research communications
μ2-aqua-aqua(μ2-4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olato)hemi-μ4-oxalato-barium(II)]
of poly[aAl Muthanna University, Samawah, Al Mutanna, Iraq, bPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russian Federation, and cKurnakov Institute of General and Inorganic Chemistry RAS, 31 Leninskiy Avenue, 119991 Moscow, Russian Federation
*Correspondence e-mail: www.chemistry1315@gmail.com
In the title coordination polymer, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, the tenfold coordination of the Ba centre consists of four O atoms from the two 4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olate (L) anions, three O atoms of two oxalate anions and three water molecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å. The L ligand chelates two Ba atoms related by a screw axis, leading to formation of fused five- and six-membered chelate rings. Due to the bridging function of the ligands and water molecules, the complex monomers are connected into polymeric two-dimensional layers parallel to the bc plane. Intermolecular O—H⋯O hydrogen bonds link these layers into a three-dimensional supramolecular framework.
CCDC reference: 1057170
1. Chemical context
Mixed ligand coordination polymers containing bridging oxalate anions and 1,2-dicarbonyl carbocyclic or ; Coronado et al., 2007; Kitagawa & Kawata, 2002; Kovalchukova & Strashnova, 2014; Ohba & Okawa, 2000). Such compounds are of chemical interest, since a large number of potential donors available in the ligands predetermine a variety of coordination modes, which afford different geometries and dimensionalities of coordination polymers. Recently, we reported the synthesis, and some properties of metal complexes of the 2,3,5,6-tetraoxo-4-nitro-4-idene anion (Kovalchukova et al., 2014, 2014; Dinh Do et al., 2013). The above-mentioned anion does not replace the water molecules from the inner sphere of the hydrated metal cations [M(H2O)6]n+, but can coordinate metal centres like sodium and silver(I). In the present paper, we report the molecular and of a mixed-ligand barium complex containing 4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olate (L) and oxalate anions as ligands.
exhibit high reactivity and different types of magnetism (Aldoshin, 20082. Structural commentary
In the title compound, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, (I) (Fig. 1), the tenfold coordination of the Ba1 atom (Table 1) is formed by the O2, O5, O1 and O2 atoms of two 4-nitro-2,3,5,6-tetraoxopyridine-4-ide anions (L), the O7, O8 and O7A atoms of two oxalate anions, and the O9, O9A and O10 atoms of water molecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å, which is typical for ten-coordinate barium complexes containing oxalate anions (Viciano-Chumillas et al., 2010; Heinl et al., 2002; Marinescu et al., 2005; Belombe et al., 2003, 2012; Larsson, 2001; Bouayad et al., 1995; Iveson et al., 2011). The L anion has a flattened skeleton. The r.m.s. deviation of the six ring atoms from their mean plane is 0.0256 Å; the O2 and O4 atoms lie in this plane deviating by 0.049 (3) and 0.010 (3) Å, respectively, whereas the O1 and O3 atoms deviate from it by 0.171 (3) and 0.077 (3) Å, respectively. The plane of the nitro group is rotated by 11.9 (8)° with respect to the ring plane. The L ligand chelates two Ba atoms related by a screw axis forming fused chelate rings. The six-membered ring is almost planar (r.m.s. deviation = 0.0353 Å) and the five–membered ring is folded along the O1—O2 line by 19.0°. The geometry of the L anion in the Ba complex is close to that in the compounds studied earlier (Kovalchukova et al., 2014; Dinh Do et al., 2013). All C=O bonds are of the double-bond type [1.200 (5)–1.229 (5) Å]. The monodentate coordination of L via the O atom of a nitro group attached to a benzene ring is in accordance with Venkatasubramanian et al. (1984), Harrowfield et al. (1998) and Chantrapromma et al. (2002). The centrosymmetric oxalate anion connects four Ba atoms closing two almost planar five–membered rings (r.m.s. deviation of rings = 0.0415 Å).
3. Supramolecular features
Due to the bridging function of the L ligand and the O9 water molecule, the hydrated complex cations [Ba(L)(H2O)2]+ form wide zigzag bands running along the screw axes in the b-axis direction (Fig. 2). Oxalate anions connect the bands into thick two-dimensional networks parallel to bc. The networks have corrugated surfaces with terminal O3, O4 and O6 atoms of the L ligand on the `hills' and water molecules in the `hollows'. In the packing (Fig. 3), the `hills' enter the `hollows' of adjacent networks. Two-centre hydrogen bonds O9—H2⋯O3 and O10—H5⋯O4 and three-centre bonds O10—H4⋯(O3,O6) (Table 2) link the networks into a three-dimensional framework. Hydrogen bonds N1—H1⋯O6 and O9—H3⋯O8 link the elements of a band and a network, respectively.
4. Database survey
The synthesis, et al. (2014) and Dinh Do et al. (2013). Model structures of complexes containing carbocyclic polyoxo compounds are reviewed in Kitagawa & Kawata (2002) and Kovalchukova & Strashnova (2014). Ten coordinated structures of Ba cations with oxalate anions containing other O-donating ligands have been described (Viciano-Chumillas et al., 2010; Marinescu et al., 2005; Belombe et al., 2003, 2012; Larsson, 2001; Bouayad et al., 1995; Iveson et al., 2011). Monodentate coordination via the O atom of a nitro aromatic group is described by Venkatasubramanian et al. (1984), Harrowfield et al. (1998) and Chantrapromma et al. (2002).
and some properties of metal complexes of the 4-nitro-2,3,5,6-tetraoxo-4-idene anion are described in Kovalchukova5. Synthesis and crystallization
Single crystals of (I) were grown by the slow evaporation of an ethanol solution of a 1:1:1 molar mixture of barium chloride, ammonium oxalate and ammonium 2,3,5,6-tetraoxo-4-nitro-4-inide.
6. details
Crystal data, data collection and structure . The H atoms of water molecules were localized in a difference map; O—H distances were normalized. The position of the amino H atom was calculated. All H atoms were refined within the riding model, with Uiso(H) = 1.2Ueq of the parent atom. The crystal studied was a twin without superposition of reciprocal lattices. Apparently, an accidental overlapping of reflections of two domains is responsible for increased displacement ellipsoids of some atoms. The Uij components of atom O5 were restrained to approximate the isotropic behaviour.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1057170
https://doi.org/10.1107/S2056989015006520/cv5485sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006520/cv5485Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006520/cv5485Isup3.mol
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson & Burnett, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ba(C5HN2O6)(C2O4)0.5(H2O)2] | F(000) = 764 |
Mr = 804.92 | Dx = 2.494 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3283 (11) Å | Cell parameters from 3977 reflections |
b = 7.9868 (8) Å | θ = 3.0–31.4° |
c = 13.0760 (14) Å | µ = 3.76 mm−1 |
β = 96.419 (2)° | T = 296 K |
V = 1071.88 (19) Å3 | Plate, brown |
Z = 2 | 0.16 × 0.12 × 0.03 mm |
Bruker APEXII CCD diffractometer | 2692 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.036 |
φ and ω scans | θmax = 31.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −15→14 |
Tmin = 0.586, Tmax = 0.746 | k = −11→11 |
11240 measured reflections | l = −19→18 |
3410 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.9998P] where P = (Fo2 + 2Fc2)/3 |
3410 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 2.31 e Å−3 |
6 restraints | Δρmin = −1.67 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | −0.00361 (2) | 0.20711 (3) | 0.69482 (2) | 0.01991 (8) | |
O1 | 0.2105 (3) | −0.4097 (4) | 0.6917 (3) | 0.0343 (8) | |
O2 | 0.1678 (3) | −0.0830 (4) | 0.6825 (3) | 0.0295 (7) | |
O3 | 0.6026 (3) | −0.0297 (4) | 0.6022 (3) | 0.0344 (8) | |
O4 | 0.6113 (4) | −0.3626 (5) | 0.5935 (4) | 0.0489 (10) | |
O5 | 0.2660 (4) | 0.2124 (5) | 0.6490 (5) | 0.0711 (16) | |
O6 | 0.4673 (4) | 0.2379 (4) | 0.6424 (4) | 0.0446 (10) | |
O7 | −0.0517 (3) | 0.5240 (4) | 0.6225 (2) | 0.0259 (6) | |
O8 | −0.0324 (4) | 0.7141 (4) | 0.5006 (3) | 0.0380 (9) | |
O9 | −0.1222 (3) | −0.0942 (4) | 0.6412 (2) | 0.0277 (7) | |
H2 | −0.2018 | −0.1018 | 0.6364 | 0.033* | |
H3 | −0.1064 | −0.1457 | 0.5898 | 0.033* | |
O10 | −0.2582 (4) | 0.2730 (5) | 0.5886 (4) | 0.0452 (10) | |
H4 | −0.3231 | 0.2206 | 0.6007 | 0.054* | |
H5 | −0.2776 | 0.3726 | 0.5862 | 0.054* | |
N1 | 0.4071 (3) | −0.3879 (4) | 0.6348 (3) | 0.0236 (7) | |
H1 | 0.4119 | −0.4950 | 0.6295 | 0.028* | |
N2 | 0.3712 (4) | 0.1478 (5) | 0.6435 (3) | 0.0258 (7) | |
C1 | 0.2940 (4) | −0.3217 (5) | 0.6640 (3) | 0.0211 (8) | |
C2 | 0.2754 (4) | −0.1295 (5) | 0.6620 (3) | 0.0196 (7) | |
C3 | 0.3832 (4) | −0.0309 (5) | 0.6406 (3) | 0.0201 (7) | |
C4 | 0.5038 (4) | −0.1026 (5) | 0.6192 (3) | 0.0217 (8) | |
C5 | 0.5130 (4) | −0.2959 (6) | 0.6135 (4) | 0.0250 (8) | |
C6 | −0.0251 (4) | 0.5680 (5) | 0.5350 (3) | 0.0218 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.02335 (13) | 0.01750 (12) | 0.01979 (12) | 0.00255 (10) | 0.00648 (8) | 0.00287 (9) |
O1 | 0.0313 (17) | 0.0196 (16) | 0.056 (2) | −0.0044 (13) | 0.0208 (15) | 0.0017 (14) |
O2 | 0.0223 (15) | 0.0213 (16) | 0.048 (2) | 0.0046 (12) | 0.0156 (13) | 0.0036 (13) |
O3 | 0.0191 (15) | 0.0244 (17) | 0.061 (2) | −0.0021 (13) | 0.0110 (14) | 0.0034 (15) |
O4 | 0.0296 (18) | 0.0305 (19) | 0.091 (3) | 0.0069 (16) | 0.0260 (19) | 0.000 (2) |
O5 | 0.037 (2) | 0.026 (2) | 0.157 (5) | 0.0086 (17) | 0.038 (3) | 0.007 (2) |
O6 | 0.0302 (18) | 0.0179 (17) | 0.087 (3) | −0.0070 (14) | 0.0102 (19) | 0.0005 (18) |
O7 | 0.0408 (18) | 0.0192 (14) | 0.0193 (14) | 0.0009 (13) | 0.0101 (13) | −0.0011 (11) |
O8 | 0.068 (3) | 0.0215 (16) | 0.0281 (17) | 0.0077 (17) | 0.0221 (17) | 0.0028 (13) |
O9 | 0.0241 (15) | 0.0280 (16) | 0.0318 (16) | 0.0028 (13) | 0.0063 (12) | −0.0083 (13) |
O10 | 0.0294 (18) | 0.032 (2) | 0.072 (3) | −0.0050 (16) | −0.0021 (18) | 0.0092 (18) |
N1 | 0.0228 (17) | 0.0139 (15) | 0.035 (2) | 0.0023 (13) | 0.0096 (14) | 0.0000 (14) |
N2 | 0.0228 (17) | 0.0192 (17) | 0.036 (2) | 0.0005 (14) | 0.0066 (15) | 0.0007 (15) |
C1 | 0.0216 (19) | 0.0184 (19) | 0.0245 (19) | 0.0014 (14) | 0.0075 (15) | 0.0000 (14) |
C2 | 0.0198 (18) | 0.0168 (18) | 0.0227 (18) | 0.0023 (15) | 0.0049 (14) | 0.0005 (15) |
C3 | 0.0187 (18) | 0.0146 (17) | 0.027 (2) | −0.0003 (14) | 0.0032 (15) | 0.0012 (14) |
C4 | 0.0191 (18) | 0.0180 (18) | 0.028 (2) | −0.0019 (15) | 0.0043 (15) | 0.0003 (15) |
C5 | 0.0211 (19) | 0.024 (2) | 0.031 (2) | 0.0023 (17) | 0.0056 (16) | 0.0027 (17) |
C6 | 0.027 (2) | 0.0183 (19) | 0.0211 (19) | 0.0020 (15) | 0.0073 (15) | −0.0044 (14) |
Ba1—O8i | 2.698 (3) | O7—C6 | 1.257 (5) |
Ba1—O7 | 2.728 (3) | O7—Ba1iii | 2.805 (3) |
Ba1—O9 | 2.755 (3) | O8—C6 | 1.250 (5) |
Ba1—O7ii | 2.805 (3) | O8—Ba1i | 2.698 (3) |
Ba1—O9iii | 2.860 (3) | O9—Ba1ii | 2.860 (3) |
Ba1—O10 | 2.882 (4) | O9—H2 | 0.8200 |
Ba1—O1iii | 2.889 (3) | O9—H3 | 0.8200 |
Ba1—O5 | 2.914 (4) | O10—H4 | 0.8201 |
Ba1—O2 | 2.931 (3) | O10—H5 | 0.8200 |
Ba1—O2iii | 2.978 (3) | N1—C5 | 1.372 (5) |
O1—C1 | 1.199 (5) | N1—C1 | 1.375 (5) |
O1—Ba1ii | 2.889 (3) | N1—H1 | 0.8600 |
O2—C2 | 1.229 (5) | N2—C3 | 1.433 (5) |
O2—Ba1ii | 2.978 (3) | C1—C2 | 1.547 (6) |
O3—C4 | 1.217 (5) | C2—C3 | 1.417 (5) |
O4—C5 | 1.202 (5) | C3—C4 | 1.427 (5) |
O5—N2 | 1.212 (5) | C4—C5 | 1.549 (6) |
O6—N2 | 1.227 (5) | C6—C6i | 1.546 (8) |
O8i—Ba1—O7 | 59.61 (9) | O2—Ba1—O2iii | 149.14 (6) |
O8i—Ba1—O9 | 93.86 (10) | C1—O1—Ba1ii | 124.3 (3) |
O7—Ba1—O9 | 131.58 (10) | C2—O2—Ba1 | 144.8 (3) |
O8i—Ba1—O7ii | 153.12 (10) | C2—O2—Ba1ii | 122.0 (3) |
O7—Ba1—O7ii | 142.27 (8) | Ba1—O2—Ba1ii | 91.81 (8) |
O9—Ba1—O7ii | 78.67 (9) | N2—O5—Ba1 | 152.8 (3) |
O8i—Ba1—O9iii | 118.77 (10) | C6—O7—Ba1 | 121.7 (3) |
O7—Ba1—O9iii | 78.16 (9) | C6—O7—Ba1iii | 125.8 (3) |
O9—Ba1—O9iii | 145.81 (7) | Ba1—O7—Ba1iii | 100.18 (9) |
O7ii—Ba1—O9iii | 67.59 (9) | C6—O8—Ba1i | 123.3 (3) |
O8i—Ba1—O10 | 73.50 (13) | Ba1—O9—Ba1ii | 98.17 (9) |
O7—Ba1—O10 | 62.78 (10) | Ba1—O9—H2 | 119.8 |
O9—Ba1—O10 | 71.41 (10) | Ba1ii—O9—H2 | 112.6 |
O7ii—Ba1—O10 | 126.42 (11) | Ba1—O9—H3 | 121.6 |
O9iii—Ba1—O10 | 125.00 (11) | Ba1ii—O9—H3 | 102.8 |
O8i—Ba1—O1iii | 138.61 (12) | H2—O9—H3 | 100.9 |
O7—Ba1—O1iii | 111.17 (9) | Ba1—O10—H4 | 122.3 |
O9—Ba1—O1iii | 61.02 (9) | Ba1—O10—H5 | 113.6 |
O7ii—Ba1—O1iii | 59.07 (10) | H4—O10—H5 | 107.6 |
O9iii—Ba1—O1iii | 95.40 (9) | C5—N1—C1 | 124.8 (4) |
O10—Ba1—O1iii | 67.61 (11) | C5—N1—H1 | 117.6 |
O8i—Ba1—O5 | 64.24 (16) | C1—N1—H1 | 117.6 |
O7—Ba1—O5 | 93.23 (11) | O5—N2—O6 | 118.8 (4) |
O9—Ba1—O5 | 111.61 (11) | O5—N2—C3 | 120.4 (4) |
O7ii—Ba1—O5 | 94.27 (14) | O6—N2—C3 | 120.8 (4) |
O9iii—Ba1—O5 | 77.39 (14) | O1—C1—N1 | 121.4 (4) |
O10—Ba1—O5 | 137.72 (16) | O1—C1—C2 | 119.6 (4) |
O1iii—Ba1—O5 | 152.77 (13) | N1—C1—C2 | 119.0 (3) |
O8i—Ba1—O2 | 89.10 (10) | O2—C2—C3 | 128.6 (4) |
O7—Ba1—O2 | 143.31 (9) | O2—C2—C1 | 114.2 (4) |
O9—Ba1—O2 | 63.24 (9) | C3—C2—C1 | 117.1 (3) |
O7ii—Ba1—O2 | 64.40 (9) | C2—C3—C4 | 122.6 (4) |
O9iii—Ba1—O2 | 104.67 (9) | C2—C3—N2 | 118.4 (4) |
O10—Ba1—O2 | 129.95 (11) | C4—C3—N2 | 119.0 (3) |
O1iii—Ba1—O2 | 105.01 (9) | O3—C4—C3 | 127.7 (4) |
O5—Ba1—O2 | 53.35 (10) | O3—C4—C5 | 114.3 (4) |
O8i—Ba1—O2iii | 121.74 (10) | C3—C4—C5 | 117.9 (3) |
O7—Ba1—O2iii | 64.65 (9) | O4—C5—N1 | 121.2 (4) |
O9—Ba1—O2iii | 111.41 (8) | O4—C5—C4 | 120.7 (4) |
O7ii—Ba1—O2iii | 84.77 (9) | N1—C5—C4 | 118.0 (3) |
O9iii—Ba1—O2iii | 61.45 (9) | O8—C6—O7 | 125.3 (4) |
O10—Ba1—O2iii | 67.23 (11) | O8—C6—C6i | 117.0 (5) |
O1iii—Ba1—O2iii | 53.60 (8) | O7—C6—C6i | 117.7 (5) |
O5—Ba1—O2iii | 135.85 (12) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) −x, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6iv | 0.86 | 2.21 | 3.052 (5) | 166 |
O9—H2···O3v | 0.82 | 2.10 | 2.877 (4) | 158 |
O9—H3···O8iv | 0.82 | 1.84 | 2.639 (4) | 163 |
O10—H4···O3v | 0.82 | 2.14 | 2.828 (5) | 141 |
O10—H4···O6v | 0.82 | 2.30 | 3.010 (5) | 146 |
O10—H5···O4vi | 0.82 | 2.41 | 3.210 (5) | 165 |
Symmetry codes: (iv) x, y−1, z; (v) x−1, y, z; (vi) x−1, y+1, z. |
Acknowledgements
The research was supported by the Russian Foundation for Basic Research (grant No. 13-03-00079).
References
Aldoshin, S. M. (2008). Russ. Chem. Bull. 57, 718–735. CrossRef CAS Google Scholar
Belombe, M. M., Nenwa, J., Mbiangue, Y.-A., Nnanga, G. E., Mbomekalle, I.-M., Hey-Hawkins, E., Lonnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118. Google Scholar
Belombe, M. M., Nenwa, J., Tchuisse, N. A. S. N., Emmerling, F., Obbade, S., Semmoud, A. & Fokwa, B. P. T. (2012). ScienceJet, 1, 24–27. Google Scholar
Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1–7. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chantrapromma, S., Usman, A. & Fun, H.-K. (2002). Acta Cryst. C58, m531–m533. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Coronado, E., Curreli, S., Giminez-Saiz, C., Gimez-Garcia, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446–4457. Web of Science CrossRef PubMed CAS Google Scholar
Dinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477–m478. CSD CrossRef IUCr Journals Google Scholar
Harrowfield, J. M. R. P., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 785–794. Web of Science CSD CrossRef CAS Google Scholar
Heinl, U., Kleinitz, U. & Mattes, R. (2002). Z. Anorg. Allg. Chem. 628, 2409–2414. CrossRef CAS Google Scholar
Iveson, S. J., Johnston, C. B. & Harrison, W. T. A. (2011). Crystals, 1, 59–68. CSD CrossRef CAS Google Scholar
Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34. Web of Science CrossRef CAS Google Scholar
Kovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60–65. Web of Science CSD CrossRef CAS Google Scholar
Kovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1–24. Web of Science CrossRef CAS Google Scholar
Larsson, K. (2001). Acta Cryst. E57, m195–m197. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marinescu, G., Andruh, M., Julve, M., Lloret, F., Llusar, R., Uriel, S. & Vaissermann, J. (2005). Cryst. Growth Des. 5, 261–267. Web of Science CSD CrossRef CAS Google Scholar
Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Venkatasubramanian, K., Poonia, N. S., Clinger, K., Ernst, S. R. & Hackert, M. L. (1984). J. Inclus. Phenom. Mol. 1, 319–327. CSD CrossRef CAS Google Scholar
Viciano-Chumillas, M., Marino, N., Sorribes, I., Vicent, C., Lloret, F. & Julve, M. (2010). CrystEngComm, 12, 122–133. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.