metal-organic compounds
μ-peroxido-κ4O1,O2:O1′,O2′-bis[(nitrato-κO)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)dioxidouranium(VI)]
ofaDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp
In the title dimeric complex, [{UO2(NO3)(C15H11N3)}2O2], a peroxide ion bridges the two uranyl(VI) [O=U=O]2+ ions. The O—O bond length of the peroxide is 1.485 (6) Å and the mid-point of this bond is located at the inversion centre of the dimer. The U atom exhibits a distorted hexagonal–bipyramidal coordination geometry with two uranyl(VI) O atoms occupying the axial positions and one O atom of the monodentate nitrate ion, both O atoms of the peroxide ion and the three N atoms of the chelating tridentate 2,2′:6′,2′′-terpyridine (terpy) ligand in the equatorial positions. Two of the N atoms of the terpy ligand lie above and below the mean plane containing the equatorial ligand atoms and the U atom [deviations from the mean plane: maximum 0.500 (2), minimum −0.472 (2) and r.m.s. = 0.2910 Å]. The dihedral angle between the terpy ligand and the mean plane is 35.61 (7)°. The bond lengths around the U atom decrease in the order U—N > U—Onitrate > U—Operoxo > U=O. The dimeric complexes pack in a three-dimensional network held together by weak π–π interactions [centroid–centroid distance = 3.659 (3) Å] between pyridyl rings of the terpy ligands in neighbouring dimers, together with intermolecular C—H⋯O and C—H⋯π interactions. Weak intramolecular C—H⋯O interactions are also observed.
Keywords: crystal structure; uranium(VI) complex; dimer; peroxide; 2,2′:6′,2′′-terpyridine; uranyl(VI) ion.
CCDC reference: 1061056
1. Related literature
For the structures of uranyl(VI) complexes with terpy, see: Berthet et al. (2004). For the structures of uranyl(VI) μ-κ2:κ2-peroxide complexes, see:Charushnikova et al. (2001); Goff et al. (2008); John et al. (2004); Sigmon et al. (2009); Takao & Ikeda (2010). For the structures of a uranyl(VI) complex with terpy and a uranyl(VI) μ-κ2:κ2-peroxide complex, see: Charushnikova & Den Auwer (2004).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1061056
https://doi.org/10.1107/S2056989015007987/cq2015sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007987/cq2015Isup2.hkl
10 ml of a methanolic solution containing 0.5 mmol of terpy was added to 10 ml of a methanolic solution containing 0.5 mmol of UO2(NO3)2·6H2O contained in a glass sample vial. The vial w as sealed with a lid and kept in sunlight at room temperature. Yellow crystals grew after one day. The
of the yellow material has not yet been determined. After about two months, orange crystals of the title complex were obtained.All H atoms were placed at calculated positions, with C(CH)—H = 0.95 Å and allowed to ride on the parent atoms, with Uiso(H) = 1.2Ueq(C). The (1 0 0) reflection, affected by the beamstop, was omitted from the final refinement.
For the structures of uranyl(VI) complexes with terpy, see: Berthet et al. (2004). For the structures of uranyl(VI) µ-η2:η2-peroxide complexes, see:Charushnikova et al. (2001); Goff et al. (2008); John et al. (2004); Sigmon et al. (2009); Takao & Ikeda (2010). For the structures of a uranyl(VI) complex with terpy and a uranyl(VI) µ-η2:η2-peroxide complex, see: Charushnikova & Den Auwer (2004).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Structure of the dimer [{UO2(NO3)(C15H11N3)}2O2]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1] | |
Fig. 2. Packing diagram of [{UO2(NO3)(C15H11N3)}2O2]. Dashed lines and dotted lines are π–π and C—H···π interactions, respectively. |
[U2(NO3)2(O2)O4(C15H11N3)2] | F(000) = 1076 |
Mr = 1162.62 | Dx = 2.413 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4370 reflections |
a = 13.4924 (11) Å | θ = 2.6–30.1° |
b = 10.2791 (8) Å | µ = 10.19 mm−1 |
c = 12.6977 (10) Å | T = 90 K |
β = 114.691 (1)° | Plate, orange |
V = 1600.0 (2) Å3 | 0.28 × 0.14 × 0.06 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 4695 independent reflections |
Radiation source: fine-focus sealed tube | 3636 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
Detector resolution: 8.333 pixels mm-1 | θmax = 31.0°, θmin = 2.6° |
phi and ω scans | h = −19→17 |
Absorption correction: analytical (XPREP; Bruker, 2007) | k = −14→5 |
Tmin = 0.163, Tmax = 0.580 | l = −18→18 |
11692 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.89 | w = 1/[σ2(Fo2) + (0.0123P)2] where P = (Fo2 + 2Fc2)/3 |
4695 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 2.24 e Å−3 |
0 restraints | Δρmin = −1.57 e Å−3 |
[U2(NO3)2(O2)O4(C15H11N3)2] | V = 1600.0 (2) Å3 |
Mr = 1162.62 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.4924 (11) Å | µ = 10.19 mm−1 |
b = 10.2791 (8) Å | T = 90 K |
c = 12.6977 (10) Å | 0.28 × 0.14 × 0.06 mm |
β = 114.691 (1)° |
Bruker APEXII CCD area-detector diffractometer | 4695 independent reflections |
Absorption correction: analytical (XPREP; Bruker, 2007) | 3636 reflections with I > 2σ(I) |
Tmin = 0.163, Tmax = 0.580 | Rint = 0.063 |
11692 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.89 | Δρmax = 2.24 e Å−3 |
4695 reflections | Δρmin = −1.57 e Å−3 |
235 parameters |
Experimental. face-indexed absorption correction carried out with XPREP (Bruker, 2007) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.387048 (13) | 0.333645 (14) | 0.466857 (14) | 0.00993 (5) | |
O1 | 0.3311 (3) | 0.3633 (3) | 0.3151 (3) | 0.0176 (7) | |
O2 | 0.4441 (3) | 0.2963 (3) | 0.6171 (3) | 0.0168 (7) | |
O3 | 0.4596 (3) | 0.5439 (3) | 0.5073 (4) | 0.0306 (10) | |
O4 | 0.2546 (2) | 0.4979 (3) | 0.4721 (3) | 0.0152 (6) | |
O5 | 0.1152 (3) | 0.4243 (3) | 0.3199 (3) | 0.0242 (8) | |
O6 | 0.1038 (3) | 0.6064 (3) | 0.4006 (3) | 0.0283 (9) | |
N1 | 0.5298 (3) | 0.1823 (3) | 0.4461 (3) | 0.0126 (7) | |
N2 | 0.3249 (3) | 0.1020 (3) | 0.3740 (3) | 0.0097 (7) | |
N3 | 0.2240 (3) | 0.2190 (3) | 0.4857 (3) | 0.0129 (7) | |
N4 | 0.1554 (3) | 0.5090 (4) | 0.3945 (3) | 0.0165 (8) | |
C1 | 0.6361 (4) | 0.2172 (4) | 0.4933 (4) | 0.0142 (9) | |
H1 | 0.6585 | 0.2851 | 0.5491 | 0.017* | |
C2 | 0.7141 (4) | 0.1591 (4) | 0.4644 (4) | 0.0147 (9) | |
H2 | 0.7882 | 0.1858 | 0.5006 | 0.018* | |
C3 | 0.6820 (4) | 0.0616 (4) | 0.3821 (4) | 0.0157 (9) | |
H3 | 0.7329 | 0.0226 | 0.3580 | 0.019* | |
C4 | 0.5733 (3) | 0.0215 (4) | 0.3351 (4) | 0.0146 (9) | |
H4 | 0.5494 | −0.0468 | 0.2797 | 0.018* | |
C5 | 0.5008 (3) | 0.0823 (4) | 0.3700 (4) | 0.0109 (8) | |
C6 | 0.3841 (3) | 0.0422 (4) | 0.3258 (4) | 0.0116 (8) | |
C7 | 0.3392 (4) | −0.0538 (4) | 0.2412 (4) | 0.0149 (9) | |
H7 | 0.3831 | −0.0977 | 0.2103 | 0.018* | |
C8 | 0.2299 (4) | −0.0839 (4) | 0.2032 (4) | 0.0163 (9) | |
H8 | 0.1971 | −0.1464 | 0.1436 | 0.020* | |
C9 | 0.1686 (4) | −0.0219 (4) | 0.2529 (4) | 0.0164 (9) | |
H9 | 0.0934 | −0.0415 | 0.2281 | 0.020* | |
C10 | 0.2192 (3) | 0.0695 (4) | 0.3396 (4) | 0.0108 (8) | |
C11 | 0.1638 (4) | 0.1318 (4) | 0.4050 (4) | 0.0118 (8) | |
C12 | 0.0579 (4) | 0.0988 (4) | 0.3906 (4) | 0.0173 (10) | |
H12 | 0.0148 | 0.0396 | 0.3318 | 0.021* | |
C13 | 0.0181 (4) | 0.1539 (5) | 0.4633 (5) | 0.0229 (11) | |
H13 | −0.0543 | 0.1352 | 0.4530 | 0.027* | |
C14 | 0.0819 (4) | 0.2362 (4) | 0.5515 (4) | 0.0193 (10) | |
H14 | 0.0564 | 0.2702 | 0.6052 | 0.023* | |
C15 | 0.1850 (4) | 0.2679 (4) | 0.5589 (4) | 0.0156 (9) | |
H15 | 0.2293 | 0.3261 | 0.6179 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.01075 (8) | 0.00727 (7) | 0.01268 (8) | −0.00116 (7) | 0.00578 (6) | −0.00132 (7) |
O1 | 0.0249 (18) | 0.0142 (15) | 0.0175 (17) | 0.0044 (14) | 0.0126 (15) | 0.0039 (13) |
O2 | 0.0163 (16) | 0.0199 (15) | 0.0080 (16) | 0.0007 (14) | −0.0011 (13) | −0.0061 (13) |
O3 | 0.0182 (18) | 0.0076 (14) | 0.075 (3) | 0.0007 (14) | 0.028 (2) | −0.0085 (17) |
O4 | 0.0111 (14) | 0.0162 (14) | 0.0164 (16) | 0.0003 (14) | 0.0038 (13) | 0.0012 (14) |
O5 | 0.0236 (18) | 0.0189 (16) | 0.023 (2) | 0.0019 (15) | 0.0024 (16) | −0.0031 (15) |
O6 | 0.0224 (19) | 0.0228 (17) | 0.034 (2) | 0.0124 (16) | 0.0064 (17) | −0.0034 (17) |
N1 | 0.0164 (18) | 0.0082 (16) | 0.0143 (19) | −0.0006 (15) | 0.0076 (16) | −0.0001 (14) |
N2 | 0.0126 (17) | 0.0074 (15) | 0.0074 (17) | −0.0017 (14) | 0.0025 (15) | 0.0016 (13) |
N3 | 0.0180 (19) | 0.0115 (16) | 0.0102 (19) | 0.0002 (16) | 0.0069 (16) | 0.0012 (14) |
N4 | 0.0161 (18) | 0.0158 (17) | 0.017 (2) | 0.0033 (18) | 0.0066 (16) | 0.0043 (17) |
C1 | 0.018 (2) | 0.0094 (18) | 0.016 (2) | −0.0009 (18) | 0.007 (2) | 0.0004 (17) |
C2 | 0.016 (2) | 0.0102 (18) | 0.019 (2) | 0.0000 (19) | 0.0094 (19) | 0.0028 (18) |
C3 | 0.022 (2) | 0.016 (2) | 0.014 (2) | 0.0001 (19) | 0.012 (2) | 0.0025 (18) |
C4 | 0.018 (2) | 0.015 (2) | 0.010 (2) | 0.0022 (18) | 0.0046 (18) | 0.0002 (17) |
C5 | 0.013 (2) | 0.0101 (18) | 0.008 (2) | 0.0009 (17) | 0.0025 (17) | 0.0038 (16) |
C6 | 0.014 (2) | 0.0117 (19) | 0.009 (2) | 0.0030 (17) | 0.0043 (18) | 0.0006 (16) |
C7 | 0.018 (2) | 0.015 (2) | 0.013 (2) | −0.0036 (19) | 0.0064 (19) | −0.0046 (17) |
C8 | 0.022 (2) | 0.014 (2) | 0.009 (2) | −0.0040 (19) | 0.0031 (19) | −0.0054 (17) |
C9 | 0.016 (2) | 0.018 (2) | 0.013 (2) | −0.0082 (19) | 0.0035 (18) | −0.0031 (18) |
C10 | 0.013 (2) | 0.0084 (18) | 0.009 (2) | −0.0002 (17) | 0.0033 (17) | −0.0006 (16) |
C11 | 0.014 (2) | 0.0091 (18) | 0.010 (2) | 0.0002 (17) | 0.0036 (17) | 0.0012 (16) |
C12 | 0.017 (2) | 0.016 (2) | 0.019 (3) | −0.0022 (19) | 0.007 (2) | 0.0003 (19) |
C13 | 0.014 (2) | 0.026 (2) | 0.032 (3) | −0.004 (2) | 0.013 (2) | −0.002 (2) |
C14 | 0.024 (3) | 0.017 (2) | 0.023 (3) | −0.001 (2) | 0.016 (2) | −0.0033 (19) |
C15 | 0.021 (2) | 0.013 (2) | 0.013 (2) | −0.0002 (19) | 0.0074 (19) | −0.0010 (17) |
U1—O1 | 1.777 (3) | C2—H2 | 0.9500 |
U1—O2 | 1.775 (3) | C3—C4 | 1.395 (6) |
U1—O3 | 2.340 (3) | C3—H3 | 0.9500 |
U1—O3i | 2.325 (3) | C4—C5 | 1.380 (6) |
U1—O4 | 2.479 (3) | C4—H4 | 0.9500 |
U1—N1 | 2.574 (3) | C5—C6 | 1.492 (6) |
U1—N2 | 2.634 (3) | C6—C7 | 1.397 (6) |
U1—N3 | 2.593 (3) | C7—C8 | 1.381 (6) |
O3—O3i | 1.485 (6) | C7—H7 | 0.9500 |
O3—U1i | 2.325 (3) | C8—C9 | 1.388 (6) |
O4—N4 | 1.295 (5) | C8—H8 | 0.9500 |
O5—N4 | 1.232 (5) | C9—C10 | 1.391 (6) |
O6—N4 | 1.240 (4) | C9—H9 | 0.9500 |
N1—C1 | 1.351 (6) | C10—C11 | 1.476 (6) |
N1—C5 | 1.351 (5) | C11—C12 | 1.404 (6) |
N2—C6 | 1.342 (5) | C12—C13 | 1.369 (6) |
N2—C10 | 1.347 (5) | C12—H12 | 0.9500 |
N3—C15 | 1.343 (5) | C13—C14 | 1.380 (7) |
N3—C11 | 1.348 (5) | C13—H13 | 0.9500 |
C1—C2 | 1.386 (6) | C14—C15 | 1.393 (6) |
C1—H1 | 0.9500 | C14—H14 | 0.9500 |
C2—C3 | 1.380 (6) | C15—H15 | 0.9500 |
Cg(C1–C5/N1)···Cg(C6–C10/N2)ii | 3.659 (3) | ||
O1—U1—O2 | 177.31 (13) | N1—C1—H1 | 118.3 |
O1—U1—O3 | 91.64 (14) | C2—C1—H1 | 118.3 |
O1—U1—O3i | 90.58 (14) | C3—C2—C1 | 118.7 (4) |
O1—U1—O4 | 85.85 (12) | C3—C2—H2 | 120.7 |
O2—U1—O3 | 90.58 (14) | C1—C2—H2 | 120.7 |
O2—U1—O3i | 90.28 (15) | C2—C3—C4 | 118.7 (4) |
O2—U1—O4 | 96.43 (12) | C2—C3—H3 | 120.7 |
O3i—U1—O3 | 37.12 (13) | C4—C3—H3 | 120.7 |
O3—U1—O4 | 66.75 (10) | C5—C4—C3 | 119.2 (4) |
O3i—U1—O4 | 103.66 (10) | C5—C4—H4 | 120.4 |
O1—U1—N1 | 89.42 (13) | C3—C4—H4 | 120.4 |
O2—U1—N1 | 88.43 (13) | N1—C5—C4 | 122.8 (4) |
O3—U1—N1 | 108.56 (10) | N1—C5—C6 | 115.1 (4) |
O3i—U1—N1 | 71.44 (10) | C4—C5—C6 | 122.1 (4) |
O4—U1—N1 | 173.19 (10) | N2—C6—C7 | 121.7 (4) |
O1—U1—N2 | 76.01 (12) | N2—C6—C5 | 115.9 (4) |
O2—U1—N2 | 101.52 (12) | C7—C6—C5 | 122.4 (4) |
O3—U1—N2 | 163.57 (12) | C8—C7—C6 | 118.9 (4) |
O3i—U1—N2 | 130.60 (10) | C8—C7—H7 | 120.5 |
O4—U1—N2 | 121.97 (10) | C6—C7—H7 | 120.5 |
O1—U1—N3 | 100.67 (13) | C7—C8—C9 | 119.4 (4) |
O2—U1—N3 | 78.83 (13) | C7—C8—H8 | 120.3 |
O3—U1—N3 | 133.88 (11) | C9—C8—H8 | 120.3 |
O3i—U1—N3 | 166.46 (13) | C8—C9—C10 | 118.7 (4) |
O4—U1—N3 | 70.03 (11) | C8—C9—H9 | 120.6 |
N1—U1—N2 | 61.29 (11) | C10—C9—H9 | 120.6 |
N1—U1—N3 | 115.77 (11) | N2—C10—C9 | 121.8 (4) |
N2—U1—N3 | 60.44 (11) | N2—C10—C11 | 115.3 (4) |
O3i—O3—U1i | 72.0 (2) | C9—C10—C11 | 122.8 (4) |
O3i—O3—U1 | 70.9 (2) | N3—C11—C12 | 121.2 (4) |
U1i—O3—U1 | 142.88 (13) | N3—C11—C10 | 115.4 (4) |
N4—O4—U1 | 124.6 (3) | C12—C11—C10 | 123.3 (4) |
C1—N1—C5 | 117.1 (4) | C13—C12—C11 | 118.4 (4) |
C1—N1—U1 | 119.7 (3) | C13—C12—H12 | 120.8 |
C5—N1—U1 | 121.8 (3) | C11—C12—H12 | 120.8 |
C6—N2—C10 | 119.3 (4) | C12—C13—C14 | 120.9 (4) |
C6—N2—U1 | 118.7 (3) | C12—C13—H13 | 119.6 |
C10—N2—U1 | 117.7 (3) | C14—C13—H13 | 119.6 |
C11—N3—C15 | 119.2 (4) | C13—C14—C15 | 117.7 (4) |
C11—N3—U1 | 119.9 (3) | C13—C14—H14 | 121.2 |
C15—N3—U1 | 119.1 (3) | C15—C14—H14 | 121.2 |
O4—N4—O5 | 120.4 (4) | N3—C15—C14 | 122.4 (4) |
O4—N4—O6 | 116.9 (4) | N3—C15—H15 | 118.8 |
O5—N4—O6 | 122.7 (4) | C14—C15—H15 | 118.8 |
N1—C1—C2 | 123.4 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Cg2 is the centroid of the C6–C10/N2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3i | 0.95 | 2.28 | 2.773 (6) | 112 |
C1—H1···O4i | 0.95 | 2.59 | 3.225 (5) | 125 |
C2—H2···O6i | 0.95 | 2.59 | 3.357 (6) | 137 |
C3—H3···O1iii | 0.95 | 2.58 | 3.176 (6) | 121 |
C4—H4···O1iii | 0.95 | 2.55 | 3.162 (6) | 122 |
C12—H12···O5iv | 0.95 | 2.32 | 3.256 (6) | 169 |
C14—H14···O6v | 0.95 | 2.48 | 3.246 (7) | 138 |
C15—H15···Cg2vi | 0.95 | 2.62 | 3.512 (5) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x, −y+1, −z+1; (vi) x, −y+1/2, z+1/2. |
U1—O1 | 1.777 (3) | U1—N2 | 2.634 (3) |
U1—O2 | 1.775 (3) | U1—N3 | 2.593 (3) |
U1—O3 | 2.340 (3) | O3—O3i | 1.485 (6) |
U1—O3i | 2.325 (3) | O4—N4 | 1.295 (5) |
U1—O4 | 2.479 (3) | O5—N4 | 1.232 (5) |
U1—N1 | 2.574 (3) | O6—N4 | 1.240 (4) |
O1—U1—O2 | 177.31 (13) | O3i—U1—N1 | 71.44 (10) |
O1—U1—O3 | 91.64 (14) | O1—U1—N2 | 76.01 (12) |
O1—U1—O3i | 90.58 (14) | O1—U1—N3 | 100.67 (13) |
O1—U1—O4 | 85.85 (12) | O4—U1—N3 | 70.03 (11) |
O3i—U1—O3 | 37.12 (13) | N1—U1—N2 | 61.29 (11) |
O3—U1—O4 | 66.75 (10) | N2—U1—N3 | 60.44 (11) |
O1—U1—N1 | 89.42 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg2 is the centroid of the C6–C10/N2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3i | 0.95 | 2.28 | 2.773 (6) | 112 |
C1—H1···O4i | 0.95 | 2.59 | 3.225 (5) | 125 |
C2—H2···O6i | 0.95 | 2.59 | 3.357 (6) | 137 |
C3—H3···O1ii | 0.95 | 2.58 | 3.176 (6) | 121 |
C4—H4···O1ii | 0.95 | 2.55 | 3.162 (6) | 122 |
C12—H12···O5iii | 0.95 | 2.32 | 3.256 (6) | 169 |
C14—H14···O6iv | 0.95 | 2.48 | 3.246 (7) | 138 |
C15—H15···Cg2v | 0.95 | 2.62 | 3.512 (5) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) x, −y+1/2, z+1/2. |
Least-square plane: 0.0823(0.0118)x - 2.3175(0.0073)y + 11.2072(0.0058)z = 4.4537(0.0040), Rms deviation of fitted atoms = 0.2910. |
Atom | Deviation |
U1 | 0.0370(0.0010) |
O3 | 0.0090(0.0041) |
O3i | 0.0555(0.0042) |
O4 | -0.2956(0.0023) |
N1 | 0.1666(0.0024) |
N2 | -0.4723(0.0024) |
N3 | 0.4999(0.0024) |
Symmetric code: (i) -x+1,-y+1,-z+1 |
Acknowledgements
This work was supported by the MEXT(Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities (2012–2016).
References
Berthet, J.-C., Nierlich, M. & Ephritikhine, M. (2004). Dalton Trans. pp. 2814–2821. Web of Science CSD CrossRef Google Scholar
Bruker (2007). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charushnikova, I. A. & Den Auwer, C. (2004). Russ. J. Coord. Chem. 30, 511–519. CrossRef CAS Google Scholar
Charushnikova, I. A., Krot, N. N. & Strarikova, Z. A. (2001). Radiochemistry, 43, 508–512. CrossRef CAS Google Scholar
Goff, G. S., Brodnax, L. F., Cisneros, M. R., Peper, S. M., Field, S. E., Scott, B. L. & Runde, W. H. (2008). Inorg. Chem. 47, 1984–1990. CrossRef PubMed CAS Google Scholar
John, G. H., May, I., Sarsfield, M. J., Steele, H. M., Collison, D., Helliwell, M. & McKinney, J. D. (2004). Dalton Trans. pp. 734–740. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sigmon, G. E., Ling, J., Unruh, D. K., Moore-Shay, L., Ward, M., Weaver, B. & Burns, P. C. (2009). J. Am. Chem. Soc. 131, 16648–16649. CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takao, K. & Ikeda, Y. (2010). Acta Cryst. E66, m539–m540. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.