research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[μ2-aqua-aqua­(μ2-4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olato)hemi-μ4-oxalato-barium(II)]

aAl Muthanna University, Samawah, Al Mutanna, Iraq, bPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russian Federation, and cKurnakov Institute of General and Inorganic Chemistry RAS, 31 Leninskiy Avenue, 119991 Moscow, Russian Federation
*Correspondence e-mail: www.chemistry1315@gmail.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 24 February 2015; accepted 31 March 2015; online 9 April 2015)

In the title coordination polymer, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, the tenfold coordination of the Ba centre consists of four O atoms from the two 4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olate (L) anions, three O atoms of two oxalate anions and three water mol­ecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å. The L ligand chelates two Ba atoms related by a screw axis, leading to formation of fused five- and six-membered chelate rings. Due to the bridging function of the ligands and water mol­ecules, the complex monomers are connected into polymeric two-dimensional layers parallel to the bc plane. Inter­molecular O—H⋯O hydrogen bonds link these layers into a three-dimensional supra­molecular framework.

1. Chemical context

Mixed ligand coordination polymers containing bridging oxalate anions and 1,2-dicarbonyl carbocyclic or heterocyclic compounds exhibit high reactivity and different types of magnetism (Aldoshin, 2008[Aldoshin, S. M. (2008). Russ. Chem. Bull. 57, 718-735.]; Coronado et al., 2007[Coronado, E., Curreli, S., Giminez-Saiz, C., Gimez-Garcia, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446-4457.]; Kitagawa & Kawata, 2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]; Kovalchukova & Strashnova, 2014[Kovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1-24.]; Ohba & Okawa, 2000[Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313-328.]). Such compounds are of chemical inter­est, since a large number of potential donors available in the ligands predetermine a variety of coordination modes, which afford different geometries and dimensionalities of coordination polymers. Recently, we reported the synthesis, crystal structure and some properties of metal complexes of the 2,3,5,6-tetra­oxo-4-nitro-4-idene anion (Kovalchukova et al., 2014[Kovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1-24.], 2014[Kovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60-65.]; Dinh Do et al., 2013[Dinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477-m478.]). The above-mentioned anion does not replace the water mol­ecules from the inner sphere of the hydrated metal cations [M(H2O)6]n+, but can coordinate metal centres like sodium and silver(I). In the present paper, we report the mol­ecular and crystal structure of a mixed-ligand barium complex containing 4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olate (L) and oxalate anions as ligands.

[Scheme 1]

2. Structural commentary

In the title compound, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, (I)[link] (Fig. 1[link]), the tenfold coordination of the Ba1 atom (Table 1[link]) is formed by the O2, O5, O1 and O2 atoms of two 4-nitro-2,3,5,6-tetra­oxo­pyridine-4-ide anions (L), the O7, O8 and O7A atoms of two oxalate anions, and the O9, O9A and O10 atoms of water mol­ecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å, which is typical for ten-coordinate barium complexes containing oxalate anions (Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Marino, N., Sorribes, I., Vicent, C., Lloret, F. & Julve, M. (2010). CrystEngComm, 12, 122-133.]; Heinl et al., 2002[Heinl, U., Kleinitz, U. & Mattes, R. (2002). Z. Anorg. Allg. Chem. 628, 2409-2414.]; Marinescu et al., 2005[Marinescu, G., Andruh, M., Julve, M., Lloret, F., Llusar, R., Uriel, S. & Vaissermann, J. (2005). Cryst. Growth Des. 5, 261-267.]; Belombe et al., 2003[Belombe, M. M., Nenwa, J., Mbiangue, Y.-A., Nnanga, G. E., Mbomekalle, I.-M., Hey-Hawkins, E., Lonnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.], 2012[Belombe, M. M., Nenwa, J., Tchuisse, N. A. S. N., Emmerling, F., Obbade, S., Semmoud, A. & Fokwa, B. P. T. (2012). ScienceJet, 1, 24-27.]; Larsson, 2001[Larsson, K. (2001). Acta Cryst. E57, m195-m197.]; Bouayad et al., 1995[Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.]; Iveson et al., 2011[Iveson, S. J., Johnston, C. B. & Harrison, W. T. A. (2011). Crystals, 1, 59-68.]). The L anion has a flattened skeleton. The r.m.s. deviation of the six ring atoms from their mean plane is 0.0256 Å; the O2 and O4 atoms lie in this plane deviating by 0.049 (3) and 0.010 (3) Å, respectively, whereas the O1 and O3 atoms deviate from it by 0.171 (3) and 0.077 (3) Å, respectively. The plane of the nitro group is rotated by 11.9 (8)° with respect to the ring plane. The L ligand chelates two Ba atoms related by a screw axis forming fused chelate rings. The six-membered ring is almost planar (r.m.s. deviation = 0.0353 Å) and the five–membered ring is folded along the O1—O2 line by 19.0°. The geometry of the L anion in the Ba complex is close to that in the compounds studied earlier (Kovalchukova et al., 2014[Kovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60-65.]; Dinh Do et al., 2013[Dinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477-m478.]). All C=O bonds are of the double-bond type [1.200 (5)–1.229 (5) Å]. The monodentate coordination of L via the O atom of a nitro group attached to a benzene ring is in accordance with Venkatasubramanian et al. (1984[Venkatasubramanian, K., Poonia, N. S., Clinger, K., Ernst, S. R. & Hackert, M. L. (1984). J. Inclus. Phenom. Mol. 1, 319-327.]), Harrowfield et al. (1998[Harrowfield, J. M. R. P., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 785-794.]) and Chantrapromma et al. (2002[Chantrapromma, S., Usman, A. & Fun, H.-K. (2002). Acta Cryst. C58, m531-m533.]). The centrosymmetric oxalate anion connects four Ba atoms closing two almost planar five–membered rings (r.m.s. deviation of rings = 0.0415 Å).

Table 1
Selected bond lengths (Å)

Ba1—O8i 2.698 (3) Ba1—O10 2.882 (4)
Ba1—O7 2.728 (3) Ba1—O1iii 2.889 (3)
Ba1—O9 2.755 (3) Ba1—O5 2.914 (4)
Ba1—O7ii 2.805 (3) Ba1—O2 2.931 (3)
Ba1—O9iii 2.860 (3) Ba1—O2iii 2.978 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
View of (I)[link], showing the atom-labelling scheme and 50% probability displacement ellipsoids. [Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x, −y + 1, −z + 1; (iii) −x, y − [{1\over 2}], −z + [{3\over 2}].]

3. Supra­molecular features

Due to the bridging function of the L ligand and the O9 water mol­ecule, the hydrated complex cations [Ba(L)(H2O)2]+ form wide zigzag bands running along the screw axes in the b-axis direction (Fig. 2[link]). Oxalate anions connect the bands into thick two-dimensional networks parallel to bc. The networks have corrugated surfaces with terminal O3, O4 and O6 atoms of the L ligand on the `hills' and water mol­ecules in the `hollows'. In the packing (Fig. 3[link]), the `hills' enter the `hollows' of adjacent networks. Two-centre hydrogen bonds O9—H2⋯O3 and O10—H5⋯O4 and three-centre bonds O10—H4⋯(O3,O6) (Table 2[link]) link the networks into a three-dimensional framework. Hydrogen bonds N1—H1⋯O6 and O9—H3⋯O8 link the elements of a band and a network, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.21 3.052 (5) 166
O9—H2⋯O3ii 0.82 2.10 2.877 (4) 158
O9—H3⋯O8i 0.82 1.84 2.639 (4) 163
O10—H4⋯O3ii 0.82 2.14 2.828 (5) 141
O10—H4⋯O6ii 0.82 2.30 3.010 (5) 146
O10—H5⋯O4iii 0.82 2.41 3.210 (5) 165
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x-1, y+1, z.
[Figure 2]
Figure 2
One-dimensional polymeric chain in (I)[link]. Oxalato ligands omitted for clarity.
[Figure 3]
Figure 3
two-dimensional polymeric layer in (I)[link] viewed approximately along the a axis.

4. Database survey

The synthesis, crystal structure and some properties of metal complexes of the 4-nitro-2,3,5,6-tetraoxo-4-idene anion are described in Kovalchukova et al. (2014[Kovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60-65.]) and Dinh Do et al. (2013[Dinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477-m478.]). Model structures of complexes containing carbocyclic polyoxo compounds are reviewed in Kitagawa & Kawata (2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]) and Kovalchukova & Strashnova (2014[Kovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1-24.]). Ten coordinated structures of Ba cations with oxalate anions containing other O-donating ligands have been described (Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Marino, N., Sorribes, I., Vicent, C., Lloret, F. & Julve, M. (2010). CrystEngComm, 12, 122-133.]; Marinescu et al., 2005[Marinescu, G., Andruh, M., Julve, M., Lloret, F., Llusar, R., Uriel, S. & Vaissermann, J. (2005). Cryst. Growth Des. 5, 261-267.]; Belombe et al., 2003[Belombe, M. M., Nenwa, J., Mbiangue, Y.-A., Nnanga, G. E., Mbomekalle, I.-M., Hey-Hawkins, E., Lonnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.], 2012[Belombe, M. M., Nenwa, J., Tchuisse, N. A. S. N., Emmerling, F., Obbade, S., Semmoud, A. & Fokwa, B. P. T. (2012). ScienceJet, 1, 24-27.]; Larsson, 2001[Larsson, K. (2001). Acta Cryst. E57, m195-m197.]; Bouayad et al., 1995[Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.]; Iveson et al., 2011[Iveson, S. J., Johnston, C. B. & Harrison, W. T. A. (2011). Crystals, 1, 59-68.]). Monodentate coordination via the O atom of a nitro aromatic group is described by Venkatasubramanian et al. (1984[Venkatasubramanian, K., Poonia, N. S., Clinger, K., Ernst, S. R. & Hackert, M. L. (1984). J. Inclus. Phenom. Mol. 1, 319-327.]), Harrowfield et al. (1998[Harrowfield, J. M. R. P., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 785-794.]) and Chantrapromma et al. (2002[Chantrapromma, S., Usman, A. & Fun, H.-K. (2002). Acta Cryst. C58, m531-m533.]).

5. Synthesis and crystallization

Single crystals of (I)[link] were grown by the slow evaporation of an ethanol solution of a 1:1:1 molar mixture of barium chloride, ammonium oxalate and ammonium 2,3,5,6-tetraoxo-4-nitro-4-inide.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of water mol­ecules were localized in a difference map; O—H distances were normalized. The position of the amino H atom was calculated. All H atoms were refined within the riding model, with Uiso(H) = 1.2Ueq of the parent atom. The crystal studied was a twin without superposition of reciprocal lattices. Apparently, an accidental overlapping of reflections of two domains is responsible for increased displacement ellipsoids of some atoms. The Uij components of atom O5 were restrained to approximate the isotropic behaviour.

Table 3
Experimental details

Crystal data
Chemical formula [Ba(C5HN2O6)(C2O4)0.5(H2O)2]
Mr 804.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.3283 (11), 7.9868 (8), 13.0760 (14)
β (°) 96.419 (2)
V3) 1071.88 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.76
Crystal size (mm) 0.16 × 0.12 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.586, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11240, 3410, 2692
Rint 0.036
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.05
No. of reflections 3410
No. of parameters 172
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.31, −1.67
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP (Johnson & Burnett, 1996[Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson & Burnett, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[µ2-aqua-aqua(m4-4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olato)hemi-µ6-oxalato-barium(II)] top
Crystal data top
[Ba(C5HN2O6)(C2O4)0.5(H2O)2]F(000) = 764
Mr = 804.92Dx = 2.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3283 (11) ÅCell parameters from 3977 reflections
b = 7.9868 (8) Åθ = 3.0–31.4°
c = 13.0760 (14) ŵ = 3.76 mm1
β = 96.419 (2)°T = 296 K
V = 1071.88 (19) Å3Plate, brown
Z = 20.16 × 0.12 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2692 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.036
φ and ω scansθmax = 31.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1514
Tmin = 0.586, Tmax = 0.746k = 1111
11240 measured reflectionsl = 1918
3410 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.9998P]
where P = (Fo2 + 2Fc2)/3
3410 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 2.31 e Å3
6 restraintsΔρmin = 1.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.00361 (2)0.20711 (3)0.69482 (2)0.01991 (8)
O10.2105 (3)0.4097 (4)0.6917 (3)0.0343 (8)
O20.1678 (3)0.0830 (4)0.6825 (3)0.0295 (7)
O30.6026 (3)0.0297 (4)0.6022 (3)0.0344 (8)
O40.6113 (4)0.3626 (5)0.5935 (4)0.0489 (10)
O50.2660 (4)0.2124 (5)0.6490 (5)0.0711 (16)
O60.4673 (4)0.2379 (4)0.6424 (4)0.0446 (10)
O70.0517 (3)0.5240 (4)0.6225 (2)0.0259 (6)
O80.0324 (4)0.7141 (4)0.5006 (3)0.0380 (9)
O90.1222 (3)0.0942 (4)0.6412 (2)0.0277 (7)
H20.20180.10180.63640.033*
H30.10640.14570.58980.033*
O100.2582 (4)0.2730 (5)0.5886 (4)0.0452 (10)
H40.32310.22060.60070.054*
H50.27760.37260.58620.054*
N10.4071 (3)0.3879 (4)0.6348 (3)0.0236 (7)
H10.41190.49500.62950.028*
N20.3712 (4)0.1478 (5)0.6435 (3)0.0258 (7)
C10.2940 (4)0.3217 (5)0.6640 (3)0.0211 (8)
C20.2754 (4)0.1295 (5)0.6620 (3)0.0196 (7)
C30.3832 (4)0.0309 (5)0.6406 (3)0.0201 (7)
C40.5038 (4)0.1026 (5)0.6192 (3)0.0217 (8)
C50.5130 (4)0.2959 (6)0.6135 (4)0.0250 (8)
C60.0251 (4)0.5680 (5)0.5350 (3)0.0218 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02335 (13)0.01750 (12)0.01979 (12)0.00255 (10)0.00648 (8)0.00287 (9)
O10.0313 (17)0.0196 (16)0.056 (2)0.0044 (13)0.0208 (15)0.0017 (14)
O20.0223 (15)0.0213 (16)0.048 (2)0.0046 (12)0.0156 (13)0.0036 (13)
O30.0191 (15)0.0244 (17)0.061 (2)0.0021 (13)0.0110 (14)0.0034 (15)
O40.0296 (18)0.0305 (19)0.091 (3)0.0069 (16)0.0260 (19)0.000 (2)
O50.037 (2)0.026 (2)0.157 (5)0.0086 (17)0.038 (3)0.007 (2)
O60.0302 (18)0.0179 (17)0.087 (3)0.0070 (14)0.0102 (19)0.0005 (18)
O70.0408 (18)0.0192 (14)0.0193 (14)0.0009 (13)0.0101 (13)0.0011 (11)
O80.068 (3)0.0215 (16)0.0281 (17)0.0077 (17)0.0221 (17)0.0028 (13)
O90.0241 (15)0.0280 (16)0.0318 (16)0.0028 (13)0.0063 (12)0.0083 (13)
O100.0294 (18)0.032 (2)0.072 (3)0.0050 (16)0.0021 (18)0.0092 (18)
N10.0228 (17)0.0139 (15)0.035 (2)0.0023 (13)0.0096 (14)0.0000 (14)
N20.0228 (17)0.0192 (17)0.036 (2)0.0005 (14)0.0066 (15)0.0007 (15)
C10.0216 (19)0.0184 (19)0.0245 (19)0.0014 (14)0.0075 (15)0.0000 (14)
C20.0198 (18)0.0168 (18)0.0227 (18)0.0023 (15)0.0049 (14)0.0005 (15)
C30.0187 (18)0.0146 (17)0.027 (2)0.0003 (14)0.0032 (15)0.0012 (14)
C40.0191 (18)0.0180 (18)0.028 (2)0.0019 (15)0.0043 (15)0.0003 (15)
C50.0211 (19)0.024 (2)0.031 (2)0.0023 (17)0.0056 (16)0.0027 (17)
C60.027 (2)0.0183 (19)0.0211 (19)0.0020 (15)0.0073 (15)0.0044 (14)
Geometric parameters (Å, º) top
Ba1—O8i2.698 (3)O7—C61.257 (5)
Ba1—O72.728 (3)O7—Ba1iii2.805 (3)
Ba1—O92.755 (3)O8—C61.250 (5)
Ba1—O7ii2.805 (3)O8—Ba1i2.698 (3)
Ba1—O9iii2.860 (3)O9—Ba1ii2.860 (3)
Ba1—O102.882 (4)O9—H20.8200
Ba1—O1iii2.889 (3)O9—H30.8200
Ba1—O52.914 (4)O10—H40.8201
Ba1—O22.931 (3)O10—H50.8200
Ba1—O2iii2.978 (3)N1—C51.372 (5)
O1—C11.199 (5)N1—C11.375 (5)
O1—Ba1ii2.889 (3)N1—H10.8600
O2—C21.229 (5)N2—C31.433 (5)
O2—Ba1ii2.978 (3)C1—C21.547 (6)
O3—C41.217 (5)C2—C31.417 (5)
O4—C51.202 (5)C3—C41.427 (5)
O5—N21.212 (5)C4—C51.549 (6)
O6—N21.227 (5)C6—C6i1.546 (8)
O8i—Ba1—O759.61 (9)O2—Ba1—O2iii149.14 (6)
O8i—Ba1—O993.86 (10)C1—O1—Ba1ii124.3 (3)
O7—Ba1—O9131.58 (10)C2—O2—Ba1144.8 (3)
O8i—Ba1—O7ii153.12 (10)C2—O2—Ba1ii122.0 (3)
O7—Ba1—O7ii142.27 (8)Ba1—O2—Ba1ii91.81 (8)
O9—Ba1—O7ii78.67 (9)N2—O5—Ba1152.8 (3)
O8i—Ba1—O9iii118.77 (10)C6—O7—Ba1121.7 (3)
O7—Ba1—O9iii78.16 (9)C6—O7—Ba1iii125.8 (3)
O9—Ba1—O9iii145.81 (7)Ba1—O7—Ba1iii100.18 (9)
O7ii—Ba1—O9iii67.59 (9)C6—O8—Ba1i123.3 (3)
O8i—Ba1—O1073.50 (13)Ba1—O9—Ba1ii98.17 (9)
O7—Ba1—O1062.78 (10)Ba1—O9—H2119.8
O9—Ba1—O1071.41 (10)Ba1ii—O9—H2112.6
O7ii—Ba1—O10126.42 (11)Ba1—O9—H3121.6
O9iii—Ba1—O10125.00 (11)Ba1ii—O9—H3102.8
O8i—Ba1—O1iii138.61 (12)H2—O9—H3100.9
O7—Ba1—O1iii111.17 (9)Ba1—O10—H4122.3
O9—Ba1—O1iii61.02 (9)Ba1—O10—H5113.6
O7ii—Ba1—O1iii59.07 (10)H4—O10—H5107.6
O9iii—Ba1—O1iii95.40 (9)C5—N1—C1124.8 (4)
O10—Ba1—O1iii67.61 (11)C5—N1—H1117.6
O8i—Ba1—O564.24 (16)C1—N1—H1117.6
O7—Ba1—O593.23 (11)O5—N2—O6118.8 (4)
O9—Ba1—O5111.61 (11)O5—N2—C3120.4 (4)
O7ii—Ba1—O594.27 (14)O6—N2—C3120.8 (4)
O9iii—Ba1—O577.39 (14)O1—C1—N1121.4 (4)
O10—Ba1—O5137.72 (16)O1—C1—C2119.6 (4)
O1iii—Ba1—O5152.77 (13)N1—C1—C2119.0 (3)
O8i—Ba1—O289.10 (10)O2—C2—C3128.6 (4)
O7—Ba1—O2143.31 (9)O2—C2—C1114.2 (4)
O9—Ba1—O263.24 (9)C3—C2—C1117.1 (3)
O7ii—Ba1—O264.40 (9)C2—C3—C4122.6 (4)
O9iii—Ba1—O2104.67 (9)C2—C3—N2118.4 (4)
O10—Ba1—O2129.95 (11)C4—C3—N2119.0 (3)
O1iii—Ba1—O2105.01 (9)O3—C4—C3127.7 (4)
O5—Ba1—O253.35 (10)O3—C4—C5114.3 (4)
O8i—Ba1—O2iii121.74 (10)C3—C4—C5117.9 (3)
O7—Ba1—O2iii64.65 (9)O4—C5—N1121.2 (4)
O9—Ba1—O2iii111.41 (8)O4—C5—C4120.7 (4)
O7ii—Ba1—O2iii84.77 (9)N1—C5—C4118.0 (3)
O9iii—Ba1—O2iii61.45 (9)O8—C6—O7125.3 (4)
O10—Ba1—O2iii67.23 (11)O8—C6—C6i117.0 (5)
O1iii—Ba1—O2iii53.60 (8)O7—C6—C6i117.7 (5)
O5—Ba1—O2iii135.85 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6iv0.862.213.052 (5)166
O9—H2···O3v0.822.102.877 (4)158
O9—H3···O8iv0.821.842.639 (4)163
O10—H4···O3v0.822.142.828 (5)141
O10—H4···O6v0.822.303.010 (5)146
O10—H5···O4vi0.822.413.210 (5)165
Symmetry codes: (iv) x, y1, z; (v) x1, y, z; (vi) x1, y+1, z.
 

Acknowledgements

The research was supported by the Russian Foundation for Basic Research (grant No. 13-03-00079).

References

First citationAldoshin, S. M. (2008). Russ. Chem. Bull. 57, 718–735.  CrossRef CAS Google Scholar
First citationBelombe, M. M., Nenwa, J., Mbiangue, Y.-A., Nnanga, G. E., Mbomekalle, I.-M., Hey-Hawkins, E., Lonnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118.  Google Scholar
First citationBelombe, M. M., Nenwa, J., Tchuisse, N. A. S. N., Emmerling, F., Obbade, S., Semmoud, A. & Fokwa, B. P. T. (2012). ScienceJet, 1, 24–27.  Google Scholar
First citationBouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1–7.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Usman, A. & Fun, H.-K. (2002). Acta Cryst. C58, m531–m533.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCoronado, E., Curreli, S., Giminez-Saiz, C., Gimez-Garcia, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446–4457.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477–m478.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M. R. P., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 785–794.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeinl, U., Kleinitz, U. & Mattes, R. (2002). Z. Anorg. Allg. Chem. 628, 2409–2414.  CrossRef CAS Google Scholar
First citationIveson, S. J., Johnston, C. B. & Harrison, W. T. A. (2011). Crystals, 1, 59–68.  CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.  Web of Science CrossRef CAS Google Scholar
First citationKovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1–24.  Web of Science CrossRef CAS Google Scholar
First citationLarsson, K. (2001). Acta Cryst. E57, m195–m197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarinescu, G., Andruh, M., Julve, M., Lloret, F., Llusar, R., Uriel, S. & Vaissermann, J. (2005). Cryst. Growth Des. 5, 261–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVenkatasubramanian, K., Poonia, N. S., Clinger, K., Ernst, S. R. & Hackert, M. L. (1984). J. Inclus. Phenom. Mol. 1, 319–327.  CSD CrossRef CAS Google Scholar
First citationViciano-Chumillas, M., Marino, N., Sorribes, I., Vicent, C., Lloret, F. & Julve, M. (2010). CrystEngComm, 12, 122–133.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds