metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(μ3-2-{[1,1-bis­­(hy­dr­oxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}phenolato)tetra­copper(II) ethanol monosolvate 2.5-hydrate

aCollege of Chemical Engineering, Huanggang Normal University and Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang 438000, People's Republic of China
*Correspondence e-mail: ranjw@126.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 25 March 2015; accepted 16 April 2015; online 22 April 2015)

The title compound, [Cu4(C11H13NO4)4]·CH3CH2OH·2.5H2O, is an electronically neutral tetra­nuclear copper(II) complex with a cubane-like Cu4O4 core. The complete molecule has point group symmetry 2. The phenol hy­droxy group and one of the three alcohol hy­droxy groups of each 2-{[tris­(hy­droxy­meth­yl)meth­yl]imino­meth­yl}phenol ligand are depro­ton­ated, while the secondary amine and the other two hy­droxy groups remain unchanged. The CuII atoms in the Cu4O4 core are connected by four μ3-O atoms from the deprotonated alcohol hy­droxy groups. Each of the penta­coordinated CuII ions has an NO4 distorted square-pyramidal environment through coordination to the tridentate Schiff base ligands. The Cu—N/O bond lengths span the range 1.902 (4)–1.955 (4) Å, similar to values reported for related structures. There are O—H⋯O hydrogen-bond inter­actions between the complex molecules and the ethanol and water solvent molecules, leading to the formation of a three-dimensional network. The ethanol solvent molecule is disordered about a twofold rotation axis. One of the two independent water molecules is also located on this twofold rotation axis and shows half-occupancy.

1. Related literature

For a related structure, see: Dong et al. (2007[Dong, J.-F., Li, L.-Z., Xu, H.-Y. & Wang, D.-Q. (2007). Acta Cryst. E63, m2300.]). For the synthesis of the 2-{[tris­(hy­droxy­meth­yl)meth­yl]imino­meth­yl}phenol ligand, see: Chumakov et al. (2000[Chumakov, Yu, M., Antosyak, B. Ya & Rissanen, K. (2000). Kristallografiya, 45, 1025-1029.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu4(C11H13NO4)4]·C2H6O·2.5H2O

  • Mr = 1238.16

  • Monoclinic, C 2/c

  • a = 24.651 (8) Å

  • b = 16.395 (5) Å

  • c = 18.423 (6) Å

  • β = 129.584 (3)°

  • V = 5738 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.38 × 0.15 × 0.14 mm

2.2. Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1994[Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.814

  • 16163 measured reflections

  • 5872 independent reflections

  • 3880 reflections with I > 2σ(I)

  • Rint = 0.071

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.188

  • S = 1.26

  • 5872 reflections

  • 366 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O8i 0.82 1.94 2.706 (6) 156
O7—H7⋯O9ii 0.82 1.98 2.769 (6) 162
O8—H8⋯O1iii 0.82 1.83 2.641 (6) 168
O9—H25⋯O3 0.82 2.15 2.925 (6) 159
O9—H26⋯O5 0.82 2.09 2.824 (6) 148
C12—H12⋯O7 0.93 2.31 3.011 (7) 132
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1994[Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Siemens, 1994[Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

Tri­hydroxy­methyl­amino­methane (2 mmol, 242 mg), NaOH (2mmol, 80mg) and salicyl­aldehyde (2mmol, 244mg) were dissolved in ethanol (30 ml). The mixture was stirred at 333 K for 1 hour to give a yellow solution. The solution was cooled to room temperature, and solution of Cu (ClO4)2·6H2O (2 mmol, 741 mg) and H2O (20ml) were added with stirring. The mixture was stirred for 12 h at room temperature. The resulting black-green solution was filtered and allowed to stand in air for 3 d, and blue block crystals were formed at the bottom of the vessel on slow evaporation of the solvent. Yield: 31.2%. Anal. Calcd. for C46H62Cu4N4O19: C 44.95, H 5.08, N 4.56. Found: C 45.21, H 4.87, and N 4.59. Selected IR data (cm-1): 3448.02(vs.), 2917.1(w), 1625.15(vs.), 1447.05(m), 1300.17(m), 1030.55(m), 769.31(s).

Refinement details top

H atoms attached to C were positioned geometrically and refined as riding atoms, with C—H = 0.97Å, and with Uiso(H) = 1.2Ueq(C,N). H atoms attached to O were located from a difference Fourier map and further idealized with O—H = 0.86Å and Uiso (H) = 1.5Ueq (O). The structure is completed by an ethanol solvate, disordered around a two-fold axis, and a depleted water molecule (occupation = 0.25 ) siting on the same symmetry element.

Related literature top

For a related structure, see: Dong et al. (2007). For the synthesis of the ligand, see: Chumakov et al. (2000).

Structure description top

For a related structure, see: Dong et al. (2007). For the synthesis of the ligand, see: Chumakov et al. (2000).

Synthesis and crystallization top

Tri­hydroxy­methyl­amino­methane (2 mmol, 242 mg), NaOH (2mmol, 80mg) and salicyl­aldehyde (2mmol, 244mg) were dissolved in ethanol (30 ml). The mixture was stirred at 333 K for 1 hour to give a yellow solution. The solution was cooled to room temperature, and solution of Cu (ClO4)2·6H2O (2 mmol, 741 mg) and H2O (20ml) were added with stirring. The mixture was stirred for 12 h at room temperature. The resulting black-green solution was filtered and allowed to stand in air for 3 d, and blue block crystals were formed at the bottom of the vessel on slow evaporation of the solvent. Yield: 31.2%. Anal. Calcd. for C46H62Cu4N4O19: C 44.95, H 5.08, N 4.56. Found: C 45.21, H 4.87, and N 4.59. Selected IR data (cm-1): 3448.02(vs.), 2917.1(w), 1625.15(vs.), 1447.05(m), 1300.17(m), 1030.55(m), 769.31(s).

Refinement details top

H atoms attached to C were positioned geometrically and refined as riding atoms, with C—H = 0.97Å, and with Uiso(H) = 1.2Ueq(C,N). H atoms attached to O were located from a difference Fourier map and further idealized with O—H = 0.86Å and Uiso (H) = 1.5Ueq (O). The structure is completed by an ethanol solvate, disordered around a two-fold axis, and a depleted water molecule (occupation = 0.25 ) siting on the same symmetry element.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1994).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: #1 - x, y,-z + 1/2.
[Figure 2] Fig. 2. The packing diagram for the title compound, viewed down the b axis, with hydrogen bonds drawn as dashed lines.
Tetrakis(µ3-2-{[1,1-bis(hydroxymethyl)-2-oxoethyl]iminomethyl}phenolato)tetracopper(II) ethanol monosolvate 2.5-hydrate top
Crystal data top
[Cu4(C11H13NO4)4]·C2H6O·2.5H2OF(000) = 2552
Mr = 1238.16Dx = 1.433 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4536 reflections
a = 24.651 (8) Åθ = 2.2–26.5°
b = 16.395 (5) ŵ = 1.53 mm1
c = 18.423 (6) ÅT = 293 K
β = 129.584 (3)°Block, blue
V = 5738 (3) Å30.38 × 0.15 × 0.14 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
5872 independent reflections
Radiation source: fine-focus sealed tube3880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Siemens, 1994)
h = 3030
Tmin = 0.594, Tmax = 0.814k = 2020
16163 measured reflectionsl = 1823
Refinement top
Refinement on F296 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.0727P)2 + 11.6375P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
5872 reflectionsΔρmax = 1.39 e Å3
366 parametersΔρmin = 0.52 e Å3
Crystal data top
[Cu4(C11H13NO4)4]·C2H6O·2.5H2OV = 5738 (3) Å3
Mr = 1238.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.651 (8) ŵ = 1.53 mm1
b = 16.395 (5) ÅT = 293 K
c = 18.423 (6) Å0.38 × 0.15 × 0.14 mm
β = 129.584 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5872 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1994)
3880 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.814Rint = 0.071
16163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05896 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0727P)2 + 11.6375P]
where P = (Fo2 + 2Fc2)/3
5872 reflectionsΔρmax = 1.39 e Å3
366 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08791 (3)0.48191 (4)0.34803 (5)0.0293 (2)
Cu20.01820 (3)0.35451 (4)0.32582 (4)0.0285 (2)
N10.0942 (2)0.5886 (3)0.3980 (3)0.0283 (10)
N20.0725 (2)0.2569 (3)0.2943 (3)0.0311 (10)
O10.1630 (2)0.4990 (2)0.3454 (3)0.0421 (10)
O20.00633 (18)0.4701 (2)0.3401 (2)0.0274 (8)
O30.1445 (2)0.5896 (3)0.5842 (3)0.0431 (10)
H30.14750.58260.63070.065*
O40.0068 (3)0.7335 (3)0.3315 (4)0.0668 (14)
H40.03800.72630.32790.100*
O50.05125 (19)0.3281 (2)0.4566 (3)0.0352 (9)
O60.07677 (18)0.3689 (2)0.3098 (2)0.0288 (8)
O70.2014 (2)0.1378 (3)0.1896 (3)0.0559 (13)
H70.23430.10850.14900.084*
O80.1622 (2)0.3852 (3)0.2567 (3)0.0437 (10)
H80.16850.42020.22030.066*
O90.1703 (2)0.4295 (3)0.5413 (3)0.0517 (12)
H250.16370.46720.56410.077*
H260.14800.38910.53540.077*
C10.1359 (3)0.6463 (3)0.4117 (4)0.0338 (13)
H10.13730.69380.44040.041*
C20.1799 (3)0.6426 (4)0.3860 (4)0.0351 (13)
C30.1902 (3)0.5706 (4)0.3526 (4)0.0374 (14)
C40.2337 (4)0.5775 (4)0.3272 (5)0.0548 (18)
H4A0.24170.53170.30540.066*
C50.2641 (4)0.6503 (5)0.3342 (5)0.063 (2)
H50.29270.65270.31760.076*
C60.2532 (4)0.7202 (5)0.3653 (5)0.0540 (18)
H60.27350.76940.36870.065*
C70.2118 (3)0.7157 (4)0.3912 (4)0.0434 (15)
H7A0.20470.76250.41270.052*
C80.0459 (3)0.6023 (3)0.4181 (4)0.0295 (12)
C90.0123 (3)0.5188 (3)0.4082 (4)0.0302 (12)
H9A0.04120.49090.46840.036*
H9B0.03390.52730.38970.036*
C100.0834 (3)0.6367 (3)0.5163 (4)0.0345 (13)
H10A0.09670.69290.51870.041*
H10B0.05180.63580.53090.041*
C110.0139 (3)0.6587 (4)0.3433 (4)0.0394 (14)
H11A0.04220.63010.28350.047*
H11B0.04380.66930.35950.047*
C120.0555 (3)0.1969 (4)0.3501 (4)0.0424 (15)
H120.08720.15380.32700.051*
C130.0094 (3)0.1915 (4)0.4464 (4)0.0431 (15)
C140.0587 (3)0.2560 (3)0.4948 (4)0.0321 (12)
C150.1180 (3)0.2426 (4)0.5885 (4)0.0451 (15)
H150.15150.28360.62170.054*
C160.1276 (4)0.1699 (5)0.6327 (5)0.061 (2)
H160.16730.16290.69540.073*
C170.0800 (5)0.1079 (5)0.5863 (6)0.086 (3)
H170.08740.05880.61660.103*
C180.0216 (5)0.1191 (5)0.4954 (5)0.075 (3)
H180.01140.07730.46440.090*
C190.1419 (3)0.2622 (3)0.1992 (4)0.0309 (12)
C200.1297 (3)0.3087 (4)0.3618 (4)0.0345 (13)
H20A0.11610.27030.38780.041*
H20B0.17330.33440.41400.041*
C210.1754 (3)0.1801 (4)0.1510 (4)0.0435 (15)
H21A0.21360.18940.08450.052*
H21B0.14050.14650.15650.052*
C220.1909 (3)0.3110 (4)0.2085 (4)0.0407 (14)
H22A0.23480.32200.14600.049*
H22B0.20180.27770.24130.049*
O110.0841 (13)0.8666 (13)0.4287 (16)0.092 (4)0.25
H110.04910.85800.37400.137*0.25
C230.1211 (18)0.938 (2)0.4354 (19)0.092 (4)0.25
H23A0.16880.92370.46270.110*0.25
H23B0.12360.97790.47670.110*0.25
C240.0846 (18)0.977 (2)0.340 (2)0.091 (4)0.25
H24A0.11031.02410.34640.136*0.25
H24B0.08280.93800.29910.136*0.25
H24C0.03770.99210.31300.136*0.25
O11'0.1340 (13)1.0138 (14)0.4583 (16)0.091 (4)0.25
H11'0.17441.03160.49290.137*0.25
C23'0.1296 (19)0.9486 (19)0.403 (3)0.092 (4)0.25
H23C0.14500.89890.43960.110*0.25
H23D0.08040.94130.34810.110*0.25
C24'0.1686 (18)0.957 (2)0.370 (2)0.091 (4)0.25
H24D0.16120.90950.33370.137*0.25
H24E0.15301.00450.33080.137*0.25
H24F0.21790.96190.42260.137*0.25
O1W0.00001.0641 (15)0.25000.139 (8)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0273 (4)0.0300 (4)0.0381 (4)0.0048 (3)0.0244 (3)0.0062 (3)
Cu20.0228 (3)0.0298 (4)0.0287 (4)0.0038 (3)0.0144 (3)0.0006 (3)
N10.028 (2)0.030 (2)0.031 (2)0.004 (2)0.021 (2)0.0026 (19)
N20.027 (2)0.030 (2)0.032 (3)0.002 (2)0.017 (2)0.000 (2)
O10.041 (2)0.044 (2)0.061 (3)0.0134 (19)0.042 (2)0.017 (2)
O20.0236 (18)0.0312 (19)0.029 (2)0.0046 (16)0.0173 (16)0.0057 (15)
O30.039 (2)0.056 (3)0.029 (2)0.008 (2)0.0191 (19)0.0007 (19)
O40.075 (4)0.046 (3)0.095 (4)0.013 (3)0.062 (3)0.020 (3)
O50.026 (2)0.037 (2)0.031 (2)0.0034 (17)0.0135 (17)0.0042 (17)
O60.0212 (18)0.0306 (19)0.030 (2)0.0035 (15)0.0143 (16)0.0021 (16)
O70.052 (3)0.063 (3)0.048 (3)0.033 (2)0.030 (2)0.011 (2)
O80.057 (3)0.041 (2)0.045 (3)0.002 (2)0.038 (2)0.002 (2)
O90.037 (2)0.047 (3)0.065 (3)0.005 (2)0.029 (2)0.001 (2)
C10.033 (3)0.033 (3)0.030 (3)0.007 (2)0.018 (3)0.007 (2)
C20.029 (3)0.043 (3)0.031 (3)0.011 (3)0.018 (3)0.005 (3)
C30.029 (3)0.049 (4)0.039 (3)0.010 (3)0.024 (3)0.005 (3)
C40.057 (4)0.062 (4)0.073 (5)0.022 (4)0.054 (4)0.021 (4)
C50.066 (5)0.083 (6)0.069 (5)0.026 (4)0.056 (5)0.013 (4)
C60.045 (4)0.066 (5)0.048 (4)0.026 (4)0.028 (3)0.003 (4)
C70.047 (4)0.043 (3)0.042 (4)0.018 (3)0.029 (3)0.008 (3)
C80.031 (3)0.033 (3)0.029 (3)0.002 (2)0.022 (3)0.001 (2)
C90.027 (3)0.033 (3)0.035 (3)0.000 (2)0.022 (3)0.003 (2)
C100.035 (3)0.038 (3)0.035 (3)0.000 (3)0.024 (3)0.005 (3)
C110.038 (3)0.046 (3)0.040 (3)0.007 (3)0.027 (3)0.001 (3)
C120.038 (3)0.039 (3)0.041 (3)0.014 (3)0.021 (3)0.000 (3)
C130.038 (3)0.041 (3)0.036 (3)0.003 (3)0.017 (3)0.005 (3)
C140.026 (3)0.040 (3)0.030 (3)0.004 (2)0.017 (3)0.002 (2)
C150.036 (3)0.050 (4)0.037 (3)0.000 (3)0.018 (3)0.007 (3)
C160.051 (4)0.066 (5)0.039 (4)0.006 (4)0.016 (3)0.018 (4)
C170.084 (6)0.056 (5)0.056 (5)0.015 (5)0.016 (5)0.023 (4)
C180.076 (6)0.048 (4)0.056 (5)0.020 (4)0.020 (4)0.013 (4)
C190.024 (3)0.037 (3)0.030 (3)0.006 (2)0.016 (2)0.002 (2)
C200.030 (3)0.039 (3)0.035 (3)0.007 (3)0.021 (3)0.003 (3)
C210.039 (3)0.045 (3)0.041 (4)0.020 (3)0.023 (3)0.010 (3)
C220.032 (3)0.051 (4)0.042 (3)0.002 (3)0.025 (3)0.002 (3)
O110.072 (6)0.080 (6)0.075 (6)0.012 (5)0.025 (5)0.021 (5)
C230.072 (6)0.080 (6)0.075 (6)0.012 (5)0.025 (5)0.021 (5)
C240.072 (6)0.080 (6)0.075 (6)0.012 (5)0.026 (5)0.021 (5)
O11'0.073 (6)0.080 (6)0.075 (6)0.012 (5)0.026 (5)0.021 (5)
C23'0.072 (6)0.080 (6)0.075 (6)0.012 (5)0.025 (5)0.021 (5)
C24'0.072 (6)0.080 (6)0.075 (6)0.012 (5)0.026 (5)0.021 (5)
Geometric parameters (Å, º) top
Cu1—O11.902 (4)C9—H9B0.9700
Cu1—O21.931 (4)C10—H10A0.9700
Cu1—N11.936 (4)C10—H10B0.9700
Cu1—O61.939 (3)C11—H11A0.9700
Cu2—O51.915 (4)C11—H11B0.9700
Cu2—N21.924 (4)C12—C131.448 (8)
Cu2—O6i1.945 (4)C12—H120.9300
Cu2—O21.955 (4)C13—C181.402 (9)
N1—C11.298 (7)C13—C141.417 (8)
N1—C81.473 (6)C14—C151.395 (8)
N2—C121.285 (7)C15—C161.376 (9)
N2—C191.478 (7)C15—H150.9300
O1—C31.317 (7)C16—C171.365 (10)
O2—C91.413 (6)C16—H160.9300
O3—C101.425 (7)C17—C181.356 (10)
O3—H30.8200C17—H170.9300
O4—C111.398 (7)C18—H180.9300
O4—H40.8200C19—C211.532 (8)
O5—C141.328 (6)C19—C20i1.540 (7)
O6—C201.414 (6)C19—C221.546 (8)
O6—Cu2i1.945 (4)C20—C19i1.540 (7)
O7—C211.408 (7)C20—H20A0.9700
O7—H70.8200C20—H20B0.9700
O8—C221.403 (7)C21—H21A0.9700
O8—H80.8200C21—H21B0.9700
O9—H250.8200C22—H22A0.9700
O9—H260.8215C22—H22B0.9700
C1—C21.436 (8)O11—C231.446 (19)
C1—H10.9300O11—H110.8200
C2—C71.402 (8)C23—C241.512 (18)
C2—C31.427 (8)C23—H23A0.9700
C3—C41.422 (8)C23—H23B0.9700
C4—C51.371 (10)C24—H24A0.9600
C4—H4A0.9300C24—H24B0.9600
C5—C61.383 (10)C24—H24C0.9600
C5—H50.9300O11'—C23'1.437 (19)
C6—C71.376 (9)O11'—H11'0.8200
C6—H60.9300C23'—C24'1.433 (19)
C7—H7A0.9300C23'—H23C0.9700
C8—C101.522 (7)C23'—H23D0.9700
C8—C111.528 (8)C24'—H24D0.9600
C8—C91.549 (7)C24'—H24E0.9600
C9—H9A0.9700C24'—H24F0.9600
O1—Cu1—O2174.79 (17)C8—C11—H11B108.4
O1—Cu1—N195.44 (17)H11A—C11—H11B107.4
O2—Cu1—N183.71 (16)N2—C12—C13124.7 (5)
O1—Cu1—O692.64 (16)N2—C12—H12117.7
O2—Cu1—O688.70 (14)C13—C12—H12117.7
N1—Cu1—O6170.43 (17)C18—C13—C14118.7 (6)
O5—Cu2—N294.79 (17)C18—C13—C12117.1 (6)
O5—Cu2—O6i168.55 (16)C14—C13—C12124.1 (5)
N2—Cu2—O6i84.78 (16)O5—C14—C15118.5 (5)
O5—Cu2—O295.65 (15)O5—C14—C13123.9 (5)
N2—Cu2—O2160.56 (17)C15—C14—C13117.6 (5)
O6i—Cu2—O288.17 (14)C16—C15—C14121.2 (6)
C1—N1—C8120.5 (5)C16—C15—H15119.4
C1—N1—Cu1124.4 (4)C14—C15—H15119.4
C8—N1—Cu1115.2 (3)C17—C16—C15121.3 (7)
C12—N2—C19122.3 (5)C17—C16—H16119.3
C12—N2—Cu2125.9 (4)C15—C16—H16119.3
C19—N2—Cu2111.5 (3)C18—C17—C16119.0 (7)
C3—O1—Cu1124.8 (4)C18—C17—H17120.5
C9—O2—Cu1111.2 (3)C16—C17—H17120.5
C9—O2—Cu2121.0 (3)C17—C18—C13122.2 (7)
Cu1—O2—Cu2108.99 (17)C17—C18—H18118.9
C10—O3—H3109.5C13—C18—H18118.9
C11—O4—H4109.9N2—C19—C21115.1 (5)
C14—O5—Cu2125.4 (3)N2—C19—C20i106.1 (4)
C20—O6—Cu1124.4 (3)C21—C19—C20i107.1 (4)
C20—O6—Cu2i113.3 (3)N2—C19—C22107.2 (4)
Cu1—O6—Cu2i113.58 (17)C21—C19—C22110.5 (5)
C21—O7—H7109.3C20i—C19—C22110.8 (5)
C22—O8—H8109.5O6—C20—C19i112.0 (4)
H25—O9—H26110.0O6—C20—H20A109.2
N1—C1—C2125.2 (5)C19i—C20—H20A109.2
N1—C1—H1117.4O6—C20—H20B109.2
C2—C1—H1117.4C19i—C20—H20B109.2
C7—C2—C3119.4 (5)H20A—C20—H20B107.9
C7—C2—C1116.8 (5)O7—C21—C19113.0 (5)
C3—C2—C1123.8 (5)O7—C21—H21A109.0
O1—C3—C4118.8 (5)C19—C21—H21A109.0
O1—C3—C2124.1 (5)O7—C21—H21B109.0
C4—C3—C2117.1 (5)C19—C21—H21B109.0
C5—C4—C3121.3 (6)H21A—C21—H21B107.8
C5—C4—H4A119.4O8—C22—C19113.8 (4)
C3—C4—H4A119.4O8—C22—H22A108.8
C4—C5—C6121.4 (6)C19—C22—H22A108.8
C4—C5—H5119.3O8—C22—H22B108.8
C6—C5—H5119.3C19—C22—H22B108.8
C7—C6—C5118.9 (6)H22A—C22—H22B107.7
C7—C6—H6120.6C23—O11—H11110.8
C5—C6—H6120.6O11—C23—C24111.4 (18)
C6—C7—C2122.0 (6)O11—C23—H23A109.4
C6—C7—H7A119.0C24—C23—H23A109.4
C2—C7—H7A119.0O11—C23—H23B109.4
N1—C8—C10112.3 (4)C24—C23—H23B109.4
N1—C8—C11109.6 (4)H23A—C23—H23B108.0
C10—C8—C11110.8 (4)C23—C24—H24A109.5
N1—C8—C9107.0 (4)C23—C24—H24B109.5
C10—C8—C9110.0 (4)H24A—C24—H24B109.5
C11—C8—C9107.0 (4)C23—C24—H24C109.5
O2—C9—C8110.5 (4)H24A—C24—H24C109.5
O2—C9—H9A109.6H24B—C24—H24C109.5
C8—C9—H9A109.6C23'—O11'—H11'108.8
O2—C9—H9B109.6C24'—C23'—O11'118 (2)
C8—C9—H9B109.6C24'—C23'—H23C107.9
H9A—C9—H9B108.1O11'—C23'—H23C107.9
O3—C10—C8110.1 (4)C24'—C23'—H23D107.9
O3—C10—H10A109.6O11'—C23'—H23D107.9
C8—C10—H10A109.6H23C—C23'—H23D107.2
O3—C10—H10B109.6C23'—C24'—H24D109.5
C8—C10—H10B109.6C23'—C24'—H24E109.5
H10A—C10—H10B108.2H24D—C24'—H24E109.5
O4—C11—C8115.6 (5)C23'—C24'—H24F109.5
O4—C11—H11A108.4H24D—C24'—H24F109.5
C8—C11—H11A108.4H24E—C24'—H24F109.5
O4—C11—H11B108.4
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8ii0.821.942.706 (6)156
O7—H7···O9iii0.821.982.769 (6)162
O8—H8···O1i0.821.832.641 (6)168
O9—H25···O30.822.152.925 (6)159
O9—H26···O50.822.092.824 (6)148
C12—H12···O70.932.313.011 (7)132
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.821.942.706 (6)155.7
O7—H7···O9ii0.821.982.769 (6)161.9
O8—H8···O1iii0.821.832.641 (6)168.3
O9—H25···O30.822.152.925 (6)158.6
O9—H26···O50.822.092.824 (6)147.9
C12—H12···O70.932.313.011 (7)132.1
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+1/2.
 

Acknowledgements

This research was supported by the Huangzhou Scholar Fund (grant No. hzxz005) and Natural Science Fund of Hubei Province (grant No. ZRY2014001941).

References

First citationChumakov, Yu, M., Antosyak, B. Ya & Rissanen, K. (2000). Kristallografiya, 45, 1025–1029.  Google Scholar
First citationDong, J.-F., Li, L.-Z., Xu, H.-Y. & Wang, D.-Q. (2007). Acta Cryst. E63, m2300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds