metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ-peroxido-κ4O1,O2:O1′,O2′-bis­­[(nitrato-κO)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)dioxidouranium(VI)]

aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp

Edited by A. M. Chippindale, University of Reading, England (Received 31 March 2015; accepted 22 April 2015; online 25 April 2015)

In the title dimeric complex, [{UO2(NO3)(C15H11N3)}2O2], a peroxide ion bridges the two uran­yl(VI) [O=U=O]2+ ions. The O—O bond length of the peroxide is 1.485 (6) Å and the mid-point of this bond is located at the inversion centre of the dimer. The U atom exhibits a distorted hexa­gonal–bipyramidal coordination geometry with two uran­yl(VI) O atoms occupying the axial positions and one O atom of the monodentate nitrate ion, both O atoms of the peroxide ion and the three N atoms of the chelating tridentate 2,2′:6′,2′′-terpyridine (terpy) ligand in the equatorial positions. Two of the N atoms of the terpy ligand lie above and below the mean plane containing the equatorial ligand atoms and the U atom [deviations from the mean plane: maximum 0.500 (2), minimum −0.472 (2) and r.m.s. = 0.2910 Å]. The dihedral angle between the terpy ligand and the mean plane is 35.61 (7)°. The bond lengths around the U atom decrease in the order U—N > U—Onitrate > U—Operoxo > U=O. The dimeric complexes pack in a three-dimensional network held together by weak ππ inter­actions [centroid–centroid distance = 3.659 (3) Å] between pyridyl rings of the terpy ligands in neighbouring dimers, together with inter­molecular C—H⋯O and C—H⋯π inter­actions. Weak intra­molecular C—H⋯O inter­actions are also observed.

1. Related literature

For the structures of uran­yl(VI) complexes with terpy, see: Berthet et al. (2004[Berthet, J.-C., Nierlich, M. & Ephritikhine, M. (2004). Dalton Trans. pp. 2814-2821.]). For the structures of uran­yl(VI) μ-κ2:κ2-peroxide complexes, see:Charushnikova et al. (2001[Charushnikova, I. A., Krot, N. N. & Strarikova, Z. A. (2001). Radiochemistry, 43, 508-512.]); Goff et al. (2008[Goff, G. S., Brodnax, L. F., Cisneros, M. R., Peper, S. M., Field, S. E., Scott, B. L. & Runde, W. H. (2008). Inorg. Chem. 47, 1984-1990.]); John et al. (2004[John, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734-740.]); Sigmon et al. (2009[Sigmon, G. E., Ling, J., Unruh, D. K., Moore-Shay, L., Ward, M., Weaver, B. & Burns, P. C. (2009). J. Am. Chem. Soc. 131, 16648-16649.]); Takao & Ikeda (2010[Takao, K. & Ikeda, Y. (2010). Acta Cryst. E66, m539-m540.]). For the structures of a uran­yl(VI) complex with terpy and a uran­yl(VI) μ-κ2:κ2-peroxide complex, see: Charushnikova & Den Auwer (2004[Charushnikova, I. A. & Den Auwer, C. (2004). Russ. J. Coord. Chem. 30, 511-519.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [U2(NO3)2(O2)O4(C15H11N3)2]

  • Mr = 1162.62

  • Monoclinic, P 21 /c

  • a = 13.4924 (11) Å

  • b = 10.2791 (8) Å

  • c = 12.6977 (10) Å

  • β = 114.691 (1)°

  • V = 1600.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.19 mm−1

  • T = 90 K

  • 0.28 × 0.14 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: analytical (XPREP; Bruker, 2007[Bruker (2007). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.163, Tmax = 0.580

  • 11692 measured reflections

  • 4695 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.063

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.058

  • S = 0.89

  • 4695 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 2.24 e Å−3

  • Δρmin = −1.57 e Å−3

Table 1
Selected geometric parameters (Å, °)

U1—O1 1.777 (3)
U1—O2 1.775 (3)
U1—O3 2.340 (3)
U1—O3i 2.325 (3)
U1—O4 2.479 (3)
U1—N1 2.574 (3)
U1—N2 2.634 (3)
U1—N3 2.593 (3)
O3—O3i 1.485 (6)
O4—N4 1.295 (5)
O5—N4 1.232 (5)
O6—N4 1.240 (4)
O1—U1—O2 177.31 (13)
O1—U1—O3 91.64 (14)
O1—U1—O3i 90.58 (14)
O1—U1—O4 85.85 (12)
O3i—U1—O3 37.12 (13)
O3—U1—O4 66.75 (10)
O1—U1—N1 89.42 (13)
O3i—U1—N1 71.44 (10)
O1—U1—N2 76.01 (12)
O1—U1—N3 100.67 (13)
O4—U1—N3 70.03 (11)
N1—U1—N2 61.29 (11)
N2—U1—N3 60.44 (11)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C10/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.95 2.28 2.773 (6) 112
C1—H1⋯O4i 0.95 2.59 3.225 (5) 125
C2—H2⋯O6i 0.95 2.59 3.357 (6) 137
C3—H3⋯O1ii 0.95 2.58 3.176 (6) 121
C4—H4⋯O1ii 0.95 2.55 3.162 (6) 122
C12—H12⋯O5iii 0.95 2.32 3.256 (6) 169
C14—H14⋯O6iv 0.95 2.48 3.246 (7) 138
C15—H15⋯Cg2v 0.95 2.62 3.512 (5) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the structures of uranyl(VI) complexes with terpy, see: Berthet et al. (2004). For the structures of uranyl(VI) µ-η2:η2-peroxide complexes, see:Charushnikova et al. (2001); Goff et al. (2008); John et al. (2004); Sigmon et al. (2009); Takao & Ikeda (2010). For the structures of a uranyl(VI) complex with terpy and a uranyl(VI) µ-η2:η2-peroxide complex, see: Charushnikova & Den Auwer (2004).

Experimental top

10 ml of a methanolic solution containing 0.5 mmol of terpy was added to 10 ml of a methanolic solution containing 0.5 mmol of UO2(NO3)2·6H2O contained in a glass sample vial. The vial w as sealed with a lid and kept in sunlight at room temperature. Yellow crystals grew after one day. The crystal structure of the yellow material has not yet been determined. After about two months, orange crystals of the title complex were obtained.

Refinement top

All H atoms were placed at calculated positions, with C(CH)—H = 0.95 Å and allowed to ride on the parent atoms, with Uiso(H) = 1.2Ueq(C). The (1 0 0) reflection, affected by the beamstop, was omitted from the final refinement.

Structure description top

For the structures of uranyl(VI) complexes with terpy, see: Berthet et al. (2004). For the structures of uranyl(VI) µ-η2:η2-peroxide complexes, see:Charushnikova et al. (2001); Goff et al. (2008); John et al. (2004); Sigmon et al. (2009); Takao & Ikeda (2010). For the structures of a uranyl(VI) complex with terpy and a uranyl(VI) µ-η2:η2-peroxide complex, see: Charushnikova & Den Auwer (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Structure of the dimer [{UO2(NO3)(C15H11N3)}2O2]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]
[Figure 2] Fig. 2. Packing diagram of [{UO2(NO3)(C15H11N3)}2O2]. Dashed lines and dotted lines are ππ and C—H···π interactions, respectively.
µ-Peroxido-κ4O1,O2:O1',O2'-bis[(nitrato-κO)(2,2':6',2''-terpyridine-κ3N,N',N'')dioxidouranium(VI)] top
Crystal data top
[U2(NO3)2(O2)O4(C15H11N3)2]F(000) = 1076
Mr = 1162.62Dx = 2.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4370 reflections
a = 13.4924 (11) Åθ = 2.6–30.1°
b = 10.2791 (8) ŵ = 10.19 mm1
c = 12.6977 (10) ÅT = 90 K
β = 114.691 (1)°Plate, orange
V = 1600.0 (2) Å30.28 × 0.14 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4695 independent reflections
Radiation source: fine-focus sealed tube3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 8.333 pixels mm-1θmax = 31.0°, θmin = 2.6°
phi and ω scansh = 1917
Absorption correction: analytical
(XPREP; Bruker, 2007)
k = 145
Tmin = 0.163, Tmax = 0.580l = 1818
11692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0123P)2]
where P = (Fo2 + 2Fc2)/3
4695 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 2.24 e Å3
0 restraintsΔρmin = 1.57 e Å3
Crystal data top
[U2(NO3)2(O2)O4(C15H11N3)2]V = 1600.0 (2) Å3
Mr = 1162.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4924 (11) ŵ = 10.19 mm1
b = 10.2791 (8) ÅT = 90 K
c = 12.6977 (10) Å0.28 × 0.14 × 0.06 mm
β = 114.691 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4695 independent reflections
Absorption correction: analytical
(XPREP; Bruker, 2007)
3636 reflections with I > 2σ(I)
Tmin = 0.163, Tmax = 0.580Rint = 0.063
11692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.89Δρmax = 2.24 e Å3
4695 reflectionsΔρmin = 1.57 e Å3
235 parameters
Special details top

Experimental. face-indexed absorption correction carried out with XPREP (Bruker, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.387048 (13)0.333645 (14)0.466857 (14)0.00993 (5)
O10.3311 (3)0.3633 (3)0.3151 (3)0.0176 (7)
O20.4441 (3)0.2963 (3)0.6171 (3)0.0168 (7)
O30.4596 (3)0.5439 (3)0.5073 (4)0.0306 (10)
O40.2546 (2)0.4979 (3)0.4721 (3)0.0152 (6)
O50.1152 (3)0.4243 (3)0.3199 (3)0.0242 (8)
O60.1038 (3)0.6064 (3)0.4006 (3)0.0283 (9)
N10.5298 (3)0.1823 (3)0.4461 (3)0.0126 (7)
N20.3249 (3)0.1020 (3)0.3740 (3)0.0097 (7)
N30.2240 (3)0.2190 (3)0.4857 (3)0.0129 (7)
N40.1554 (3)0.5090 (4)0.3945 (3)0.0165 (8)
C10.6361 (4)0.2172 (4)0.4933 (4)0.0142 (9)
H10.65850.28510.54910.017*
C20.7141 (4)0.1591 (4)0.4644 (4)0.0147 (9)
H20.78820.18580.50060.018*
C30.6820 (4)0.0616 (4)0.3821 (4)0.0157 (9)
H30.73290.02260.35800.019*
C40.5733 (3)0.0215 (4)0.3351 (4)0.0146 (9)
H40.54940.04680.27970.018*
C50.5008 (3)0.0823 (4)0.3700 (4)0.0109 (8)
C60.3841 (3)0.0422 (4)0.3258 (4)0.0116 (8)
C70.3392 (4)0.0538 (4)0.2412 (4)0.0149 (9)
H70.38310.09770.21030.018*
C80.2299 (4)0.0839 (4)0.2032 (4)0.0163 (9)
H80.19710.14640.14360.020*
C90.1686 (4)0.0219 (4)0.2529 (4)0.0164 (9)
H90.09340.04150.22810.020*
C100.2192 (3)0.0695 (4)0.3396 (4)0.0108 (8)
C110.1638 (4)0.1318 (4)0.4050 (4)0.0118 (8)
C120.0579 (4)0.0988 (4)0.3906 (4)0.0173 (10)
H120.01480.03960.33180.021*
C130.0181 (4)0.1539 (5)0.4633 (5)0.0229 (11)
H130.05430.13520.45300.027*
C140.0819 (4)0.2362 (4)0.5515 (4)0.0193 (10)
H140.05640.27020.60520.023*
C150.1850 (4)0.2679 (4)0.5589 (4)0.0156 (9)
H150.22930.32610.61790.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01075 (8)0.00727 (7)0.01268 (8)0.00116 (7)0.00578 (6)0.00132 (7)
O10.0249 (18)0.0142 (15)0.0175 (17)0.0044 (14)0.0126 (15)0.0039 (13)
O20.0163 (16)0.0199 (15)0.0080 (16)0.0007 (14)0.0011 (13)0.0061 (13)
O30.0182 (18)0.0076 (14)0.075 (3)0.0007 (14)0.028 (2)0.0085 (17)
O40.0111 (14)0.0162 (14)0.0164 (16)0.0003 (14)0.0038 (13)0.0012 (14)
O50.0236 (18)0.0189 (16)0.023 (2)0.0019 (15)0.0024 (16)0.0031 (15)
O60.0224 (19)0.0228 (17)0.034 (2)0.0124 (16)0.0064 (17)0.0034 (17)
N10.0164 (18)0.0082 (16)0.0143 (19)0.0006 (15)0.0076 (16)0.0001 (14)
N20.0126 (17)0.0074 (15)0.0074 (17)0.0017 (14)0.0025 (15)0.0016 (13)
N30.0180 (19)0.0115 (16)0.0102 (19)0.0002 (16)0.0069 (16)0.0012 (14)
N40.0161 (18)0.0158 (17)0.017 (2)0.0033 (18)0.0066 (16)0.0043 (17)
C10.018 (2)0.0094 (18)0.016 (2)0.0009 (18)0.007 (2)0.0004 (17)
C20.016 (2)0.0102 (18)0.019 (2)0.0000 (19)0.0094 (19)0.0028 (18)
C30.022 (2)0.016 (2)0.014 (2)0.0001 (19)0.012 (2)0.0025 (18)
C40.018 (2)0.015 (2)0.010 (2)0.0022 (18)0.0046 (18)0.0002 (17)
C50.013 (2)0.0101 (18)0.008 (2)0.0009 (17)0.0025 (17)0.0038 (16)
C60.014 (2)0.0117 (19)0.009 (2)0.0030 (17)0.0043 (18)0.0006 (16)
C70.018 (2)0.015 (2)0.013 (2)0.0036 (19)0.0064 (19)0.0046 (17)
C80.022 (2)0.014 (2)0.009 (2)0.0040 (19)0.0031 (19)0.0054 (17)
C90.016 (2)0.018 (2)0.013 (2)0.0082 (19)0.0035 (18)0.0031 (18)
C100.013 (2)0.0084 (18)0.009 (2)0.0002 (17)0.0033 (17)0.0006 (16)
C110.014 (2)0.0091 (18)0.010 (2)0.0002 (17)0.0036 (17)0.0012 (16)
C120.017 (2)0.016 (2)0.019 (3)0.0022 (19)0.007 (2)0.0003 (19)
C130.014 (2)0.026 (2)0.032 (3)0.004 (2)0.013 (2)0.002 (2)
C140.024 (3)0.017 (2)0.023 (3)0.001 (2)0.016 (2)0.0033 (19)
C150.021 (2)0.013 (2)0.013 (2)0.0002 (19)0.0074 (19)0.0010 (17)
Geometric parameters (Å, º) top
U1—O11.777 (3)C2—H20.9500
U1—O21.775 (3)C3—C41.395 (6)
U1—O32.340 (3)C3—H30.9500
U1—O3i2.325 (3)C4—C51.380 (6)
U1—O42.479 (3)C4—H40.9500
U1—N12.574 (3)C5—C61.492 (6)
U1—N22.634 (3)C6—C71.397 (6)
U1—N32.593 (3)C7—C81.381 (6)
O3—O3i1.485 (6)C7—H70.9500
O3—U1i2.325 (3)C8—C91.388 (6)
O4—N41.295 (5)C8—H80.9500
O5—N41.232 (5)C9—C101.391 (6)
O6—N41.240 (4)C9—H90.9500
N1—C11.351 (6)C10—C111.476 (6)
N1—C51.351 (5)C11—C121.404 (6)
N2—C61.342 (5)C12—C131.369 (6)
N2—C101.347 (5)C12—H120.9500
N3—C151.343 (5)C13—C141.380 (7)
N3—C111.348 (5)C13—H130.9500
C1—C21.386 (6)C14—C151.393 (6)
C1—H10.9500C14—H140.9500
C2—C31.380 (6)C15—H150.9500
Cg(C1–C5/N1)···Cg(C6–C10/N2)ii3.659 (3)
O1—U1—O2177.31 (13)N1—C1—H1118.3
O1—U1—O391.64 (14)C2—C1—H1118.3
O1—U1—O3i90.58 (14)C3—C2—C1118.7 (4)
O1—U1—O485.85 (12)C3—C2—H2120.7
O2—U1—O390.58 (14)C1—C2—H2120.7
O2—U1—O3i90.28 (15)C2—C3—C4118.7 (4)
O2—U1—O496.43 (12)C2—C3—H3120.7
O3i—U1—O337.12 (13)C4—C3—H3120.7
O3—U1—O466.75 (10)C5—C4—C3119.2 (4)
O3i—U1—O4103.66 (10)C5—C4—H4120.4
O1—U1—N189.42 (13)C3—C4—H4120.4
O2—U1—N188.43 (13)N1—C5—C4122.8 (4)
O3—U1—N1108.56 (10)N1—C5—C6115.1 (4)
O3i—U1—N171.44 (10)C4—C5—C6122.1 (4)
O4—U1—N1173.19 (10)N2—C6—C7121.7 (4)
O1—U1—N276.01 (12)N2—C6—C5115.9 (4)
O2—U1—N2101.52 (12)C7—C6—C5122.4 (4)
O3—U1—N2163.57 (12)C8—C7—C6118.9 (4)
O3i—U1—N2130.60 (10)C8—C7—H7120.5
O4—U1—N2121.97 (10)C6—C7—H7120.5
O1—U1—N3100.67 (13)C7—C8—C9119.4 (4)
O2—U1—N378.83 (13)C7—C8—H8120.3
O3—U1—N3133.88 (11)C9—C8—H8120.3
O3i—U1—N3166.46 (13)C8—C9—C10118.7 (4)
O4—U1—N370.03 (11)C8—C9—H9120.6
N1—U1—N261.29 (11)C10—C9—H9120.6
N1—U1—N3115.77 (11)N2—C10—C9121.8 (4)
N2—U1—N360.44 (11)N2—C10—C11115.3 (4)
O3i—O3—U1i72.0 (2)C9—C10—C11122.8 (4)
O3i—O3—U170.9 (2)N3—C11—C12121.2 (4)
U1i—O3—U1142.88 (13)N3—C11—C10115.4 (4)
N4—O4—U1124.6 (3)C12—C11—C10123.3 (4)
C1—N1—C5117.1 (4)C13—C12—C11118.4 (4)
C1—N1—U1119.7 (3)C13—C12—H12120.8
C5—N1—U1121.8 (3)C11—C12—H12120.8
C6—N2—C10119.3 (4)C12—C13—C14120.9 (4)
C6—N2—U1118.7 (3)C12—C13—H13119.6
C10—N2—U1117.7 (3)C14—C13—H13119.6
C11—N3—C15119.2 (4)C13—C14—C15117.7 (4)
C11—N3—U1119.9 (3)C13—C14—H14121.2
C15—N3—U1119.1 (3)C15—C14—H14121.2
O4—N4—O5120.4 (4)N3—C15—C14122.4 (4)
O4—N4—O6116.9 (4)N3—C15—H15118.8
O5—N4—O6122.7 (4)C14—C15—H15118.8
N1—C1—C2123.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C10/N2 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.282.773 (6)112
C1—H1···O4i0.952.593.225 (5)125
C2—H2···O6i0.952.593.357 (6)137
C3—H3···O1iii0.952.583.176 (6)121
C4—H4···O1iii0.952.553.162 (6)122
C12—H12···O5iv0.952.323.256 (6)169
C14—H14···O6v0.952.483.246 (7)138
C15—H15···Cg2vi0.952.623.512 (5)157
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+1, z+1; (vi) x, y+1/2, z+1/2.
Selected geometric parameters (Å, º) top
U1—O11.777 (3)U1—N22.634 (3)
U1—O21.775 (3)U1—N32.593 (3)
U1—O32.340 (3)O3—O3i1.485 (6)
U1—O3i2.325 (3)O4—N41.295 (5)
U1—O42.479 (3)O5—N41.232 (5)
U1—N12.574 (3)O6—N41.240 (4)
O1—U1—O2177.31 (13)O3i—U1—N171.44 (10)
O1—U1—O391.64 (14)O1—U1—N276.01 (12)
O1—U1—O3i90.58 (14)O1—U1—N3100.67 (13)
O1—U1—O485.85 (12)O4—U1—N370.03 (11)
O3i—U1—O337.12 (13)N1—U1—N261.29 (11)
O3—U1—O466.75 (10)N2—U1—N360.44 (11)
O1—U1—N189.42 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C10/N2 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.282.773 (6)112
C1—H1···O4i0.952.593.225 (5)125
C2—H2···O6i0.952.593.357 (6)137
C3—H3···O1ii0.952.583.176 (6)121
C4—H4···O1ii0.952.553.162 (6)122
C12—H12···O5iii0.952.323.256 (6)169
C14—H14···O6iv0.952.483.246 (7)138
C15—H15···Cg2v0.952.623.512 (5)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+1/2, z+1/2.
Deviations from Least-squares plane (x,y,z in crystal coordinates). top
Least-square plane: 0.0823(0.0118)x - 2.3175(0.0073)y + 11.2072(0.0058)z = 4.4537(0.0040), Rms deviation of fitted atoms = 0.2910.
AtomDeviation
U10.0370(0.0010)
O30.0090(0.0041)
O3i0.0555(0.0042)
O4-0.2956(0.0023)
N10.1666(0.0024)
N2-0.4723(0.0024)
N30.4999(0.0024)
Symmetric code: (i) -x+1,-y+1,-z+1

Acknowledgements

This work was supported by the MEXT(Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities (2012–2016).

References

First citationBerthet, J.-C., Nierlich, M. & Ephritikhine, M. (2004). Dalton Trans. pp. 2814–2821.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharushnikova, I. A. & Den Auwer, C. (2004). Russ. J. Coord. Chem. 30, 511–519.  CrossRef CAS Google Scholar
First citationCharushnikova, I. A., Krot, N. N. & Strarikova, Z. A. (2001). Radiochemistry, 43, 508–512.  CrossRef CAS Google Scholar
First citationGoff, G. S., Brodnax, L. F., Cisneros, M. R., Peper, S. M., Field, S. E., Scott, B. L. & Runde, W. H. (2008). Inorg. Chem. 47, 1984–1990.  CrossRef PubMed CAS Google Scholar
First citationJohn, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734–740.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSigmon, G. E., Ling, J., Unruh, D. K., Moore-Shay, L., Ward, M., Weaver, B. & Burns, P. C. (2009). J. Am. Chem. Soc. 131, 16648–16649.  CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, K. & Ikeda, Y. (2010). Acta Cryst. E66, m539–m540.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds