research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[4-(1H-pyrrol-1-yl)phen­yl] ferrocene-1,1′-di­carboxyl­ate: a potential chemotherapeutic drug

aUniversity of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, Puerto Rico 00681, USA, and bUniversity of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
*Correspondence e-mail: enrique.melendez@upr.edu

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 2 April 2015; accepted 15 April 2015; online 22 April 2015)

The title iron(II) complex, [Fe(C16H12NO2)2], crystallizes in the ortho­rhom­bic space group Pbca with the Fe2+ cation positioned on an inversion center. The cyclo­penta­dienyl (Cp) rings adopt an anti conformation in contrast with other substituted ferrocenes in which the Cp rings appear in a nearly eclipsed conformation. The Cp and the aromatic rings are positioned out of the plane, with a twist angle of 70.20 (12)°, and the C(Cp)—C(CO) bond length is shorter than a typical C—C single bond, which suggests a partial double-bond character and delocalization with the Cp π system. The structure of the complex is compared to other functionalized ferrocenes synthesized in our laboratory.

1. Chemical context

The gold standard of treatment for breast cancer has traditionally been cisplatin, a metal-based agent. Its administration, alone or in combination with other drugs, is also highly effective against various other types of cancers, including ovarian, head and neck, bladder, testicular and lung cancers (Galanski et al., 2005[Galanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075-2094.]; Sandler et al., 2011[Sandler, A., Graham, C., Baggstrom, M., Herbst, R., Zergebel, C., Saito, K. & Jones, D. (2011). J. Thorac. Oncol. 6, 1400-1406.]). However, its clinical use suffers from major drawbacks, such as severe toxic side effects including neurotoxicity, hepatotoxicity, and nephrotoxicity (Pabla & Dong, 2008[Pabla, N. & Dong, Z. (2008). Kidney Int. 73, 994-1007.]), as well as a drug-resistance phenomenon which leads to unsuccessful treatment (Dempke et al., 2000[Dempke, W., Voigt, W., Grothey, A., Hill, B. T. & Schmoll, H. J. (2000). Anticancer Drugs, 11, 225-236.]). Consequently, other metal-based drugs have been investigated, among them ferrocenes (Köpf-Maier et al., 1984[Köpf-Maier, P., Köpf, H. & Neuse, E. W. (1984). J. Cancer Res. Clin. Oncol. 108, 336-340.]). Ferrocene has the versatility of easy functionalization providing a fertile field for structural modification and to study structure–activity relationship (SAR).

Our group has been working in this field for many years, leading to exciting and biologically active ferrocenes. A wide variety of pendant (functional) groups have been attached or linked to the Cp ring to tailor the anti-proliferative properties of ferrocene, many of them with great success (Braga & Silva, 2013[Braga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626-5639.]; Gasser et al., 2011[Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3-25.]; Jaouen & Metzler-Nolte, 2010[Jaouen, G. & Metzler-Nolte, N. (2010). Medicinal Organometallic Chemistry, pp. 81-117. Heidelberg, Dordrecht, London, New York: Springer-Verlag.]; Fouda et al., 2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]; Jaouen, 2006[Jaouen, G. (2006). Bioorganometallics, pp. 65-95. Weinheim: Wiley-VCH.]; van Staveren & Metzler-Nolte, 2004[Staveren, D. R. van & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5986.]; Nguyen et al., 2009[Nguyen, A., Top, S., Pigeon, P., Vessières, A., Hillard, E. A., Plamont, M.-A., Huché, M., Rigamonti, C. & Jaouen, G. (2009). Chem. Eur. J. 15, 684-696.]; Top et al., 2003[Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, & Jaouen, G. (2003). Chem. Eur. J. 9, 5223-5236.]; Vessières et al., 2005[Vessières, A., Top, S., Pigeon, P., Hillard, E., Boubeker, L., Spera, D. & Jaouen, G. (2005). J. Med. Chem. 48, 3937-3940.], 2006[Vessières, A., Top, S., Beck, W., Hillard, E. & Jaouen, G. (2006). Dalton Trans. pp. 529-541.]; Meléndez, 2012[Meléndez, E. (2012). Inorg. Chim. Acta, 393, 36-52.]; Vera et al., 2011[Vera, J. L., Gao, L. M., Santana, A., Matta, J. & Meléndez, E. (2011). Dalton Trans. 40, 9557-9565.], 2014[Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204-214.]). Lately, a new range of organic chemotherapeutic compounds have been studied using pyrrole derivatives. These pyrrole derivatives have revealed good anti-proliferative activity and an increase in membrane permeability, allowing the compounds to reach the nucleus (Ghorab et al., 2014[Ghorab, M. M., Alsaid, M. S., Ceruso, M., Nissan, Y. M. & Supuran, C. T. (2014). Bioorg. Med. Chem. 22, 3684-3695.]; Abou El Ella et al., 2008[Abou El Ella, D. A., Ghorab, M. M., Noaman, E., Heiba, H. I. & Khalil, A. I. (2008). Bioorg. Med. Chem. 16, 2391-2402.]; Chatzopoulou et al., 2014[Chatzopoulou, M., Patsilinakos, A., Vallianatou, T., Prnova, M. S., Žakelj, S., Ragno, R., Stefek, M., Kristl, A., Tsantili-Kakoulidou, A. & Demopoulos, V. J. (2014). Bioorg. Med. Chem. 22, 2194-2207.]; Mohamed et al., 2013[Mohamed, M. S., Kamel, R. & Abd El-hameed, R. H. (2013). Med. Chem. Res. 22, 2244-2252.]; Hassan et al., 2009[Hassan, S. M., El-Maghraby, A. A., Abdel Aal, M. M. & Bashandy, M. S. (2009). Phosphorus Sulfur Silicon, 184, 291-308.]; Esteves et al., 2010[Esteves, M. A., Ortet, O., Capelo, A., Supuran, C. T., Marques, S. M. & Santos, M. A. (2010). Bioorg. Med. Chem. Lett. 20, 3623-3627.]; Clark et al., 2007[Clark, M. P., George, K. M., Bookland, R. G., Chen, J., Laughlin, S. K., Thakur, K. D., Lee, W., Davis, J. R., Cabrera, E. J., Brugel, T. A., VanRens, J. C., Laufersweiler, M. J., Maier, J. A., Sabat, M. P., Golebiowski, A., Easwaran, V., Webster, M. E., De, B. & Zhang, G. (2007). Bioorg. Med. Chem. Lett. 17, 1250-1253.]; Merighi et al., 2003[Merighi, S., Mirandola, P., Varani, K., Gessi, S., Leung, E., Baraldi, P. G., Tabrizi, M. A. & Borea, P. A. A. (2003). Pharmacol. Ther. 100, 31-48.]). Therefore, we functionalized ferrocene with a pyrrole, 4-(1H-pyrrol-1-yl)phenol, obtaining three new ferrocenes: 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedi­carboxyl­ate, 1,4-(1H-pyrrol-1-yl)phenyl, 1′-carboxyl ferrocene­carboxyl­ate (Fc-(CO2-Ph-4-Py)CO2H) and 4-(1H-pyrrol-1-yl)phenyl ferro­cene­acetyl­ate (Fc-CH2CO2-Ph-4-Py). We investigated their biological activities on breast cancer cell line (MCF-7) and among these ferrocenes, 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedi­carboxyl­ate (I) was shown to be most active in this series (Pérez et al., 2015[Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471-479.]). Nevertheless, the solid-state structure of (I)[link] has been elusive (Pérez et al., 2015[Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471-479.]). The importance of this complex is the incorporation of pyrrole groups, which are derivatives of biologically active compounds, as well as pyrrole being an electrochemically active group precursor of polymeric mat­erial. In addition, ferrocene anti­cancer activity has been associated with its redox behavior and the capability to produce reactive oxygen species (ROS) (Acevedo et al., 2012[Acevedo, C. Y., Meléndez, E., Singh, S. P. & Ramirez-Vick, J. E. (2012). J. Cancer Sci. Ther. 4, 271-275.]; Kovjazin et al., 2003[Kovjazin, R., Eldar, T., Patya, M., Vanichkin, A., Lander, H. M. & Novogrodsky, A. (2003). FASEB J. 17, 467-469.]; Tabbi et al., 2002[Tabbì, G., Cassino, C., Cavigiolio, G., Colangelo, D., Ghiglia, A., Viano, I. & Osella, D. (2002). J. Med. Chem. 45, 5786-5796.]; Osella et al., 2005[Osella, D., Mahboobi, H., Colangelo, D., Cavigiolio, G., Vessières, A. & Jaouen, G. (2005). Inorg. Chim. Acta, 358, 1993-1998.]). Thus, the attachment of an electrochemically active group on ferrocene could potentiate the production of ROS and enhance its anti­cancer activity.

[Scheme 1]

Given that the solid-state structure of this complex is not available, we determined the crystal structure of bis­[4-(1H-pyrrol-1-yl)phen­yl] ferrocene-1,1′-di­carboxyl­ate, (I)[link]. Additionally, we compared the obtained crystal structure with other functionalized ferrocenes synthesized in our laboratory viz.: 4-bromo­phenyl (II) and 4-chloro­phenyl ferrocene­carboxyl­ate (III) (Vera et al., 2014[Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204-214.]), and 1,1′-methyl ferrocenedi­carboxyl­ate (IV) (Gao et al., 2009[Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, doi: 10.1155/2009/420784.]).

2. Structural commentary

The asymmetric unit contains one half-mol­ecule since Fe2+ lies on an inversion center, Fig. 1[link]. This symmetry is implied by the NMR data where only one set of signals were found for H2/H5 and H3/H4 of the Cp rings, as well as the H2/H6 and H3/H5 of the phenyl and H2/H5 and H3/H4 of the pyrrole groups. Consequently, the Cp rings adopt a perfect anti conformation. The average Fe—C(Cp) bond length is 2.044 (10) Å, which is very similar to that reported for ferrocene (Dunitz et al., 1956[Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373-375.]) and other structures previously reported by our lab (Vera et al., 2014[Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204-214.]; Gao et al., 2009[Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, doi: 10.1155/2009/420784.]). The Fe—C bond length of the substituted carbon [Fe—C1 2.032 (2) Å] is shorter that the remaining Fe—C bond lengths due to the inductive effect of the carboxyl­ate on the Cp ring. The twist angles between the Cp ring and the carboxyl­ate and the Cp ring and the aromatic ring are 14.4 (3)° (above the Cp plane) and 70.20 (12)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related to labelled ones by the symmetry operationx, −y, −z.

To put it in perspective, we compare (I)[link] with previously synthesized ferrocenes in our group containing only one Cp functionalized and a phenyl group attached to the carboxyl­ate, but with Br and Cl instead of pyrrole in the 4-position, (II) and (III) (CCDC 949002 and 949003, Vera et al., 2014[Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204-214.]). First, in the 4-bromo­phenyl and 4-chloro­phenyl derivatives, the Cp rings are positioned in a nearly eclipsed conformation and parallel with stagger angles < 3° and Cp tilt angles of 0.48–1.25°. In contrast, (I)[link] has a perfect anti conformation. The carbonyl carbon of (I)[link] has a distorted trigonal–planar geometry, analogous to the 4-chloro­phenyl and 4-bromo­phenyl ferrocene­carboxyl­ates. The twist angles between the Cp ring and the carboxyl­ate for 4-bromo and 4-chloro­phenyl ferrocene­carboxyl­ates (6.75–10.15°) are smaller than that of the subject complex, 14.4 (3)°. Additionally, as mentioned previously, the carbonyl oxygen of (I)[link] lies above the Cp plane whereas for the bromo and chloro derivatives, the carbonyl oxygens lie below the Cp plane. The twist angle between the Cp and the aromatic ring is 70.20 (12)° in (I)[link], while in (II) and (III) the two rings are positioned at higher angles, approaching a perpendicular position.

The average Fe—C(Cp*) bond lengths of the substituted Cp rings in the 4-bromo and 4-chloro­phenyl derivatives are identical, within experimental error, as in (I)[link] [2.044 (13) Å]. As mentioned before, the Fe—C bond length where the pendant group is attached is substanti­ally shorter than the remaining Fe—C(Cp) distances. The same bonding pattern is also observed for the 4-bromo and 4-chloro­phenyl ferrocene­carboxyl­ates. The C(Cp)—C(CO) bond length in (I)[link], C1—C6, is shorter than a typical C—C single bond, [1.473 (3) versus 1.54 Å (single bond); Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.]]. This suggests partial double-bond character and delocalization with the Cp π system in analogous manner to that for the 4-bromo and 4-chloro derivatives.

In the structure of the disubstituted ferrocene Fe(C5H4CO2CH3)2, (IV) (Gao et al., 2009[Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, doi: 10.1155/2009/420784.]), the average Fe—C(Cp) bond lengths are 2.048 (11)/2.049 (14) Å, similar to the title complex but the Cp rings adopt almost an eclipsed conformation with a stagger angle of 2.37° (Fig. 2[link]). In addition, the functional groups are not positioned perfectly anti to each other. The Fe—C(Cp)—C(CO) bond in (IV) [1.477 (4) Å] is notably shorter than a typical C—C single bond (1.54 Å), in a similar manner to the title complex, suggesting delocalization with the Cp π system.

[Figure 2]
Figure 2
A Newman projection of Fe(C5H4CO2CH3)2.

Finally, (I)[link] contains two π ring systems, 4-(1H-pyrrol-1-yl)phenyl, which in principle could be involved in intra­molecular ππ or C—H⋯π stacking similar to other 1,1′-disubstituted ferrocenes with an extended π ring system (Okabe et al., 2009[Okabe, T., Nakazaki, K., Igaue, T., Nakamura, N., Donnio, B., Guillon, D. & Gallani, J.-L. (2009). J. Appl. Cryst. 42, 63-68.]; Togni et al., 1994[Togni, A., Hobi, M., Rihs, G., Rist, G., Albinati, A., Zanello, P., Zech, D. & Keller, H. (1994). Organometallics, 13, 1224-1234.]; Gelin & Thummel, 1992[Gelin, F. & Thummel, R. P. (1992). J. Org. Chem. 57, 3780-3783.]). However, such ππ or C—H⋯π stacking is not observed in (I)[link] since the Cp rings adopt an anti conformation.

3. Synthesis and crystallization

The synthesis of (I)[link] was accomplished by treating 1,1′-ferrocenedi­carb­oxy­lic acid with oxalyl chloride according to our recently published procedure (Pérez et al., 2015[Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471-479.]). 1H NMR (500 MHz, CDCl3) (δ p.p.m.): 7.37 (2H, d, ph; 3J = 8.8 Hz), 7.25 (2H, d, py; 3J = 2.8 Hz), 7.03 (2H, dd, ph; 3J = 1.3 Hz), 6.34 (2H, dd, py; 3J = 1.6 Hz), 5.08 (2H, overlapping doublets, AA′, Cp), 4.64 (2H, overlapping doublets, BB′, Cp). 13CNMR (125 MHz, CDCl3) (δ p.p.m.): 169.0 (C=O), 148.3, 138.6, 122.9, 121.5, 119.5, 110.5, 73.4, 72.4, 72.0. Analysis calculated for C32H24O4FeN2: C, 69.05; H, 4.40; found: C, 68.62; H, 4.46.

Crystallization of (I)[link] was performed inside an NMR tube containing CD2Cl2 for a period of two weeks, obtaining block-shaped orange crystals suitable for X-ray diffraction.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned in idealized locations (C(6)—H = 0.95, C(5)—H = 1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C16H12NO2)2]
Mr 556.38
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 10.6386 (15), 7.3948 (10), 30.554 (4)
V3) 2403.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.28 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.833, 0.877
No. of measured, independent and observed [I > 2σ(I)] reflections 12444, 2999, 2247
Rint 0.077
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.02
No. of reflections 2999
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.62
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis[4-(1H-pyrrol-1-yl)phenyl] ferrocene-1,1'-dicarboxylate top
Crystal data top
[Fe(C16H12NO2)2]Dx = 1.537 Mg m3
Mr = 556.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2807 reflections
a = 10.6386 (15) Åθ = 2.7–28.1°
b = 7.3948 (10) ŵ = 0.67 mm1
c = 30.554 (4) ÅT = 100 K
V = 2403.7 (6) Å3Block, orange
Z = 40.28 × 0.26 × 0.23 mm
F(000) = 1152
Data collection top
Bruker APEXII CCD
diffractometer
2247 reflections with I > 2σ(I)
φ and ω scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 28.4°, θmin = 2.7°
Tmin = 0.833, Tmax = 0.877h = 1314
12444 measured reflectionsk = 99
2999 independent reflectionsl = 3740
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.047P)2 + 0.928P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2999 reflectionsΔρmax = 0.34 e Å3
178 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01323 (14)
O10.23108 (15)0.4748 (2)0.41347 (5)0.0213 (4)
O20.41465 (13)0.3430 (2)0.39352 (4)0.0173 (3)
N10.37269 (16)0.3889 (2)0.21120 (5)0.0133 (4)
C10.3680 (2)0.3523 (3)0.46783 (7)0.0149 (4)
C20.3145 (2)0.4294 (3)0.50667 (6)0.0169 (4)
H2A0.24150.51420.50810.020*
C30.3857 (2)0.3643 (3)0.54286 (7)0.0216 (5)
H3A0.37160.39700.57420.026*
C40.4812 (2)0.2469 (3)0.52692 (7)0.0191 (5)
H4A0.54540.18270.54510.023*
C50.4712 (2)0.2403 (3)0.48035 (7)0.0166 (4)
H5A0.52620.16930.46010.020*
C60.3264 (2)0.3975 (3)0.42318 (6)0.0144 (4)
C70.3923 (2)0.3684 (3)0.34853 (6)0.0145 (4)
C80.48316 (19)0.4601 (3)0.32540 (7)0.0155 (4)
H8A0.55020.51820.34040.019*
C90.47630 (19)0.4673 (3)0.27993 (7)0.0151 (4)
H9A0.53980.52880.26390.018*
C100.37736 (19)0.3853 (2)0.25769 (6)0.0121 (4)
C110.28353 (19)0.2994 (3)0.28206 (7)0.0149 (4)
H11A0.21370.24690.26740.018*
C120.29095 (19)0.2899 (3)0.32731 (6)0.0154 (4)
H12A0.22720.23020.34360.018*
C130.2795 (2)0.3154 (3)0.18518 (7)0.0174 (4)
H13A0.20770.25180.19540.021*
C140.3076 (2)0.3494 (3)0.14240 (7)0.0195 (5)
H14A0.25870.31530.11770.023*
C150.4232 (2)0.4449 (3)0.14143 (7)0.0213 (5)
H15A0.46610.48620.11610.026*
C160.4613 (2)0.4663 (3)0.18374 (7)0.0184 (4)
H16A0.53640.52480.19290.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0159 (2)0.0111 (2)0.0127 (2)0.00228 (16)0.00142 (16)0.00108 (15)
O10.0196 (9)0.0274 (8)0.0169 (8)0.0076 (7)0.0004 (6)0.0006 (6)
O20.0162 (8)0.0220 (8)0.0137 (7)0.0029 (6)0.0003 (6)0.0013 (6)
N10.0123 (8)0.0123 (8)0.0154 (8)0.0003 (7)0.0015 (7)0.0003 (6)
C10.0164 (10)0.0125 (9)0.0160 (10)0.0039 (8)0.0003 (8)0.0003 (7)
C20.0161 (10)0.0168 (10)0.0179 (10)0.0040 (9)0.0031 (8)0.0006 (8)
C30.0292 (12)0.0190 (11)0.0165 (11)0.0081 (10)0.0015 (9)0.0016 (8)
C40.0232 (12)0.0139 (10)0.0201 (11)0.0055 (9)0.0051 (9)0.0046 (8)
C50.0197 (11)0.0105 (9)0.0197 (11)0.0009 (9)0.0040 (9)0.0007 (8)
C60.0149 (10)0.0121 (9)0.0162 (10)0.0015 (8)0.0004 (8)0.0014 (7)
C70.0157 (10)0.0137 (9)0.0142 (10)0.0024 (8)0.0008 (8)0.0014 (7)
C80.0135 (10)0.0150 (10)0.0180 (10)0.0025 (8)0.0008 (8)0.0027 (8)
C90.0127 (10)0.0135 (9)0.0192 (10)0.0006 (8)0.0023 (8)0.0003 (8)
C100.0127 (10)0.0085 (9)0.0151 (10)0.0031 (8)0.0003 (8)0.0006 (7)
C110.0118 (10)0.0136 (9)0.0193 (10)0.0027 (8)0.0012 (8)0.0004 (8)
C120.0150 (10)0.0138 (9)0.0173 (10)0.0010 (8)0.0023 (8)0.0018 (8)
C130.0139 (10)0.0163 (10)0.0219 (11)0.0002 (9)0.0005 (8)0.0016 (8)
C140.0211 (11)0.0196 (11)0.0177 (10)0.0066 (9)0.0016 (9)0.0022 (8)
C150.0250 (13)0.0211 (11)0.0179 (11)0.0031 (10)0.0048 (9)0.0015 (9)
C160.0161 (10)0.0176 (10)0.0217 (11)0.0032 (9)0.0035 (9)0.0024 (8)
Geometric parameters (Å, º) top
Fe1—C12.032 (2)C3—H3A1.0000
Fe1—C1i2.033 (2)C4—C51.428 (3)
Fe1—C52.035 (2)C4—H4A1.0000
Fe1—C5i2.035 (2)C5—H5A1.0000
Fe1—C3i2.050 (2)C7—C81.376 (3)
Fe1—C32.050 (2)C7—C121.386 (3)
Fe1—C22.051 (2)C8—C91.392 (3)
Fe1—C2i2.051 (2)C8—H8A0.9500
Fe1—C4i2.055 (2)C9—C101.392 (3)
Fe1—C42.055 (2)C9—H9A0.9500
O1—C61.201 (3)C10—C111.398 (3)
O2—C61.366 (2)C11—C121.387 (3)
O2—C71.407 (2)C11—H11A0.9500
N1—C131.382 (3)C12—H12A0.9500
N1—C161.386 (3)C13—C141.364 (3)
N1—C101.422 (3)C13—H13A0.9500
C1—C51.427 (3)C14—C151.418 (3)
C1—C21.434 (3)C14—H14A0.9500
C1—C61.473 (3)C15—C161.364 (3)
C2—C31.424 (3)C15—H15A0.9500
C2—H2A1.0000C16—H16A0.9500
C3—C41.423 (3)
C1—Fe1—C1i180.0C3—C2—Fe169.63 (13)
C1—Fe1—C541.09 (8)C1—C2—Fe168.75 (12)
C1i—Fe1—C5138.91 (8)C3—C2—H2A126.3
C1—Fe1—C5i138.91 (8)C1—C2—H2A126.3
C1i—Fe1—C5i41.09 (8)Fe1—C2—H2A126.3
C5—Fe1—C5i180.0C4—C3—C2108.66 (19)
C1—Fe1—C3i111.35 (8)C4—C3—Fe169.90 (12)
C1i—Fe1—C3i68.66 (8)C2—C3—Fe169.74 (12)
C5—Fe1—C3i111.27 (9)C4—C3—H3A125.7
C5i—Fe1—C3i68.73 (9)C2—C3—H3A125.7
C1—Fe1—C368.65 (8)Fe1—C3—H3A125.7
C1i—Fe1—C3111.34 (8)C3—C4—C5107.97 (18)
C5—Fe1—C368.73 (9)C3—C4—Fe169.54 (12)
C5i—Fe1—C3111.27 (9)C5—C4—Fe168.84 (11)
C3i—Fe1—C3180.0C3—C4—H4A126.0
C1—Fe1—C241.11 (8)C5—C4—H4A126.0
C1i—Fe1—C2138.89 (8)Fe1—C4—H4A126.0
C5—Fe1—C269.15 (9)C1—C5—C4107.75 (18)
C5i—Fe1—C2110.85 (9)C1—C5—Fe169.36 (11)
C3i—Fe1—C2139.37 (9)C4—C5—Fe170.30 (11)
C3—Fe1—C240.63 (9)C1—C5—H5A126.1
C1—Fe1—C2i138.89 (8)C4—C5—H5A126.1
C1i—Fe1—C2i41.11 (8)Fe1—C5—H5A126.1
C5—Fe1—C2i110.85 (9)O1—C6—O2123.84 (18)
C5i—Fe1—C2i69.15 (9)O1—C6—C1126.17 (19)
C3i—Fe1—C2i40.63 (9)O2—C6—C1109.97 (18)
C3—Fe1—C2i139.37 (9)C8—C7—C12120.85 (19)
C2—Fe1—C2i180.0C8—C7—O2116.66 (18)
C1—Fe1—C4i111.29 (8)C12—C7—O2122.16 (18)
C1i—Fe1—C4i68.71 (8)C7—C8—C9119.63 (19)
C5—Fe1—C4i139.13 (9)C7—C8—H8A120.2
C5i—Fe1—C4i40.87 (9)C9—C8—H8A120.2
C3i—Fe1—C4i40.56 (9)C10—C9—C8120.67 (19)
C3—Fe1—C4i139.44 (9)C10—C9—H9A119.7
C2—Fe1—C4i111.44 (9)C8—C9—H9A119.7
C2i—Fe1—C4i68.56 (9)C9—C10—C11118.55 (18)
C1—Fe1—C468.71 (8)C9—C10—N1120.40 (18)
C1i—Fe1—C4111.29 (8)C11—C10—N1121.05 (17)
C5—Fe1—C440.87 (9)C12—C11—C10120.90 (19)
C5i—Fe1—C4139.13 (9)C12—C11—H11A119.5
C3i—Fe1—C4139.44 (9)C10—C11—H11A119.5
C3—Fe1—C440.56 (9)C7—C12—C11119.31 (19)
C2—Fe1—C468.56 (9)C7—C12—H12A120.3
C2i—Fe1—C4111.44 (9)C11—C12—H12A120.3
C4i—Fe1—C4180.00 (11)C14—C13—N1108.78 (19)
C6—O2—C7119.52 (16)C14—C13—H13A125.6
C13—N1—C16107.58 (17)N1—C13—H13A125.6
C13—N1—C10126.34 (17)C13—C14—C15107.54 (19)
C16—N1—C10126.08 (18)C13—C14—H14A126.2
C5—C1—C2108.28 (18)C15—C14—H14A126.2
C5—C1—C6127.65 (19)C16—C15—C14107.2 (2)
C2—C1—C6123.89 (19)C16—C15—H15A126.4
C5—C1—Fe169.56 (12)C14—C15—H15A126.4
C2—C1—Fe170.14 (12)C15—C16—N1108.9 (2)
C6—C1—Fe1122.25 (14)C15—C16—H16A125.6
C3—C2—C1107.3 (2)N1—C16—H16A125.6
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

EM is thankful for the financial support of NIH-RISE 2 Best program (NIH-R25GM088023) for the research assistantship of WIP (graduate student).

References

First citationAbou El Ella, D. A., Ghorab, M. M., Noaman, E., Heiba, H. I. & Khalil, A. I. (2008). Bioorg. Med. Chem. 16, 2391–2402.  CrossRef PubMed CAS Google Scholar
First citationAcevedo, C. Y., Meléndez, E., Singh, S. P. & Ramirez-Vick, J. E. (2012). J. Cancer Sci. Ther. 4, 271–275.  Google Scholar
First citationBraga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626–5639.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatzopoulou, M., Patsilinakos, A., Vallianatou, T., Prnova, M. S., Žakelj, S., Ragno, R., Stefek, M., Kristl, A., Tsantili-Kakoulidou, A. & Demopoulos, V. J. (2014). Bioorg. Med. Chem. 22, 2194–2207.  CrossRef CAS PubMed Google Scholar
First citationClark, M. P., George, K. M., Bookland, R. G., Chen, J., Laughlin, S. K., Thakur, K. D., Lee, W., Davis, J. R., Cabrera, E. J., Brugel, T. A., VanRens, J. C., Laufersweiler, M. J., Maier, J. A., Sabat, M. P., Golebiowski, A., Easwaran, V., Webster, M. E., De, B. & Zhang, G. (2007). Bioorg. Med. Chem. Lett. 17, 1250–1253.  CrossRef PubMed CAS Google Scholar
First citationDempke, W., Voigt, W., Grothey, A., Hill, B. T. & Schmoll, H. J. (2000). Anticancer Drugs, 11, 225–236.  CrossRef PubMed CAS Google Scholar
First citationDunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEsteves, M. A., Ortet, O., Capelo, A., Supuran, C. T., Marques, S. M. & Santos, M. A. (2010). Bioorg. Med. Chem. Lett. 20, 3623–3627.  CrossRef CAS PubMed Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationGalanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075–2094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, doi: 10.1155/2009/420784.  Google Scholar
First citationGasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGelin, F. & Thummel, R. P. (1992). J. Org. Chem. 57, 3780–3783.  CSD CrossRef CAS Google Scholar
First citationGhorab, M. M., Alsaid, M. S., Ceruso, M., Nissan, Y. M. & Supuran, C. T. (2014). Bioorg. Med. Chem. 22, 3684–3695.  CrossRef CAS PubMed Google Scholar
First citationHassan, S. M., El-Maghraby, A. A., Abdel Aal, M. M. & Bashandy, M. S. (2009). Phosphorus Sulfur Silicon, 184, 291–308.  CrossRef CAS Google Scholar
First citationJaouen, G. (2006). Bioorganometallics, pp. 65–95. Weinheim: Wiley-VCH.  Google Scholar
First citationJaouen, G. & Metzler-Nolte, N. (2010). Medicinal Organometallic Chemistry, pp. 81–117. Heidelberg, Dordrecht, London, New York: Springer-Verlag.  Google Scholar
First citationKöpf-Maier, P., Köpf, H. & Neuse, E. W. (1984). J. Cancer Res. Clin. Oncol. 108, 336–340.  PubMed Google Scholar
First citationKovjazin, R., Eldar, T., Patya, M., Vanichkin, A., Lander, H. M. & Novogrodsky, A. (2003). FASEB J. 17, 467–469.  PubMed CAS Google Scholar
First citationMeléndez, E. (2012). Inorg. Chim. Acta, 393, 36–52.  Google Scholar
First citationMerighi, S., Mirandola, P., Varani, K., Gessi, S., Leung, E., Baraldi, P. G., Tabrizi, M. A. & Borea, P. A. A. (2003). Pharmacol. Ther. 100, 31–48.  CrossRef PubMed CAS Google Scholar
First citationMohamed, M. S., Kamel, R. & Abd El-hameed, R. H. (2013). Med. Chem. Res. 22, 2244–2252.  CrossRef CAS Google Scholar
First citationNguyen, A., Top, S., Pigeon, P., Vessières, A., Hillard, E. A., Plamont, M.-A., Huché, M., Rigamonti, C. & Jaouen, G. (2009). Chem. Eur. J. 15, 684–696.  CrossRef PubMed CAS Google Scholar
First citationOkabe, T., Nakazaki, K., Igaue, T., Nakamura, N., Donnio, B., Guillon, D. & Gallani, J.-L. (2009). J. Appl. Cryst. 42, 63–68.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOsella, D., Mahboobi, H., Colangelo, D., Cavigiolio, G., Vessières, A. & Jaouen, G. (2005). Inorg. Chim. Acta, 358, 1993–1998.  CrossRef CAS Google Scholar
First citationPabla, N. & Dong, Z. (2008). Kidney Int. 73, 994–1007.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.  Google Scholar
First citationPérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471–479.  PubMed Google Scholar
First citationSandler, A., Graham, C., Baggstrom, M., Herbst, R., Zergebel, C., Saito, K. & Jones, D. (2011). J. Thorac. Oncol. 6, 1400–1406.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaveren, D. R. van & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5986.  Web of Science PubMed Google Scholar
First citationTabbì, G., Cassino, C., Cavigiolio, G., Colangelo, D., Ghiglia, A., Viano, I. & Osella, D. (2002). J. Med. Chem. 45, 5786–5796.  PubMed Google Scholar
First citationTogni, A., Hobi, M., Rihs, G., Rist, G., Albinati, A., Zanello, P., Zech, D. & Keller, H. (1994). Organometallics, 13, 1224–1234.  CSD CrossRef CAS Google Scholar
First citationTop, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236.  Google Scholar
First citationVera, J. L., Gao, L. M., Santana, A., Matta, J. & Meléndez, E. (2011). Dalton Trans. 40, 9557–9565.  CrossRef CAS PubMed Google Scholar
First citationVera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationVessières, A., Top, S., Beck, W., Hillard, E. & Jaouen, G. (2006). Dalton Trans. pp. 529–541.  Google Scholar
First citationVessières, A., Top, S., Pigeon, P., Hillard, E., Boubeker, L., Spera, D. & Jaouen, G. (2005). J. Med. Chem. 48, 3937–3940.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds