research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of disodium dicobalt(II) iron(III) tris­­(orthophosphate) with an alluaudite-like structure

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bDépartement de chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: adam_bouraima@yahoo.fr

Edited by I. D. Brown, McMaster University, Canada (Received 4 April 2015; accepted 21 April 2015; online 25 April 2015)

The title compound, Na2Co2Fe(PO4)3, was synthesized by a solid-state reaction. This new stoichiometric phase crystallizes in an alluaudite-like structure. In this structure, all atoms are in general positions except for four atoms which are located at the special positions of the C2/c space group. One Co atom, one P and one Na atom are all located on Wyckoff position 4e (2), while the second Na atom is located on an inversion centre 4a (-1). The other Co and Fe atoms occupy a general position with a statistical distribution. The open framework results from [(Co,Fe)2O10] units of edge-sharing [(Co,Fe)O6] octa­hedra, which alternate with [CoO6] octa­hedra that form infinite chains running along the [10-1] direction. These chains are linked together through PO4 tetra­hedra by the sharing of vertices so as to build layers perpendicular to [010]. The three-dimensional framework is accomplished by the stacking of these layers, leading to the formation of two types of tunnels parallel to [010] in which the Na+ cations are located, each cation being surrounded by eight O atoms.

1. Chemical context

A particular focus of ours concerns compounds with alluaudite-type structures, and we set the objective of synthesising new transition-metal-based phosphates within the well-known alluaudite family. We are inter­ested in this because transition-metal phosphates are of great inter­est with applications in several fields. Compounds belonging to the large structural family of derivatives (Moore, 1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]) have been of continuing inter­est due to their structural properties, such as their open-framework architecture and their physical properties. Moreover, the flexibility of the alluaudite structure will, no doubt, permit the use of alluaudite-type phosphates for practical applications, such as corrosion inhibition, passivation of metal surfaces and catalysis (Korzenski et al., 1999[Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390-398.]). These materials abound in magnetic properties of metallic phosphate. Transition metals can play an important role in microporous skeletons by supplying an active catalytic site keeping the selectivity of frames (Weil et al., 2009[Weil, M., Đorđević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111-2117.]). Metallic phosphates present a multitude of structural wealth which are the object of studies of catalysts (Viter & Nagornyi, 2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]; Gao & Gao, 2005[Gao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365-373.]), ion exchange (Clearfield, 1988[Clearfield, A. (1988). Chem. Rev. 88, 125-148.]) and the positive electrode in lithium and sodium batteries (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]). As a result of the presence of channels parallel to [100], alluaudite-type compounds exhibit electronic and/or ionic conductivity, as has been shown by Warner et al. (1993[Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301-309.]). In this context, we have explored A2O–MO–P2O5 systems, where A is a monovalent cation and M a divalent cation. A new alluaudite structure of formula Na2Co2Fe(PO4)3 was synthesized by solid-state reaction. During our investigation of these systems, we characterized the following compounds: AgMg3(PO4)(HPO4)2 (Assani et al., 2011a[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5.]), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.]) and Na2Ni2Fe(PO4)3 (Essehli et al., 2011[Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd. 509, 1163-1171.]). The present paper reports the solid-state synthesis and characterization of a new transition-metal phosphate, namely, Na2Co2Fe(PO4)3.

2. Structural commentary

In the refinement of the first model of this structure, we placed the Fe atom in Wyckoff position 4e and Co in the general position 8f. The results of the refinement of this model are acceptable if we disregard the high weight values. However, bond-valence-sum calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) are not in favor of this model and, consequently, the examination of all possible models led to the best one in which half of the Co, Na, and P atoms are in Wyckoff position 4e, and the second Na atom is in position 4a of the C2/c space group, the remaining Co and Fe fulfilling the 8f site. In this case, bond-valence-sum calculations for Co22+, Co12+, Fe12+, Na1+, Na2+, P15+ and P25+ ions are as expected, viz 1.78, 2.02, 2.81, 1.25, 0.94, 4.98 and 4.99 valence units, respectively.

The new phase of formula Na2Co2Fe(PO4)3 crystallizes in the alluaudite type. The structure of this compound is built up from two edge-sharing [(Co,Fe)O6] octa­hedra, leading to the formation of [(Co,Fe)2O10] dimers that are connected by a common edge to [CoO6] octa­hedra, as shown in Fig. 1[link]. The linkage of alternating [CoO6] and [(Co,Fe)2O10] octa­hedra leads to infinite chains along the [10[\overline{1}]] direction. These chains held together via the vertices of the PO4 tetra­hedra in such a way as to build layers perpendicular to [010] (Fig. 2[link]). The junction of different octa­hedra by common vertices of PO4 tetra­hedra form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [001] accommodating the Na+ cations, as shown in Fig. 3[link]. In the tunnels, each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths varying between 2.2895 (9) and 2.8754 (10) Å) and between 2.3940 (9) and 2.8513 (16) Å, respectively.

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x + 1, −y + 1, −z; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z; (v) −x + 1, y, −z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (vii) x, −y + 1, z + [{1\over 2}]; (viii) x, −y + 1, z − [{1\over 2}]; (ix) −x + 2, y, −z + [{3\over 2}]; (x) −x + 2, −y + 1, −z + 1; (xi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.
[Figure 2]
Figure 2
A layer perpendicular to the b axis, resulting from the chains connected via the vertices of the PO4 tetra­hedra.
[Figure 3]
Figure 3
Polyhedral representation of Na2Co2Fe(PO4)3 showing the tunnels running along the [001] direction.

3. Synthesis and crystallization

Na2Co2Fe(PO4)3 was synthesized by a solid-state reaction by mixing the precursors of sodium (Na2CO3), cobalt (CoCO3), iron (Fe2O3) and phospho­ric acid 85% wt. The various precursors were taken in the molar ratio Na:Co:Fe:P = 2:2:1:3.

After different heat treatments in a platinum crucible up to 873 K, the reaction mixture was heated to the melting point of 1000 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. The resulting product contained brown crystals of a suitable size for the X-ray diffraction study.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The same x, y and z parameters and anisotropic displacement parameters are used for Co1 and Fe1 sharing the same site. Three reflections, (042), (110) and ([\overline{2}]42), probably affected by the beam-stop, were removed during the last refinement cycle. The highest peak and the deepest hole in the final Fourier map are at 0.40 Å and 0.42 Å from Na1 and Na2, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Na2Co2Fe(PO4)3
Mr 504.60
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.7106 (6), 12.4083 (7), 6.4285 (3)
β (°) 113.959 (2)
V3) 853.63 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.26
Crystal size (mm) 0.31 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.504, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 15289, 1882, 1807
Rint 0.030
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.046, 1.10
No. of reflections 1879
No. of parameters 95
Δρmax, Δρmin (e Å−3) 0.70, −0.92
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Disodium dicobalt(II) iron(III) tris(orthophosphate) top
Crystal data top
Na2Co2Fe(PO4)3F(000) = 972
Mr = 504.60Dx = 3.926 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 1882 reflections
a = 11.7106 (6) Åθ = 2.5–34.9°
b = 12.4083 (7) ŵ = 6.26 mm1
c = 6.4285 (3) ÅT = 296 K
β = 113.959 (2)°Block, brown
V = 853.63 (8) Å30.31 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
1882 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 34.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.504, Tmax = 0.748k = 2020
15289 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.026P)2 + 1.033P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.70 e Å3
1879 reflectionsΔρmin = 0.92 e Å3
95 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.717910 (14)0.842242 (12)0.13094 (2)0.00487 (5)0.50
Co10.717910 (14)0.842242 (12)0.13094 (2)0.00487 (5)0.50
Co20.50000.731171 (18)0.25000.00645 (5)
P10.76483 (3)0.60996 (2)0.37608 (4)0.00406 (6)
P20.50000.29046 (3)0.25000.00393 (7)
Na10.50000.50000.00000.01623 (17)
Na21.00000.48710 (12)0.75000.0343 (3)
O10.77862 (8)0.67773 (7)0.18650 (14)0.00805 (14)
O20.83828 (8)0.66574 (7)0.60820 (14)0.00755 (14)
O30.82670 (9)0.49990 (7)0.38761 (16)0.00954 (15)
O40.62676 (8)0.60150 (7)0.32737 (15)0.00871 (14)
O50.60276 (8)0.36657 (7)0.25279 (15)0.00938 (15)
O60.45930 (8)0.21880 (7)0.03503 (13)0.00683 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00449 (7)0.00506 (7)0.00514 (7)0.00034 (4)0.00203 (5)0.00037 (4)
Co10.00449 (7)0.00506 (7)0.00514 (7)0.00034 (4)0.00203 (5)0.00037 (4)
Co20.00659 (9)0.00646 (9)0.00728 (9)0.0000.00381 (7)0.000
P10.00506 (11)0.00343 (11)0.00348 (10)0.00004 (8)0.00150 (8)0.00003 (7)
P20.00357 (15)0.00423 (15)0.00352 (14)0.0000.00094 (11)0.000
Na10.0262 (4)0.0032 (3)0.0068 (3)0.0017 (3)0.0061 (3)0.0008 (2)
Na20.0187 (5)0.0569 (8)0.0218 (5)0.0000.0026 (4)0.000
O10.0094 (3)0.0097 (3)0.0052 (3)0.0011 (3)0.0031 (3)0.0014 (3)
O20.0097 (3)0.0073 (3)0.0049 (3)0.0018 (3)0.0021 (3)0.0015 (2)
O30.0113 (4)0.0061 (3)0.0109 (3)0.0026 (3)0.0043 (3)0.0012 (3)
O40.0057 (3)0.0080 (3)0.0124 (3)0.0002 (3)0.0037 (3)0.0002 (3)
O50.0063 (3)0.0081 (3)0.0124 (3)0.0022 (3)0.0024 (3)0.0024 (3)
O60.0065 (3)0.0089 (3)0.0047 (3)0.0008 (3)0.0019 (2)0.0019 (2)
Geometric parameters (Å, º) top
Fe1—O5i1.9456 (9)P2—O6v1.5468 (8)
Fe1—O3i2.0158 (9)P2—O61.5468 (8)
Fe1—O2ii2.0374 (9)Na1—O5iii2.2895 (9)
Fe1—O6iii2.0543 (9)Na1—O52.2895 (9)
Fe1—O1iv2.0724 (8)Na1—O4iii2.3835 (9)
Fe1—O12.1434 (9)Na1—O42.3836 (9)
Co2—O4v2.1072 (9)Na1—O4viii2.5217 (9)
Co2—O42.1072 (9)Na1—O4v2.5218 (9)
Co2—O2ii2.1567 (9)Na1—O5v2.8754 (10)
Co2—O2vi2.1568 (9)Na1—O5viii2.8754 (10)
Co2—O6vii2.1632 (8)Na2—O3ix2.3940 (9)
Co2—O6iii2.1632 (8)Na2—O32.3940 (9)
P1—O41.5206 (9)Na2—O3x2.5269 (10)
P1—O31.5336 (9)Na2—O3vii2.5269 (10)
P1—O11.5422 (9)Na2—O2ix2.8158 (15)
P1—O21.5502 (9)Na2—O22.8158 (15)
P2—O5v1.5240 (9)Na2—O6xi2.8513 (16)
P2—O51.5241 (9)Na2—O6xii2.8513 (16)
O5i—Fe1—O3i94.91 (4)O5—Na1—O4viii73.59 (3)
O5i—Fe1—O2ii110.51 (4)O4iii—Na1—O4viii67.32 (4)
O3i—Fe1—O2ii86.18 (4)O4—Na1—O4viii112.68 (4)
O5i—Fe1—O6iii164.12 (4)O5iii—Na1—O4v73.59 (3)
O3i—Fe1—O6iii98.29 (4)O5—Na1—O4v106.41 (3)
O2ii—Fe1—O6iii79.27 (3)O4iii—Na1—O4v112.68 (4)
O5i—Fe1—O1iv86.97 (4)O4—Na1—O4v67.32 (4)
O3i—Fe1—O1iv99.56 (4)O4viii—Na1—O4v180.0
O2ii—Fe1—O1iv161.21 (4)O5iii—Na1—O5v126.25 (4)
O6iii—Fe1—O1iv82.19 (3)O5—Na1—O5v53.75 (4)
O5i—Fe1—O181.40 (4)O4iii—Na1—O5v86.18 (3)
O3i—Fe1—O1174.04 (4)O4—Na1—O5v93.82 (3)
O2ii—Fe1—O190.73 (3)O4viii—Na1—O5v114.14 (3)
O6iii—Fe1—O186.11 (3)O4v—Na1—O5v65.86 (3)
O1iv—Fe1—O184.97 (3)O5iii—Na1—O5viii53.75 (4)
O4v—Co2—O480.44 (5)O5—Na1—O5viii126.25 (4)
O4v—Co2—O2ii165.05 (3)O4iii—Na1—O5viii93.82 (3)
O4—Co2—O2ii86.54 (3)O4—Na1—O5viii86.18 (3)
O4v—Co2—O2vi86.54 (3)O4viii—Na1—O5viii65.86 (3)
O4—Co2—O2vi165.05 (3)O4v—Na1—O5viii114.14 (3)
O2ii—Co2—O2vi107.25 (5)O5v—Na1—O5viii180.0
O4v—Co2—O6vii92.44 (3)O3ix—Na2—O3172.39 (8)
O4—Co2—O6vii113.30 (3)O3ix—Na2—O3x81.52 (3)
O2ii—Co2—O6vii85.96 (3)O3—Na2—O3x97.99 (3)
O2vi—Co2—O6vii74.34 (3)O3ix—Na2—O3vii97.99 (3)
O4v—Co2—O6iii113.30 (3)O3—Na2—O3vii81.52 (3)
O4—Co2—O6iii92.44 (3)O3x—Na2—O3vii172.68 (8)
O2ii—Co2—O6iii74.34 (3)O3ix—Na2—O2ix55.93 (3)
O2vi—Co2—O6iii85.96 (3)O3—Na2—O2ix117.11 (5)
O6vii—Co2—O6iii146.65 (5)O3x—Na2—O2ix62.15 (3)
O4—P1—O3112.98 (5)O3vii—Na2—O2ix111.51 (5)
O4—P1—O1108.59 (5)O3ix—Na2—O2117.11 (5)
O3—P1—O1108.95 (5)O3—Na2—O255.93 (3)
O4—P1—O2110.92 (5)O3x—Na2—O2111.51 (5)
O3—P1—O2106.53 (5)O3vii—Na2—O262.15 (3)
O1—P1—O2108.78 (5)O2ix—Na2—O276.15 (5)
O5v—P2—O5103.42 (7)O3ix—Na2—O6xi116.10 (5)
O5v—P2—O6v108.79 (5)O3—Na2—O6xi71.28 (4)
O5—P2—O6v112.97 (5)O3x—Na2—O6xi83.54 (4)
O5v—P2—O6112.97 (5)O3vii—Na2—O6xi103.11 (4)
O5—P2—O6108.79 (5)O2ix—Na2—O6xi145.12 (3)
O6v—P2—O6109.82 (7)O2—Na2—O6xi126.19 (2)
O5iii—Na1—O5180.0O3ix—Na2—O6xii71.28 (4)
O5iii—Na1—O4iii78.23 (3)O3—Na2—O6xii116.10 (5)
O5—Na1—O4iii101.77 (3)O3x—Na2—O6xii103.11 (4)
O5iii—Na1—O4101.77 (3)O3vii—Na2—O6xii83.54 (4)
O5—Na1—O478.23 (3)O2ix—Na2—O6xii126.19 (2)
O4iii—Na1—O4180.0O2—Na2—O6xii145.12 (3)
O5iii—Na1—O4viii106.41 (3)O6xi—Na2—O6xii52.71 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z; (iv) x+3/2, y+3/2, z; (v) x+1, y, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z1/2; (ix) x+2, y, z+3/2; (x) x+2, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClearfield, A. (1988). Chem. Rev. 88, 125–148.  CrossRef CAS Web of Science Google Scholar
First citationEssehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd. 509, 1163–1171.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365–373.  Web of Science CrossRef CAS Google Scholar
First citationKorzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398.  Web of Science CrossRef CAS Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar
First citationWarner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.  CrossRef CAS Web of Science Google Scholar
First citationWeil, M., Đorđević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111–2117.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds