research communications
H-pyrrol-1-yl)phenyl] ferrocene-1,1′-dicarboxylate: a potential chemotherapeutic drug
of bis[4-(1aUniversity of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, Puerto Rico 00681, USA, and bUniversity of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
*Correspondence e-mail: enrique.melendez@upr.edu
The title iron(II) complex, [Fe(C16H12NO2)2], crystallizes in the orthorhombic Pbca with the Fe2+ cation positioned on an inversion center. The cyclopentadienyl (Cp) rings adopt an anti conformation in contrast with other substituted ferrocenes in which the Cp rings appear in a nearly eclipsed conformation. The Cp and the aromatic rings are positioned out of the plane, with a twist angle of 70.20 (12)°, and the C(Cp)—C(CO) bond length is shorter than a typical C—C single bond, which suggests a partial double-bond character and delocalization with the Cp π system. The structure of the complex is compared to other functionalized ferrocenes synthesized in our laboratory.
Keywords: crystal structure; disubstituted ferrocene; antiproliferative; chemotherapeutic drug; MCF-7; pyrrole.
CCDC reference: 1054149
1. Chemical context
The gold standard of treatment for breast cancer has traditionally been cisplatin, a metal-based agent. Its administration, alone or in combination with other drugs, is also highly effective against various other types of cancers, including ovarian, head and neck, bladder, testicular and lung cancers (Galanski et al., 2005; Sandler et al., 2011). However, its clinical use suffers from major drawbacks, such as severe toxic side effects including neurotoxicity, hepatotoxicity, and nephrotoxicity (Pabla & Dong, 2008), as well as a drug-resistance phenomenon which leads to unsuccessful treatment (Dempke et al., 2000). Consequently, other metal-based drugs have been investigated, among them ferrocenes (Köpf-Maier et al., 1984). Ferrocene has the versatility of easy functionalization providing a fertile field for structural modification and to study structure–activity relationship (SAR).
Our group has been working in this field for many years, leading to exciting and biologically active ferrocenes. A wide variety of pendant (functional) groups have been attached or linked to the Cp ring to tailor the anti-proliferative properties of ferrocene, many of them with great success (Braga & Silva, 2013; Gasser et al., 2011; Jaouen & Metzler-Nolte, 2010; Fouda et al., 2007; Jaouen, 2006; van Staveren & Metzler-Nolte, 2004; Nguyen et al., 2009; Top et al., 2003; Vessières et al., 2005, 2006; Meléndez, 2012; Vera et al., 2011, 2014). Lately, a new range of organic chemotherapeutic compounds have been studied using pyrrole derivatives. These pyrrole derivatives have revealed good anti-proliferative activity and an increase in membrane permeability, allowing the compounds to reach the nucleus (Ghorab et al., 2014; Abou El Ella et al., 2008; Chatzopoulou et al., 2014; Mohamed et al., 2013; Hassan et al., 2009; Esteves et al., 2010; Clark et al., 2007; Merighi et al., 2003). Therefore, we functionalized ferrocene with a pyrrole, 4-(1H-pyrrol-1-yl)phenol, obtaining three new ferrocenes: 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedicarboxylate, 1,4-(1H-pyrrol-1-yl)phenyl, 1′-carboxyl ferrocenecarboxylate (Fc-(CO2-Ph-4-Py)CO2H) and 4-(1H-pyrrol-1-yl)phenyl ferroceneacetylate (Fc-CH2CO2-Ph-4-Py). We investigated their biological activities on breast cancer cell line (MCF-7) and among these ferrocenes, 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedicarboxylate (I) was shown to be most active in this series (Pérez et al., 2015). Nevertheless, the solid-state structure of (I) has been elusive (Pérez et al., 2015). The importance of this complex is the incorporation of pyrrole groups, which are derivatives of biologically active compounds, as well as pyrrole being an electrochemically active group precursor of polymeric material. In addition, ferrocene anticancer activity has been associated with its redox behavior and the capability to produce reactive oxygen species (ROS) (Acevedo et al., 2012; Kovjazin et al., 2003; Tabbi et al., 2002; Osella et al., 2005). Thus, the attachment of an electrochemically active group on ferrocene could potentiate the production of ROS and enhance its anticancer activity.
Given that the solid-state structure of this complex is not available, we determined the H-pyrrol-1-yl)phenyl] ferrocene-1,1′-dicarboxylate, (I). Additionally, we compared the obtained with other functionalized ferrocenes synthesized in our laboratory viz.: 4-bromophenyl (II) and 4-chlorophenyl ferrocenecarboxylate (III) (Vera et al., 2014), and 1,1′-methyl ferrocenedicarboxylate (IV) (Gao et al., 2009).
of bis[4-(12. Structural commentary
The 2+ lies on an inversion center, Fig. 1. This symmetry is implied by the NMR data where only one set of signals were found for H2/H5 and H3/H4 of the Cp rings, as well as the H2/H6 and H3/H5 of the phenyl and H2/H5 and H3/H4 of the pyrrole groups. Consequently, the Cp rings adopt a perfect anti conformation. The average Fe—C(Cp) bond length is 2.044 (10) Å, which is very similar to that reported for ferrocene (Dunitz et al., 1956) and other structures previously reported by our lab (Vera et al., 2014; Gao et al., 2009). The Fe—C bond length of the substituted carbon [Fe—C1 2.032 (2) Å] is shorter that the remaining Fe—C bond lengths due to the of the carboxylate on the Cp ring. The twist angles between the Cp ring and the carboxylate and the Cp ring and the aromatic ring are 14.4 (3)° (above the Cp plane) and 70.20 (12)°, respectively.
contains one half-molecule since FeTo put it in perspective, we compare (I) with previously synthesized ferrocenes in our group containing only one Cp functionalized and a phenyl group attached to the carboxylate, but with Br and Cl instead of pyrrole in the 4-position, (II) and (III) (CCDC 949002 and 949003, Vera et al., 2014). First, in the 4-bromophenyl and 4-chlorophenyl derivatives, the Cp rings are positioned in a nearly eclipsed conformation and parallel with stagger angles < 3° and Cp tilt angles of 0.48–1.25°. In contrast, (I) has a perfect anti conformation. The carbonyl carbon of (I) has a distorted trigonal–planar geometry, analogous to the 4-chlorophenyl and 4-bromophenyl ferrocenecarboxylates. The twist angles between the Cp ring and the carboxylate for 4-bromo and 4-chlorophenyl ferrocenecarboxylates (6.75–10.15°) are smaller than that of the subject complex, 14.4 (3)°. Additionally, as mentioned previously, the carbonyl oxygen of (I) lies above the Cp plane whereas for the bromo and chloro derivatives, the carbonyl oxygens lie below the Cp plane. The twist angle between the Cp and the aromatic ring is 70.20 (12)° in (I), while in (II) and (III) the two rings are positioned at higher angles, approaching a perpendicular position.
The average Fe—C(Cp*) bond lengths of the substituted Cp rings in the 4-bromo and 4-chlorophenyl derivatives are identical, within experimental error, as in (I) [2.044 (13) Å]. As mentioned before, the Fe—C bond length where the is attached is substantially shorter than the remaining Fe—C(Cp) distances. The same bonding pattern is also observed for the 4-bromo and 4-chlorophenyl ferrocenecarboxylates. The C(Cp)—C(CO) bond length in (I), C1—C6, is shorter than a typical C—C single bond, [1.473 (3) versus 1.54 Å (single bond); Pauling, 1960]. This suggests partial double-bond character and delocalization with the Cp π system in analogous manner to that for the 4-bromo and 4-chloro derivatives.
In the structure of the disubstituted ferrocene Fe(C5H4CO2CH3)2, (IV) (Gao et al., 2009), the average Fe—C(Cp) bond lengths are 2.048 (11)/2.049 (14) Å, similar to the title complex but the Cp rings adopt almost an eclipsed conformation with a stagger angle of 2.37° (Fig. 2). In addition, the functional groups are not positioned perfectly anti to each other. The Fe—C(Cp)—C(CO) bond in (IV) [1.477 (4) Å] is notably shorter than a typical C—C single bond (1.54 Å), in a similar manner to the title complex, suggesting delocalization with the Cp π system.
Finally, (I) contains two π ring systems, 4-(1H-pyrrol-1-yl)phenyl, which in principle could be involved in intramolecular π–π or C—H⋯π stacking similar to other 1,1′-disubstituted ferrocenes with an extended π ring system (Okabe et al., 2009; Togni et al., 1994; Gelin & Thummel, 1992). However, such π–π or C—H⋯π stacking is not observed in (I) since the Cp rings adopt an anti conformation.
3. Synthesis and crystallization
The synthesis of (I) was accomplished by treating 1,1′-ferrocenedicarboxylic acid with oxalyl chloride according to our recently published procedure (Pérez et al., 2015). 1H NMR (500 MHz, CDCl3) (δ p.p.m.): 7.37 (2H, d, ph; 3J = 8.8 Hz), 7.25 (2H, d, py; 3J = 2.8 Hz), 7.03 (2H, dd, ph; 3J = 1.3 Hz), 6.34 (2H, dd, py; 3J = 1.6 Hz), 5.08 (2H, overlapping doublets, AA′, Cp), 4.64 (2H, overlapping doublets, BB′, Cp). 13CNMR (125 MHz, CDCl3) (δ p.p.m.): 169.0 (C=O), 148.3, 138.6, 122.9, 121.5, 119.5, 110.5, 73.4, 72.4, 72.0. Analysis calculated for C32H24O4FeN2: C, 69.05; H, 4.40; found: C, 68.62; H, 4.46.
Crystallization of (I) was performed inside an NMR tube containing CD2Cl2 for a period of two weeks, obtaining block-shaped orange crystals suitable for X-ray diffraction.
4. Refinement
Crystal data, data collection and structure . H atoms were positioned in idealized locations (C(6)—H = 0.95, C(5)—H = 1.00 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
CCDC reference: 1054149
https://doi.org/10.1107/S2056989015007446/bg2552sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007446/bg2552Isup2.hkl
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Fe(C16H12NO2)2] | Dx = 1.537 Mg m−3 |
Mr = 556.38 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 2807 reflections |
a = 10.6386 (15) Å | θ = 2.7–28.1° |
b = 7.3948 (10) Å | µ = 0.67 mm−1 |
c = 30.554 (4) Å | T = 100 K |
V = 2403.7 (6) Å3 | Block, orange |
Z = 4 | 0.28 × 0.26 × 0.23 mm |
F(000) = 1152 |
Bruker APEXII CCD diffractometer | 2247 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.077 |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | θmax = 28.4°, θmin = 2.7° |
Tmin = 0.833, Tmax = 0.877 | h = −13→14 |
12444 measured reflections | k = −9→9 |
2999 independent reflections | l = −37→40 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.928P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2999 reflections | Δρmax = 0.34 e Å−3 |
178 parameters | Δρmin = −0.62 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.5000 | 0.5000 | 0.5000 | 0.01323 (14) | |
O1 | 0.23108 (15) | 0.4748 (2) | 0.41347 (5) | 0.0213 (4) | |
O2 | 0.41465 (13) | 0.3430 (2) | 0.39352 (4) | 0.0173 (3) | |
N1 | 0.37269 (16) | 0.3889 (2) | 0.21120 (5) | 0.0133 (4) | |
C1 | 0.3680 (2) | 0.3523 (3) | 0.46783 (7) | 0.0149 (4) | |
C2 | 0.3145 (2) | 0.4294 (3) | 0.50667 (6) | 0.0169 (4) | |
H2A | 0.2415 | 0.5142 | 0.5081 | 0.020* | |
C3 | 0.3857 (2) | 0.3643 (3) | 0.54286 (7) | 0.0216 (5) | |
H3A | 0.3716 | 0.3970 | 0.5742 | 0.026* | |
C4 | 0.4812 (2) | 0.2469 (3) | 0.52692 (7) | 0.0191 (5) | |
H4A | 0.5454 | 0.1827 | 0.5451 | 0.023* | |
C5 | 0.4712 (2) | 0.2403 (3) | 0.48035 (7) | 0.0166 (4) | |
H5A | 0.5262 | 0.1693 | 0.4601 | 0.020* | |
C6 | 0.3264 (2) | 0.3975 (3) | 0.42318 (6) | 0.0144 (4) | |
C7 | 0.3923 (2) | 0.3684 (3) | 0.34853 (6) | 0.0145 (4) | |
C8 | 0.48316 (19) | 0.4601 (3) | 0.32540 (7) | 0.0155 (4) | |
H8A | 0.5502 | 0.5182 | 0.3404 | 0.019* | |
C9 | 0.47630 (19) | 0.4673 (3) | 0.27993 (7) | 0.0151 (4) | |
H9A | 0.5398 | 0.5288 | 0.2639 | 0.018* | |
C10 | 0.37736 (19) | 0.3853 (2) | 0.25769 (6) | 0.0121 (4) | |
C11 | 0.28353 (19) | 0.2994 (3) | 0.28206 (7) | 0.0149 (4) | |
H11A | 0.2137 | 0.2469 | 0.2674 | 0.018* | |
C12 | 0.29095 (19) | 0.2899 (3) | 0.32731 (6) | 0.0154 (4) | |
H12A | 0.2272 | 0.2302 | 0.3436 | 0.018* | |
C13 | 0.2795 (2) | 0.3154 (3) | 0.18518 (7) | 0.0174 (4) | |
H13A | 0.2077 | 0.2518 | 0.1954 | 0.021* | |
C14 | 0.3076 (2) | 0.3494 (3) | 0.14240 (7) | 0.0195 (5) | |
H14A | 0.2587 | 0.3153 | 0.1177 | 0.023* | |
C15 | 0.4232 (2) | 0.4449 (3) | 0.14143 (7) | 0.0213 (5) | |
H15A | 0.4661 | 0.4862 | 0.1161 | 0.026* | |
C16 | 0.4613 (2) | 0.4663 (3) | 0.18374 (7) | 0.0184 (4) | |
H16A | 0.5364 | 0.5248 | 0.1929 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0159 (2) | 0.0111 (2) | 0.0127 (2) | −0.00228 (16) | −0.00142 (16) | 0.00108 (15) |
O1 | 0.0196 (9) | 0.0274 (8) | 0.0169 (8) | 0.0076 (7) | −0.0004 (6) | −0.0006 (6) |
O2 | 0.0162 (8) | 0.0220 (8) | 0.0137 (7) | 0.0029 (6) | −0.0003 (6) | −0.0013 (6) |
N1 | 0.0123 (8) | 0.0123 (8) | 0.0154 (8) | −0.0003 (7) | 0.0015 (7) | −0.0003 (6) |
C1 | 0.0164 (10) | 0.0125 (9) | 0.0160 (10) | −0.0039 (8) | 0.0003 (8) | −0.0003 (7) |
C2 | 0.0161 (10) | 0.0168 (10) | 0.0179 (10) | −0.0040 (9) | 0.0031 (8) | 0.0006 (8) |
C3 | 0.0292 (12) | 0.0190 (11) | 0.0165 (11) | −0.0081 (10) | 0.0015 (9) | 0.0016 (8) |
C4 | 0.0232 (12) | 0.0139 (10) | 0.0201 (11) | −0.0055 (9) | −0.0051 (9) | 0.0046 (8) |
C5 | 0.0197 (11) | 0.0105 (9) | 0.0197 (11) | −0.0009 (9) | −0.0040 (9) | 0.0007 (8) |
C6 | 0.0149 (10) | 0.0121 (9) | 0.0162 (10) | −0.0015 (8) | 0.0004 (8) | −0.0014 (7) |
C7 | 0.0157 (10) | 0.0137 (9) | 0.0142 (10) | 0.0024 (8) | −0.0008 (8) | −0.0014 (7) |
C8 | 0.0135 (10) | 0.0150 (10) | 0.0180 (10) | −0.0025 (8) | −0.0008 (8) | −0.0027 (8) |
C9 | 0.0127 (10) | 0.0135 (9) | 0.0192 (10) | −0.0006 (8) | 0.0023 (8) | 0.0003 (8) |
C10 | 0.0127 (10) | 0.0085 (9) | 0.0151 (10) | 0.0031 (8) | 0.0003 (8) | −0.0006 (7) |
C11 | 0.0118 (10) | 0.0136 (9) | 0.0193 (10) | −0.0027 (8) | −0.0012 (8) | 0.0004 (8) |
C12 | 0.0150 (10) | 0.0138 (9) | 0.0173 (10) | −0.0010 (8) | 0.0023 (8) | 0.0018 (8) |
C13 | 0.0139 (10) | 0.0163 (10) | 0.0219 (11) | −0.0002 (9) | −0.0005 (8) | −0.0016 (8) |
C14 | 0.0211 (11) | 0.0196 (11) | 0.0177 (10) | 0.0066 (9) | −0.0016 (9) | −0.0022 (8) |
C15 | 0.0250 (13) | 0.0211 (11) | 0.0179 (11) | 0.0031 (10) | 0.0048 (9) | 0.0015 (9) |
C16 | 0.0161 (10) | 0.0176 (10) | 0.0217 (11) | −0.0032 (9) | 0.0035 (9) | 0.0024 (8) |
Fe1—C1 | 2.032 (2) | C3—H3A | 1.0000 |
Fe1—C1i | 2.033 (2) | C4—C5 | 1.428 (3) |
Fe1—C5 | 2.035 (2) | C4—H4A | 1.0000 |
Fe1—C5i | 2.035 (2) | C5—H5A | 1.0000 |
Fe1—C3i | 2.050 (2) | C7—C8 | 1.376 (3) |
Fe1—C3 | 2.050 (2) | C7—C12 | 1.386 (3) |
Fe1—C2 | 2.051 (2) | C8—C9 | 1.392 (3) |
Fe1—C2i | 2.051 (2) | C8—H8A | 0.9500 |
Fe1—C4i | 2.055 (2) | C9—C10 | 1.392 (3) |
Fe1—C4 | 2.055 (2) | C9—H9A | 0.9500 |
O1—C6 | 1.201 (3) | C10—C11 | 1.398 (3) |
O2—C6 | 1.366 (2) | C11—C12 | 1.387 (3) |
O2—C7 | 1.407 (2) | C11—H11A | 0.9500 |
N1—C13 | 1.382 (3) | C12—H12A | 0.9500 |
N1—C16 | 1.386 (3) | C13—C14 | 1.364 (3) |
N1—C10 | 1.422 (3) | C13—H13A | 0.9500 |
C1—C5 | 1.427 (3) | C14—C15 | 1.418 (3) |
C1—C2 | 1.434 (3) | C14—H14A | 0.9500 |
C1—C6 | 1.473 (3) | C15—C16 | 1.364 (3) |
C2—C3 | 1.424 (3) | C15—H15A | 0.9500 |
C2—H2A | 1.0000 | C16—H16A | 0.9500 |
C3—C4 | 1.423 (3) | ||
C1—Fe1—C1i | 180.0 | C3—C2—Fe1 | 69.63 (13) |
C1—Fe1—C5 | 41.09 (8) | C1—C2—Fe1 | 68.75 (12) |
C1i—Fe1—C5 | 138.91 (8) | C3—C2—H2A | 126.3 |
C1—Fe1—C5i | 138.91 (8) | C1—C2—H2A | 126.3 |
C1i—Fe1—C5i | 41.09 (8) | Fe1—C2—H2A | 126.3 |
C5—Fe1—C5i | 180.0 | C4—C3—C2 | 108.66 (19) |
C1—Fe1—C3i | 111.35 (8) | C4—C3—Fe1 | 69.90 (12) |
C1i—Fe1—C3i | 68.66 (8) | C2—C3—Fe1 | 69.74 (12) |
C5—Fe1—C3i | 111.27 (9) | C4—C3—H3A | 125.7 |
C5i—Fe1—C3i | 68.73 (9) | C2—C3—H3A | 125.7 |
C1—Fe1—C3 | 68.65 (8) | Fe1—C3—H3A | 125.7 |
C1i—Fe1—C3 | 111.34 (8) | C3—C4—C5 | 107.97 (18) |
C5—Fe1—C3 | 68.73 (9) | C3—C4—Fe1 | 69.54 (12) |
C5i—Fe1—C3 | 111.27 (9) | C5—C4—Fe1 | 68.84 (11) |
C3i—Fe1—C3 | 180.0 | C3—C4—H4A | 126.0 |
C1—Fe1—C2 | 41.11 (8) | C5—C4—H4A | 126.0 |
C1i—Fe1—C2 | 138.89 (8) | Fe1—C4—H4A | 126.0 |
C5—Fe1—C2 | 69.15 (9) | C1—C5—C4 | 107.75 (18) |
C5i—Fe1—C2 | 110.85 (9) | C1—C5—Fe1 | 69.36 (11) |
C3i—Fe1—C2 | 139.37 (9) | C4—C5—Fe1 | 70.30 (11) |
C3—Fe1—C2 | 40.63 (9) | C1—C5—H5A | 126.1 |
C1—Fe1—C2i | 138.89 (8) | C4—C5—H5A | 126.1 |
C1i—Fe1—C2i | 41.11 (8) | Fe1—C5—H5A | 126.1 |
C5—Fe1—C2i | 110.85 (9) | O1—C6—O2 | 123.84 (18) |
C5i—Fe1—C2i | 69.15 (9) | O1—C6—C1 | 126.17 (19) |
C3i—Fe1—C2i | 40.63 (9) | O2—C6—C1 | 109.97 (18) |
C3—Fe1—C2i | 139.37 (9) | C8—C7—C12 | 120.85 (19) |
C2—Fe1—C2i | 180.0 | C8—C7—O2 | 116.66 (18) |
C1—Fe1—C4i | 111.29 (8) | C12—C7—O2 | 122.16 (18) |
C1i—Fe1—C4i | 68.71 (8) | C7—C8—C9 | 119.63 (19) |
C5—Fe1—C4i | 139.13 (9) | C7—C8—H8A | 120.2 |
C5i—Fe1—C4i | 40.87 (9) | C9—C8—H8A | 120.2 |
C3i—Fe1—C4i | 40.56 (9) | C10—C9—C8 | 120.67 (19) |
C3—Fe1—C4i | 139.44 (9) | C10—C9—H9A | 119.7 |
C2—Fe1—C4i | 111.44 (9) | C8—C9—H9A | 119.7 |
C2i—Fe1—C4i | 68.56 (9) | C9—C10—C11 | 118.55 (18) |
C1—Fe1—C4 | 68.71 (8) | C9—C10—N1 | 120.40 (18) |
C1i—Fe1—C4 | 111.29 (8) | C11—C10—N1 | 121.05 (17) |
C5—Fe1—C4 | 40.87 (9) | C12—C11—C10 | 120.90 (19) |
C5i—Fe1—C4 | 139.13 (9) | C12—C11—H11A | 119.5 |
C3i—Fe1—C4 | 139.44 (9) | C10—C11—H11A | 119.5 |
C3—Fe1—C4 | 40.56 (9) | C7—C12—C11 | 119.31 (19) |
C2—Fe1—C4 | 68.56 (9) | C7—C12—H12A | 120.3 |
C2i—Fe1—C4 | 111.44 (9) | C11—C12—H12A | 120.3 |
C4i—Fe1—C4 | 180.00 (11) | C14—C13—N1 | 108.78 (19) |
C6—O2—C7 | 119.52 (16) | C14—C13—H13A | 125.6 |
C13—N1—C16 | 107.58 (17) | N1—C13—H13A | 125.6 |
C13—N1—C10 | 126.34 (17) | C13—C14—C15 | 107.54 (19) |
C16—N1—C10 | 126.08 (18) | C13—C14—H14A | 126.2 |
C5—C1—C2 | 108.28 (18) | C15—C14—H14A | 126.2 |
C5—C1—C6 | 127.65 (19) | C16—C15—C14 | 107.2 (2) |
C2—C1—C6 | 123.89 (19) | C16—C15—H15A | 126.4 |
C5—C1—Fe1 | 69.56 (12) | C14—C15—H15A | 126.4 |
C2—C1—Fe1 | 70.14 (12) | C15—C16—N1 | 108.9 (2) |
C6—C1—Fe1 | 122.25 (14) | C15—C16—H16A | 125.6 |
C3—C2—C1 | 107.3 (2) | N1—C16—H16A | 125.6 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
EM is thankful for the financial support of NIH-RISE 2 Best program (NIH-R25GM088023) for the research assistantship of WIP (graduate student).
References
Abou El Ella, D. A., Ghorab, M. M., Noaman, E., Heiba, H. I. & Khalil, A. I. (2008). Bioorg. Med. Chem. 16, 2391–2402. CrossRef PubMed CAS Google Scholar
Acevedo, C. Y., Meléndez, E., Singh, S. P. & Ramirez-Vick, J. E. (2012). J. Cancer Sci. Ther. 4, 271–275. Google Scholar
Braga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626–5639. Web of Science CrossRef CAS Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatzopoulou, M., Patsilinakos, A., Vallianatou, T., Prnova, M. S., Žakelj, S., Ragno, R., Stefek, M., Kristl, A., Tsantili-Kakoulidou, A. & Demopoulos, V. J. (2014). Bioorg. Med. Chem. 22, 2194–2207. CrossRef CAS PubMed Google Scholar
Clark, M. P., George, K. M., Bookland, R. G., Chen, J., Laughlin, S. K., Thakur, K. D., Lee, W., Davis, J. R., Cabrera, E. J., Brugel, T. A., VanRens, J. C., Laufersweiler, M. J., Maier, J. A., Sabat, M. P., Golebiowski, A., Easwaran, V., Webster, M. E., De, B. & Zhang, G. (2007). Bioorg. Med. Chem. Lett. 17, 1250–1253. CrossRef PubMed CAS Google Scholar
Dempke, W., Voigt, W., Grothey, A., Hill, B. T. & Schmoll, H. J. (2000). Anticancer Drugs, 11, 225–236. CrossRef PubMed CAS Google Scholar
Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Esteves, M. A., Ortet, O., Capelo, A., Supuran, C. T., Marques, S. M. & Santos, M. A. (2010). Bioorg. Med. Chem. Lett. 20, 3623–3627. CrossRef CAS PubMed Google Scholar
Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625. Web of Science CrossRef CAS Google Scholar
Galanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075–2094. Web of Science CrossRef PubMed CAS Google Scholar
Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal Based Drugs, Article ID 420784, doi: 10.1155/2009/420784. Google Scholar
Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. Web of Science CrossRef CAS PubMed Google Scholar
Gelin, F. & Thummel, R. P. (1992). J. Org. Chem. 57, 3780–3783. CSD CrossRef CAS Google Scholar
Ghorab, M. M., Alsaid, M. S., Ceruso, M., Nissan, Y. M. & Supuran, C. T. (2014). Bioorg. Med. Chem. 22, 3684–3695. CrossRef CAS PubMed Google Scholar
Hassan, S. M., El-Maghraby, A. A., Abdel Aal, M. M. & Bashandy, M. S. (2009). Phosphorus Sulfur Silicon, 184, 291–308. CrossRef CAS Google Scholar
Jaouen, G. (2006). Bioorganometallics, pp. 65–95. Weinheim: Wiley-VCH. Google Scholar
Jaouen, G. & Metzler-Nolte, N. (2010). Medicinal Organometallic Chemistry, pp. 81–117. Heidelberg, Dordrecht, London, New York: Springer-Verlag. Google Scholar
Köpf-Maier, P., Köpf, H. & Neuse, E. W. (1984). J. Cancer Res. Clin. Oncol. 108, 336–340. PubMed Google Scholar
Kovjazin, R., Eldar, T., Patya, M., Vanichkin, A., Lander, H. M. & Novogrodsky, A. (2003). FASEB J. 17, 467–469. PubMed CAS Google Scholar
Meléndez, E. (2012). Inorg. Chim. Acta, 393, 36–52. Google Scholar
Merighi, S., Mirandola, P., Varani, K., Gessi, S., Leung, E., Baraldi, P. G., Tabrizi, M. A. & Borea, P. A. A. (2003). Pharmacol. Ther. 100, 31–48. CrossRef PubMed CAS Google Scholar
Mohamed, M. S., Kamel, R. & Abd El-hameed, R. H. (2013). Med. Chem. Res. 22, 2244–2252. CrossRef CAS Google Scholar
Nguyen, A., Top, S., Pigeon, P., Vessières, A., Hillard, E. A., Plamont, M.-A., Huché, M., Rigamonti, C. & Jaouen, G. (2009). Chem. Eur. J. 15, 684–696. CrossRef PubMed CAS Google Scholar
Okabe, T., Nakazaki, K., Igaue, T., Nakamura, N., Donnio, B., Guillon, D. & Gallani, J.-L. (2009). J. Appl. Cryst. 42, 63–68. CSD CrossRef CAS IUCr Journals Google Scholar
Osella, D., Mahboobi, H., Colangelo, D., Cavigiolio, G., Vessières, A. & Jaouen, G. (2005). Inorg. Chim. Acta, 358, 1993–1998. CrossRef CAS Google Scholar
Pabla, N. & Dong, Z. (2008). Kidney Int. 73, 994–1007. Web of Science CrossRef PubMed CAS Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press. Google Scholar
Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. & Meléndez, E. (2015). Bioorg. Med. Chem. 23, 471–479. PubMed Google Scholar
Sandler, A., Graham, C., Baggstrom, M., Herbst, R., Zergebel, C., Saito, K. & Jones, D. (2011). J. Thorac. Oncol. 6, 1400–1406. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Staveren, D. R. van & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5986. Web of Science PubMed Google Scholar
Tabbì, G., Cassino, C., Cavigiolio, G., Colangelo, D., Ghiglia, A., Viano, I. & Osella, D. (2002). J. Med. Chem. 45, 5786–5796. PubMed Google Scholar
Togni, A., Hobi, M., Rihs, G., Rist, G., Albinati, A., Zanello, P., Zech, D. & Keller, H. (1994). Organometallics, 13, 1224–1234. CSD CrossRef CAS Google Scholar
Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236. Google Scholar
Vera, J. L., Gao, L. M., Santana, A., Matta, J. & Meléndez, E. (2011). Dalton Trans. 40, 9557–9565. CrossRef CAS PubMed Google Scholar
Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204–214. Web of Science CSD CrossRef CAS Google Scholar
Vessières, A., Top, S., Beck, W., Hillard, E. & Jaouen, G. (2006). Dalton Trans. pp. 529–541. Google Scholar
Vessières, A., Top, S., Pigeon, P., Hillard, E., Boubeker, L., Spera, D. & Jaouen, G. (2005). J. Med. Chem. 48, 3937–3940. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.