
C5—C4—H4119.8C15—C16—C17119.06 (15)
C3—C4—H4119.8C15—C16—H16120.5
C6—C5—C4120.23 (16)C17—C16—H16120.5
C6—C5—H5119.9C18—C17—C16120.85 (16)
C4—C5—H5119.9C18—C17—H17119.6
C5—C6—C7120.67 (16)C16—C17—H17119.6
C5—C6—H6119.7C19—C18—C17119.80 (15)
C7—C6—H6119.7C19—C18—H18120.1
C6—C7—C8119.64 (16)C17—C18—H18120.1
C6—C7—H7120.2C18—C19—C20120.37 (15)
C8—C7—H7120.2C18—C19—H19119.8
C7—C8—C3120.31 (14)C20—C19—H19119.8
C7—C8—S1119.34 (12)C15—C20—C19119.72 (14)
C3—C8—S1120.34 (10)C15—C20—H20120.1
C14—C9—C10119.35 (12)C19—C20—H20120.1
C14—C9—C1123.12 (11)C2—N1—C15120.70 (10)
C10—C9—C1117.53 (11)C2—N1—C1123.15 (11)
C11—C10—C9121.02 (13)C15—N1—C1116.13 (10)
C11—C10—H10119.5O3—N2—O2122.84 (14)
C9—C10—H10119.5O3—N2—C12118.39 (15)
C10—C11—C12118.22 (13)O2—N2—C12118.73 (14)
C10—C11—H11120.9C8—S1—C196.00 (6)
O1—C2—C3—C422.9 (2)C20—C15—C16—C171.1 (3)
N1—C2—C3—C4157.74 (13)N1—C15—C16—C17177.15 (16)
O1—C2—C3—C8152.79 (14)C15—C16—C17—C181.2 (3)
N1—C2—C3—C826.57 (18)C16—C17—C18—C190.7 (3)
C8—C3—C4—C50.8 (2)C17—C18—C19—C200.1 (3)
C2—C3—C4—C5175.10 (15)C16—C15—C20—C190.5 (2)
C3—C4—C5—C60.9 (3)N1—C15—C20—C19176.61 (13)
C4—C5—C6—C71.6 (3)C18—C19—C20—C150.0 (2)
C5—C6—C7—C80.6 (3)O1—C2—N1—C154.6 (2)
C6—C7—C8—C31.1 (2)C3—C2—N1—C15174.72 (11)
C6—C7—C8—S1179.73 (13)O1—C2—N1—C1176.96 (12)
C4—C3—C8—C71.8 (2)C3—C2—N1—C13.67 (18)
C2—C3—C8—C7173.91 (13)C20—C15—N1—C2112.20 (14)
C4—C3—C8—S1179.59 (11)C16—C15—N1—C271.69 (18)
C2—C3—C8—S14.74 (18)C20—C15—N1—C169.30 (16)
N1—C1—C9—C1410.83 (17)C16—C15—N1—C1106.80 (15)
S1—C1—C9—C14116.32 (12)C9—C1—N1—C279.64 (15)
N1—C1—C9—C10167.99 (12)S1—C1—N1—C248.15 (14)
S1—C1—C9—C1064.86 (14)C9—C1—N1—C15101.90 (12)
C14—C9—C10—C111.2 (2)S1—C1—N1—C15130.31 (10)
C1—C9—C10—C11179.93 (13)C13—C12—N2—O3172.21 (19)
C9—C10—C11—C120.6 (2)C11—C12—N2—O38.0 (3)
C10—C11—C12—C130.6 (2)C13—C12—N2—O29.7 (2)
C10—C11—C12—N2179.65 (14)C11—C12—N2—O2170.08 (16)
C11—C12—C13—C141.1 (2)C7—C8—S1—C1148.50 (12)
N2—C12—C13—C14179.16 (12)C3—C8—S1—C132.84 (12)
C12—C13—C14—C90.4 (2)N1—C1—S1—C856.20 (9)
C10—C9—C14—C130.7 (2)C9—C1—S1—C873.27 (9)
C1—C9—C14—C13179.49 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 and C3–C8, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O3i0.932.683.468 (2)143
C1—H1···O2ii0.982.653.2851 (18)123
C14—H14···O1iii0.932.653.4886 (17)150
C11—H11···Cg1iv0.932.853.646 (2)144
C17—H17···Cg2v0.932.773.630 (2)154
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+2, z; (v) x+1, y+2, z+1.
(II) 2-(2-Nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one top
Crystal data top
C20H14N2O3SF(000) = 752
Mr = 362.39Dx = 1.417 Mg m3
Monoclinic, P21/nMelting point = 445–450 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.7396 (19) ÅCell parameters from 4222 reflections
b = 11.778 (2) Åθ = 2.3–28.2°
c = 13.532 (2) ŵ = 0.21 mm1
β = 96.933 (3)°T = 298 K
V = 1699.2 (5) Å3Block, colorless
Z = 40.24 × 0.13 × 0.13 mm
Data collection top
Bruker CCD area-detector
diffractometer
4192 independent reflections
Radiation source: fine-focus sealed tube3307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1514
Tmin = 0.951, Tmax = 0.973l = 1717
15447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
4192 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28981 (14)0.46215 (14)0.18506 (13)0.0331 (4)
H10.28340.54260.20220.040*
C20.46574 (15)0.33061 (16)0.16797 (14)0.0397 (4)
C30.37791 (15)0.26178 (15)0.09805 (13)0.0366 (4)
C40.40908 (18)0.14818 (16)0.08454 (14)0.0436 (4)
H40.47800.11690.12330.052*
C50.3393 (2)0.08211 (18)0.01489 (16)0.0522 (5)
H50.35920.00590.00820.063*
C60.2394 (2)0.12935 (19)0.04536 (16)0.0533 (5)
H60.19430.08530.09420.064*
C70.20612 (18)0.24112 (18)0.03363 (14)0.0468 (5)
H70.13880.27230.07440.056*
C80.27389 (16)0.30731 (15)0.03961 (13)0.0374 (4)
C90.21338 (14)0.39669 (14)0.25355 (12)0.0335 (4)
C100.27005 (18)0.31979 (15)0.32244 (14)0.0429 (4)
H100.35630.30910.32700.051*
C110.2016 (2)0.25840 (18)0.38472 (14)0.0522 (5)
H110.24240.20820.43090.063*
C120.0733 (2)0.2715 (2)0.37837 (16)0.0591 (6)
H120.02740.22960.41960.071*
C130.0137 (2)0.3465 (2)0.31115 (16)0.0545 (5)
H130.07290.35520.30600.065*
C140.08287 (16)0.40890 (17)0.25134 (13)0.0402 (4)
C150.50767 (15)0.51223 (15)0.25360 (13)0.0353 (4)
C160.62065 (16)0.53924 (16)0.21859 (14)0.0408 (4)
H160.64290.50450.16150.049*
C170.69952 (17)0.61808 (18)0.26934 (15)0.0474 (5)
H170.77540.63580.24650.057*
C180.66703 (19)0.67052 (19)0.35309 (16)0.0533 (5)
H180.72070.72340.38680.064*
C190.55443 (19)0.6444 (2)0.38714 (16)0.0545 (5)
H190.53190.68050.44350.065*
C200.47462 (17)0.56458 (17)0.33784 (15)0.0455 (5)
H200.39930.54650.36150.055*
N10.42334 (12)0.43381 (12)0.19877 (11)0.0357 (3)
N20.01309 (14)0.49390 (17)0.18749 (13)0.0497 (4)
O10.57182 (12)0.29780 (12)0.19525 (12)0.0591 (4)
O20.06296 (14)0.58460 (14)0.17327 (12)0.0602 (4)
O30.09447 (14)0.47116 (19)0.15352 (15)0.0854 (6)
S10.22755 (4)0.44863 (4)0.05436 (3)0.04088 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (7)0.0318 (9)0.0379 (9)0.0023 (6)0.0007 (6)0.0011 (7)
C20.0333 (8)0.0393 (10)0.0466 (10)0.0038 (7)0.0054 (7)0.0010 (8)
C30.0377 (8)0.0358 (9)0.0373 (9)0.0005 (7)0.0088 (7)0.0009 (7)
C40.0498 (10)0.0381 (10)0.0446 (10)0.0029 (8)0.0120 (8)0.0015 (8)
C50.0664 (13)0.0383 (11)0.0544 (12)0.0044 (9)0.0179 (10)0.0094 (9)
C60.0589 (12)0.0542 (13)0.0473 (11)0.0127 (10)0.0090 (9)0.0137 (10)
C70.0466 (10)0.0545 (12)0.0391 (10)0.0037 (9)0.0039 (8)0.0051 (9)
C80.0383 (8)0.0416 (10)0.0339 (9)0.0012 (7)0.0104 (7)0.0013 (7)
C90.0336 (8)0.0312 (9)0.0353 (8)0.0002 (6)0.0031 (6)0.0078 (7)
C100.0483 (10)0.0380 (10)0.0419 (10)0.0031 (8)0.0039 (8)0.0018 (8)
C110.0805 (14)0.0378 (11)0.0394 (10)0.0037 (10)0.0124 (10)0.0033 (8)
C120.0815 (15)0.0509 (13)0.0504 (12)0.0203 (11)0.0305 (11)0.0108 (10)
C130.0473 (10)0.0632 (14)0.0563 (12)0.0125 (10)0.0193 (9)0.0170 (11)
C140.0364 (8)0.0436 (10)0.0408 (10)0.0010 (7)0.0056 (7)0.0112 (8)
C150.0299 (7)0.0355 (9)0.0392 (9)0.0010 (7)0.0010 (6)0.0030 (7)
C160.0350 (8)0.0454 (11)0.0422 (10)0.0016 (7)0.0050 (7)0.0013 (8)
C170.0337 (8)0.0512 (12)0.0565 (12)0.0090 (8)0.0028 (8)0.0037 (9)
C180.0478 (11)0.0530 (13)0.0565 (12)0.0126 (9)0.0045 (9)0.0073 (10)
C190.0520 (11)0.0595 (13)0.0516 (12)0.0069 (10)0.0049 (9)0.0183 (10)
C200.0382 (9)0.0511 (12)0.0479 (11)0.0049 (8)0.0081 (8)0.0060 (9)
N10.0272 (6)0.0349 (8)0.0444 (8)0.0005 (5)0.0015 (6)0.0035 (6)
N20.0339 (8)0.0658 (12)0.0491 (10)0.0129 (8)0.0040 (7)0.0089 (9)
O10.0378 (7)0.0496 (9)0.0862 (11)0.0134 (6)0.0069 (7)0.0107 (8)
O20.0572 (9)0.0487 (9)0.0732 (11)0.0146 (7)0.0014 (7)0.0018 (8)
O30.0352 (8)0.1241 (17)0.0925 (14)0.0023 (9)0.0104 (8)0.0063 (12)
S10.0424 (2)0.0428 (3)0.0361 (2)0.00758 (19)0.00063 (18)0.00295 (19)
Geometric parameters (Å, º) top
C1—N11.462 (2)C11—C121.379 (3)
C1—C91.520 (2)C11—H110.9300
C1—S11.8207 (17)C12—C131.370 (3)
C1—H10.9800C12—H120.9300
C2—O11.217 (2)C13—C141.375 (3)
C2—N11.380 (2)C13—H130.9300
C2—C31.492 (2)C14—N21.468 (3)
C3—C81.396 (2)C15—C201.380 (3)
C3—C41.397 (3)C15—C161.392 (2)
C4—C51.373 (3)C15—N11.436 (2)
C4—H40.9300C16—C171.382 (3)
C5—C61.384 (3)C16—H160.9300
C5—H50.9300C17—C181.372 (3)
C6—C71.378 (3)C17—H170.9300
C6—H60.9300C18—C191.380 (3)
C7—C81.395 (3)C18—H180.9300
C7—H70.9300C19—C201.388 (3)
C8—S11.7557 (19)C19—H190.9300
C9—C101.387 (2)C20—H200.9300
C9—C141.406 (2)N2—O31.220 (2)
C10—C111.386 (3)N2—O21.221 (2)
C10—H100.9300
N1—C1—C9113.60 (14)C10—C11—H11119.9
N1—C1—S1110.05 (11)C13—C12—C11119.80 (19)
C9—C1—S1112.70 (11)C13—C12—H12120.1
N1—C1—H1106.7C11—C12—H12120.1
C9—C1—H1106.7C12—C13—C14119.52 (19)
S1—C1—H1106.7C12—C13—H13120.2
O1—C2—N1121.25 (16)C14—C13—H13120.2
O1—C2—C3121.10 (16)C13—C14—C9122.74 (19)
N1—C2—C3117.63 (14)C13—C14—N2115.91 (17)
C8—C3—C4118.82 (17)C9—C14—N2121.29 (17)
C8—C3—C2123.50 (16)C20—C15—C16120.06 (16)
C4—C3—C2117.42 (16)C20—C15—N1120.35 (15)
C5—C4—C3120.90 (19)C16—C15—N1119.52 (16)
C5—C4—H4119.6C17—C16—C15119.45 (18)
C3—C4—H4119.6C17—C16—H16120.3
C4—C5—C6119.78 (19)C15—C16—H16120.3
C4—C5—H5120.1C18—C17—C16120.73 (18)
C6—C5—H5120.1C18—C17—H17119.6
C7—C6—C5120.66 (19)C16—C17—H17119.6
C7—C6—H6119.7C17—C18—C19119.73 (18)
C5—C6—H6119.7C17—C18—H18120.1
C6—C7—C8119.68 (19)C19—C18—H18120.1
C6—C7—H7120.2C18—C19—C20120.38 (19)
C8—C7—H7120.2C18—C19—H19119.8
C7—C8—C3120.08 (17)C20—C19—H19119.8
C7—C8—S1118.68 (14)C15—C20—C19119.64 (18)
C3—C8—S1121.22 (13)C15—C20—H20120.2
C10—C9—C14115.90 (17)C19—C20—H20120.2
C10—C9—C1121.04 (15)C2—N1—C15120.81 (13)
C14—C9—C1123.06 (15)C2—N1—C1121.14 (14)
C11—C10—C9121.84 (19)C15—N1—C1117.81 (13)
C11—C10—H10119.1O3—N2—O2123.10 (19)
C9—C10—H10119.1O3—N2—C14117.7 (2)
C12—C11—C10120.2 (2)O2—N2—C14119.16 (15)
C12—C11—H11119.9C8—S1—C196.74 (8)
O1—C2—C3—C8158.54 (18)C1—C9—C14—N25.3 (3)
N1—C2—C3—C820.1 (3)C20—C15—C16—C170.5 (3)
O1—C2—C3—C415.5 (3)N1—C15—C16—C17177.50 (16)
N1—C2—C3—C4165.94 (16)C15—C16—C17—C180.6 (3)
C8—C3—C4—C50.2 (3)C16—C17—C18—C190.0 (3)
C2—C3—C4—C5174.05 (17)C17—C18—C19—C200.7 (3)
C3—C4—C5—C62.3 (3)C16—C15—C20—C190.2 (3)
C4—C5—C6—C72.5 (3)N1—C15—C20—C19176.78 (18)
C5—C6—C7—C80.1 (3)C18—C19—C20—C150.8 (3)
C6—C7—C8—C32.5 (3)O1—C2—N1—C158.0 (3)
C6—C7—C8—S1178.84 (15)C3—C2—N1—C15170.55 (15)
C4—C3—C8—C72.7 (3)O1—C2—N1—C1166.08 (17)
C2—C3—C8—C7171.27 (16)C3—C2—N1—C115.3 (2)
C4—C3—C8—S1178.72 (13)C20—C15—N1—C2133.66 (19)
C2—C3—C8—S17.3 (2)C16—C15—N1—C249.4 (2)
N1—C1—C9—C101.1 (2)C20—C15—N1—C140.7 (2)
S1—C1—C9—C10127.10 (15)C16—C15—N1—C1136.33 (17)
N1—C1—C9—C14178.54 (15)C9—C1—N1—C271.6 (2)
S1—C1—C9—C1452.5 (2)S1—C1—N1—C255.81 (19)
C14—C9—C10—C110.4 (3)C9—C1—N1—C15102.67 (17)
C1—C9—C10—C11179.25 (16)S1—C1—N1—C15129.90 (13)
C9—C10—C11—C121.0 (3)C13—C14—N2—O335.0 (3)
C10—C11—C12—C130.8 (3)C9—C14—N2—O3147.80 (19)
C11—C12—C13—C140.7 (3)C13—C14—N2—O2142.80 (19)
C12—C13—C14—C92.1 (3)C9—C14—N2—O234.4 (3)
C12—C13—C14—N2175.09 (18)C7—C8—S1—C1153.79 (14)
C10—C9—C14—C131.9 (3)C3—C8—S1—C127.57 (16)
C1—C9—C14—C13177.69 (17)N1—C1—S1—C855.42 (13)
C10—C9—C14—N2175.12 (16)C9—C1—S1—C872.50 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.583.234 (2)128
C6—H6···Cg3ii0.932.683.581 (2)163
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

We express gratitude to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan and acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 414-417
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds