research communications
of disodium dicobalt(II) iron(III) tris(orthophosphate) with an alluaudite-like structure
aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bDépartement de chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: adam_bouraima@yahoo.fr
The title compound, Na2Co2Fe(PO4)3, was synthesized by a solid-state reaction. This new stoichiometric phase crystallizes in an alluaudite-like structure. In this structure, all atoms are in general positions except for four atoms which are located at the special positions of the C2/c One Co atom, one P and one Na atom are all located on 4e (2), while the second Na atom is located on an inversion centre 4a (-1). The other Co and Fe atoms occupy a general position with a statistical distribution. The open framework results from [(Co,Fe)2O10] units of edge-sharing [(Co,Fe)O6] octahedra, which alternate with [CoO6] octahedra that form infinite chains running along the [10-1] direction. These chains are linked together through PO4 tetrahedra by the sharing of vertices so as to build layers perpendicular to [010]. The three-dimensional framework is accomplished by the stacking of these layers, leading to the formation of two types of tunnels parallel to [010] in which the Na+ cations are located, each cation being surrounded by eight O atoms.
Keywords: crystal structure; transition metal phosphates; solid-state reaction synthesis; Na2Co2Fe(PO4)3; alluaudite-like structure.
CCDC reference: 1060932
1. Chemical context
A particular focus of ours concerns compounds with alluaudite-type structures, and we set the objective of synthesising new transition-metal-based phosphates within the well-known alluaudite family. We are interested in this because transition-metal phosphates are of great interest with applications in several fields. Compounds belonging to the large structural family of derivatives (Moore, 1971) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Moreover, the flexibility of the alluaudite structure will, no doubt, permit the use of alluaudite-type phosphates for practical applications, such as corrosion inhibition, passivation of metal surfaces and catalysis (Korzenski et al., 1999). These materials abound in magnetic properties of metallic phosphate. Transition metals can play an important role in microporous skeletons by supplying an active catalytic site keeping the selectivity of frames (Weil et al., 2009). Metallic phosphates present a multitude of structural wealth which are the object of studies of catalysts (Viter & Nagornyi, 2009; Gao & Gao, 2005), ion exchange (Clearfield, 1988) and the positive electrode in lithium and sodium batteries (Trad et al., 2010). As a result of the presence of channels parallel to [100], alluaudite-type compounds exhibit electronic and/or as has been shown by Warner et al. (1993). In this context, we have explored A2O–MO–P2O5 systems, where A is a monovalent cation and M a divalent cation. A new alluaudite structure of formula Na2Co2Fe(PO4)3 was synthesized by solid-state reaction. During our investigation of these systems, we characterized the following compounds: AgMg3(PO4)(HPO4)2 (Assani et al., 2011a), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b) and Na2Ni2Fe(PO4)3 (Essehli et al., 2011). The present paper reports the solid-state synthesis and characterization of a new transition-metal phosphate, namely, Na2Co2Fe(PO4)3.
2. Structural commentary
In the e and Co in the general position 8f. The results of the of this model are acceptable if we disregard the high weight values. However, bond-valence-sum calculations (Brown & Altermatt, 1985) are not in favor of this model and, consequently, the examination of all possible models led to the best one in which half of the Co, Na, and P atoms are in 4e, and the second Na atom is in position 4a of the C2/c the remaining Co and Fe fulfilling the 8f site. In this case, bond-valence-sum calculations for Co22+, Co12+, Fe12+, Na1+, Na2+, P15+ and P25+ ions are as expected, viz 1.78, 2.02, 2.81, 1.25, 0.94, 4.98 and 4.99 valence units, respectively.
of the first model of this structure, we placed the Fe atom in 4The new phase of formula Na2Co2Fe(PO4)3 crystallizes in the alluaudite type. The structure of this compound is built up from two edge-sharing [(Co,Fe)O6] octahedra, leading to the formation of [(Co,Fe)2O10] dimers that are connected by a common edge to [CoO6] octahedra, as shown in Fig. 1. The linkage of alternating [CoO6] and [(Co,Fe)2O10] octahedra leads to infinite chains along the [10] direction. These chains held together via the vertices of the PO4 tetrahedra in such a way as to build layers perpendicular to [010] (Fig. 2). The junction of different octahedra by common vertices of PO4 tetrahedra form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [001] accommodating the Na+ cations, as shown in Fig. 3. In the tunnels, each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths varying between 2.2895 (9) and 2.8754 (10) Å) and between 2.3940 (9) and 2.8513 (16) Å, respectively.
3. Synthesis and crystallization
Na2Co2Fe(PO4)3 was synthesized by a solid-state reaction by mixing the precursors of sodium (Na2CO3), cobalt (CoCO3), iron (Fe2O3) and phosphoric acid 85% wt. The various precursors were taken in the molar ratio Na:Co:Fe:P = 2:2:1:3.
After different heat treatments in a platinum crucible up to 873 K, the reaction mixture was heated to the melting point of 1000 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. The resulting product contained brown crystals of a suitable size for the X-ray diffraction study.
4. Refinement
Crystal data, data collection and structure . The same x, y and z parameters and anisotropic displacement parameters are used for Co1 and Fe1 sharing the same site. Three reflections, (042), (110) and (42), probably affected by the beam-stop, were removed during the last cycle. The highest peak and the deepest hole in the final Fourier map are at 0.40 Å and 0.42 Å from Na1 and Na2, respectively.
details are summarized in Table 1Supporting information
CCDC reference: 1060932
https://doi.org/10.1107/S2056989015007926/br2248sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007926/br2248Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Na2Co2Fe(PO4)3 | F(000) = 972 |
Mr = 504.60 | Dx = 3.926 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -c 2yc | Cell parameters from 1882 reflections |
a = 11.7106 (6) Å | θ = 2.5–34.9° |
b = 12.4083 (7) Å | µ = 6.26 mm−1 |
c = 6.4285 (3) Å | T = 296 K |
β = 113.959 (2)° | Block, brown |
V = 853.63 (8) Å3 | 0.31 × 0.25 × 0.19 mm |
Z = 4 |
Bruker X8 APEX diffractometer | 1882 independent reflections |
Radiation source: fine-focus sealed tube | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 34.9°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→18 |
Tmin = 0.504, Tmax = 0.748 | k = −20→20 |
15289 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.026P)2 + 1.033P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.046 | (Δ/σ)max = 0.002 |
S = 1.10 | Δρmax = 0.70 e Å−3 |
1879 reflections | Δρmin = −0.92 e Å−3 |
95 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0049 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.717910 (14) | 0.842242 (12) | 0.13094 (2) | 0.00487 (5) | 0.50 |
Co1 | 0.717910 (14) | 0.842242 (12) | 0.13094 (2) | 0.00487 (5) | 0.50 |
Co2 | 0.5000 | 0.731171 (18) | 0.2500 | 0.00645 (5) | |
P1 | 0.76483 (3) | 0.60996 (2) | 0.37608 (4) | 0.00406 (6) | |
P2 | 0.5000 | 0.29046 (3) | 0.2500 | 0.00393 (7) | |
Na1 | 0.5000 | 0.5000 | 0.0000 | 0.01623 (17) | |
Na2 | 1.0000 | 0.48710 (12) | 0.7500 | 0.0343 (3) | |
O1 | 0.77862 (8) | 0.67773 (7) | 0.18650 (14) | 0.00805 (14) | |
O2 | 0.83828 (8) | 0.66574 (7) | 0.60820 (14) | 0.00755 (14) | |
O3 | 0.82670 (9) | 0.49990 (7) | 0.38761 (16) | 0.00954 (15) | |
O4 | 0.62676 (8) | 0.60150 (7) | 0.32737 (15) | 0.00871 (14) | |
O5 | 0.60276 (8) | 0.36657 (7) | 0.25279 (15) | 0.00938 (15) | |
O6 | 0.45930 (8) | 0.21880 (7) | 0.03503 (13) | 0.00683 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.00449 (7) | 0.00506 (7) | 0.00514 (7) | −0.00034 (4) | 0.00203 (5) | −0.00037 (4) |
Co1 | 0.00449 (7) | 0.00506 (7) | 0.00514 (7) | −0.00034 (4) | 0.00203 (5) | −0.00037 (4) |
Co2 | 0.00659 (9) | 0.00646 (9) | 0.00728 (9) | 0.000 | 0.00381 (7) | 0.000 |
P1 | 0.00506 (11) | 0.00343 (11) | 0.00348 (10) | −0.00004 (8) | 0.00150 (8) | −0.00003 (7) |
P2 | 0.00357 (15) | 0.00423 (15) | 0.00352 (14) | 0.000 | 0.00094 (11) | 0.000 |
Na1 | 0.0262 (4) | 0.0032 (3) | 0.0068 (3) | 0.0017 (3) | −0.0061 (3) | 0.0008 (2) |
Na2 | 0.0187 (5) | 0.0569 (8) | 0.0218 (5) | 0.000 | 0.0026 (4) | 0.000 |
O1 | 0.0094 (3) | 0.0097 (3) | 0.0052 (3) | −0.0011 (3) | 0.0031 (3) | 0.0014 (3) |
O2 | 0.0097 (3) | 0.0073 (3) | 0.0049 (3) | −0.0018 (3) | 0.0021 (3) | −0.0015 (2) |
O3 | 0.0113 (4) | 0.0061 (3) | 0.0109 (3) | 0.0026 (3) | 0.0043 (3) | −0.0012 (3) |
O4 | 0.0057 (3) | 0.0080 (3) | 0.0124 (3) | −0.0002 (3) | 0.0037 (3) | 0.0002 (3) |
O5 | 0.0063 (3) | 0.0081 (3) | 0.0124 (3) | −0.0022 (3) | 0.0024 (3) | 0.0024 (3) |
O6 | 0.0065 (3) | 0.0089 (3) | 0.0047 (3) | −0.0008 (3) | 0.0019 (2) | −0.0019 (2) |
Fe1—O5i | 1.9456 (9) | P2—O6v | 1.5468 (8) |
Fe1—O3i | 2.0158 (9) | P2—O6 | 1.5468 (8) |
Fe1—O2ii | 2.0374 (9) | Na1—O5iii | 2.2895 (9) |
Fe1—O6iii | 2.0543 (9) | Na1—O5 | 2.2895 (9) |
Fe1—O1iv | 2.0724 (8) | Na1—O4iii | 2.3835 (9) |
Fe1—O1 | 2.1434 (9) | Na1—O4 | 2.3836 (9) |
Co2—O4v | 2.1072 (9) | Na1—O4viii | 2.5217 (9) |
Co2—O4 | 2.1072 (9) | Na1—O4v | 2.5218 (9) |
Co2—O2ii | 2.1567 (9) | Na1—O5v | 2.8754 (10) |
Co2—O2vi | 2.1568 (9) | Na1—O5viii | 2.8754 (10) |
Co2—O6vii | 2.1632 (8) | Na2—O3ix | 2.3940 (9) |
Co2—O6iii | 2.1632 (8) | Na2—O3 | 2.3940 (9) |
P1—O4 | 1.5206 (9) | Na2—O3x | 2.5269 (10) |
P1—O3 | 1.5336 (9) | Na2—O3vii | 2.5269 (10) |
P1—O1 | 1.5422 (9) | Na2—O2ix | 2.8158 (15) |
P1—O2 | 1.5502 (9) | Na2—O2 | 2.8158 (15) |
P2—O5v | 1.5240 (9) | Na2—O6xi | 2.8513 (16) |
P2—O5 | 1.5241 (9) | Na2—O6xii | 2.8513 (16) |
O5i—Fe1—O3i | 94.91 (4) | O5—Na1—O4viii | 73.59 (3) |
O5i—Fe1—O2ii | 110.51 (4) | O4iii—Na1—O4viii | 67.32 (4) |
O3i—Fe1—O2ii | 86.18 (4) | O4—Na1—O4viii | 112.68 (4) |
O5i—Fe1—O6iii | 164.12 (4) | O5iii—Na1—O4v | 73.59 (3) |
O3i—Fe1—O6iii | 98.29 (4) | O5—Na1—O4v | 106.41 (3) |
O2ii—Fe1—O6iii | 79.27 (3) | O4iii—Na1—O4v | 112.68 (4) |
O5i—Fe1—O1iv | 86.97 (4) | O4—Na1—O4v | 67.32 (4) |
O3i—Fe1—O1iv | 99.56 (4) | O4viii—Na1—O4v | 180.0 |
O2ii—Fe1—O1iv | 161.21 (4) | O5iii—Na1—O5v | 126.25 (4) |
O6iii—Fe1—O1iv | 82.19 (3) | O5—Na1—O5v | 53.75 (4) |
O5i—Fe1—O1 | 81.40 (4) | O4iii—Na1—O5v | 86.18 (3) |
O3i—Fe1—O1 | 174.04 (4) | O4—Na1—O5v | 93.82 (3) |
O2ii—Fe1—O1 | 90.73 (3) | O4viii—Na1—O5v | 114.14 (3) |
O6iii—Fe1—O1 | 86.11 (3) | O4v—Na1—O5v | 65.86 (3) |
O1iv—Fe1—O1 | 84.97 (3) | O5iii—Na1—O5viii | 53.75 (4) |
O4v—Co2—O4 | 80.44 (5) | O5—Na1—O5viii | 126.25 (4) |
O4v—Co2—O2ii | 165.05 (3) | O4iii—Na1—O5viii | 93.82 (3) |
O4—Co2—O2ii | 86.54 (3) | O4—Na1—O5viii | 86.18 (3) |
O4v—Co2—O2vi | 86.54 (3) | O4viii—Na1—O5viii | 65.86 (3) |
O4—Co2—O2vi | 165.05 (3) | O4v—Na1—O5viii | 114.14 (3) |
O2ii—Co2—O2vi | 107.25 (5) | O5v—Na1—O5viii | 180.0 |
O4v—Co2—O6vii | 92.44 (3) | O3ix—Na2—O3 | 172.39 (8) |
O4—Co2—O6vii | 113.30 (3) | O3ix—Na2—O3x | 81.52 (3) |
O2ii—Co2—O6vii | 85.96 (3) | O3—Na2—O3x | 97.99 (3) |
O2vi—Co2—O6vii | 74.34 (3) | O3ix—Na2—O3vii | 97.99 (3) |
O4v—Co2—O6iii | 113.30 (3) | O3—Na2—O3vii | 81.52 (3) |
O4—Co2—O6iii | 92.44 (3) | O3x—Na2—O3vii | 172.68 (8) |
O2ii—Co2—O6iii | 74.34 (3) | O3ix—Na2—O2ix | 55.93 (3) |
O2vi—Co2—O6iii | 85.96 (3) | O3—Na2—O2ix | 117.11 (5) |
O6vii—Co2—O6iii | 146.65 (5) | O3x—Na2—O2ix | 62.15 (3) |
O4—P1—O3 | 112.98 (5) | O3vii—Na2—O2ix | 111.51 (5) |
O4—P1—O1 | 108.59 (5) | O3ix—Na2—O2 | 117.11 (5) |
O3—P1—O1 | 108.95 (5) | O3—Na2—O2 | 55.93 (3) |
O4—P1—O2 | 110.92 (5) | O3x—Na2—O2 | 111.51 (5) |
O3—P1—O2 | 106.53 (5) | O3vii—Na2—O2 | 62.15 (3) |
O1—P1—O2 | 108.78 (5) | O2ix—Na2—O2 | 76.15 (5) |
O5v—P2—O5 | 103.42 (7) | O3ix—Na2—O6xi | 116.10 (5) |
O5v—P2—O6v | 108.79 (5) | O3—Na2—O6xi | 71.28 (4) |
O5—P2—O6v | 112.97 (5) | O3x—Na2—O6xi | 83.54 (4) |
O5v—P2—O6 | 112.97 (5) | O3vii—Na2—O6xi | 103.11 (4) |
O5—P2—O6 | 108.79 (5) | O2ix—Na2—O6xi | 145.12 (3) |
O6v—P2—O6 | 109.82 (7) | O2—Na2—O6xi | 126.19 (2) |
O5iii—Na1—O5 | 180.0 | O3ix—Na2—O6xii | 71.28 (4) |
O5iii—Na1—O4iii | 78.23 (3) | O3—Na2—O6xii | 116.10 (5) |
O5—Na1—O4iii | 101.77 (3) | O3x—Na2—O6xii | 103.11 (4) |
O5iii—Na1—O4 | 101.77 (3) | O3vii—Na2—O6xii | 83.54 (4) |
O5—Na1—O4 | 78.23 (3) | O2ix—Na2—O6xii | 126.19 (2) |
O4iii—Na1—O4 | 180.0 | O2—Na2—O6xii | 145.12 (3) |
O5iii—Na1—O4viii | 106.41 (3) | O6xi—Na2—O6xii | 52.71 (4) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+3/2, −y+3/2, −z; (v) −x+1, y, −z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) x, −y+1, z+1/2; (viii) x, −y+1, z−1/2; (ix) −x+2, y, −z+3/2; (x) −x+2, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+3/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
References
Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. Web of Science CrossRef IUCr Journals Google Scholar
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clearfield, A. (1988). Chem. Rev. 88, 125–148. CrossRef CAS Web of Science Google Scholar
Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd. 509, 1163–1171. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365–373. Web of Science CrossRef CAS Google Scholar
Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398. Web of Science CrossRef CAS Google Scholar
Moore, P. B. (1971). Am. Mineral. 56, 1955–1975. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. Web of Science CrossRef CAS Google Scholar
Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939. Web of Science CrossRef CAS Google Scholar
Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309. CrossRef CAS Web of Science Google Scholar
Weil, M., Đorđević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111–2117. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.