metal-organic compounds
of 1-[2-(diethylazaniumyl)ethyl]-3-methylimidazolium tetrachloridocuprate(II)
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title compound, (C10H21N3)[CuCl4], is composed of one 1-[2-(diethylazaniumyl)ethyl]-3-methylimidazolium dication and a tetrachloridocuprate(II) dianion. The anion adopts a distorted tetrahedral geometry. Bifurcated interionic N—H⋯Cl hydrogen bonds and several C—H⋯Cl contacts are observed, leading to a layer-like arrangement of the components parallel to (100).
Keywords: crystal structure; copper(II) complex; tetrachloridocuprate; 1-[2-(diethylazaniumyl)ethyl]-3-methylimidazolium dication; hydrogen bonding.
CCDC reference: 1057934
1. Related literature
For structures of related tetrachloridocuprates(II), see: Russell & Wallwork (1969); Główka & Gilli (1989); Choi et al. (2002); Sun & Qu (2005); Elangovan et al. (2007a,b); Strasser et al. (2007). For details of the synthesis, see: Laus et al. (2012); Håkansson & Jagner (1990).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1057934
https://doi.org/10.1107/S2056989015006799/ff2135sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006799/ff2135Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006799/ff2135Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006799/ff2135Isup4.cml
The title compound, (C10H21N3)CuCl4, was obtained from the reaction of bis-(1-(2-(diethylamino)ethyl)-3-methylimidazolin-2-ylidene) di-silver(I) bis(bis(triflimide)) (Laus et al., 2012) and carbonyl chlorocopper(I) (Håkansson & Jagner, 1990) in methanol under ambient conditions. This unconventional synthesis involves redox, protonation and complexation steps. Yellow-green single crystals were obtained from MeOH in modest yield. Melting point 118–120 °C.
All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(parent atom).
1-[2-(Diethylazaniumyl)ethyl]-3-methylimidazolium ions in deprotonated form can act as bidentate ligands (Laus et al., 2012). In this work, it is shown that they are also capable of coordinating in protonated form. The structure of the 7 2) planes with an interplanar angle of 32.5°. The side chain is twisted out of the heterocyclic ring plane. In the the cations and anions are linked by N—H···Cl and C—H···Cl hydrogen bonds (Figure 2).
of 3-(2-(diethylammonio)ethyl-1- methylimidazolium tetrachlorocuprate (II) is shown in Figure 1. The anion adopts a distorted tetrahedral geometry. The Cl—Cu—Cl angles range from 97° to 134°. The heterocyclic rings of the cation are oriented parallel to the (3 7 2) and (3For structures of related tetrachloridocuprates(II), see: Russell & Wallwork (1969); Główka & Gilli (1989); Choi et al. (2002); Sun & Qu (2005); Elangovan et al. (2007a); Elangovan et al. (2007b); Strasser et al. (2007). For details of the synthesis, see: Laus et al. (2012); Håkansson & Jagner (1990).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Ion pair of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. Interionic contacts in the crystal structure of the title compound. Symmetry codes: (i) x, -1 + y, z; (ii) –x, -1/2 + y, 3/2–z; (iii) x, 1/2–y, 1/2 + z. |
(C10H21N3)[CuCl4] | F(000) = 796 |
Mr = 388.64 | Dx = 1.607 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.0041 (8) Å | Cell parameters from 4805 reflections |
b = 7.1161 (6) Å | θ = 3.1–28.5° |
c = 14.4143 (7) Å | µ = 2.01 mm−1 |
β = 112.956 (6)° | T = 173 K |
V = 1606.04 (17) Å3 | Fragment, yellow |
Z = 4 | 0.20 × 0.16 × 0.12 mm |
Oxford Diffraction Gemini-R Ultra diffractometer | 2991 independent reflections |
Graphite monochromator | 2361 reflections with I > 2σ(I) |
Detector resolution: 10.3822 pixels mm-1 | Rint = 0.045 |
ω (1° width) scans | θmax = 25.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −20→20 |
Tmin = 0.875, Tmax = 1 | k = −6→8 |
10390 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0234P)2] where P = (Fo2 + 2Fc2)/3 |
2991 reflections | (Δ/σ)max = 0.001 |
166 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
(C10H21N3)[CuCl4] | V = 1606.04 (17) Å3 |
Mr = 388.64 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.0041 (8) Å | µ = 2.01 mm−1 |
b = 7.1161 (6) Å | T = 173 K |
c = 14.4143 (7) Å | 0.20 × 0.16 × 0.12 mm |
β = 112.956 (6)° |
Oxford Diffraction Gemini-R Ultra diffractometer | 2991 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2361 reflections with I > 2σ(I) |
Tmin = 0.875, Tmax = 1 | Rint = 0.045 |
10390 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.34 e Å−3 |
2991 reflections | Δρmin = −0.34 e Å−3 |
166 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.24089 (2) | 0.54432 (5) | 0.77447 (2) | 0.01040 (9) | |
Cl1 | 0.33356 (4) | 0.30011 (9) | 0.81388 (5) | 0.01280 (16) | |
Cl2 | 0.12793 (4) | 0.62361 (10) | 0.63485 (5) | 0.01575 (16) | |
Cl3 | 0.17620 (4) | 0.47770 (9) | 0.87973 (4) | 0.01224 (15) | |
Cl4 | 0.33226 (4) | 0.76469 (10) | 0.76985 (6) | 0.02164 (18) | |
N3 | 0.34210 (13) | 0.2088 (3) | 1.03033 (15) | 0.0089 (5) | |
H3N | 0.3191 | 0.2461 | 0.9632 | 0.011* | |
N2 | 0.16575 (13) | −0.0096 (3) | 0.88310 (15) | 0.0089 (5) | |
N1 | 0.08640 (14) | 0.0672 (3) | 0.73070 (15) | 0.0118 (5) | |
C9 | 0.35838 (17) | 0.3852 (4) | 1.09319 (19) | 0.0130 (6) | |
H9A | 0.3812 | 0.3503 | 1.1654 | 0.016* | |
H9B | 0.3036 | 0.4519 | 1.0777 | 0.016* | |
C2 | 0.16480 (17) | 0.0163 (4) | 0.79170 (19) | 0.0125 (6) | |
H2 | 0.2121 | 0.0012 | 0.7729 | 0.015* | |
C8 | 0.46893 (17) | 0.0322 (4) | 1.15266 (19) | 0.0164 (6) | |
H8A | 0.4892 | 0.1404 | 1.1978 | 0.025* | |
H8B | 0.5178 | −0.0452 | 1.1564 | 0.025* | |
H8C | 0.4301 | −0.0429 | 1.1731 | 0.025* | |
C6 | 0.27576 (16) | 0.0917 (4) | 1.04753 (19) | 0.0105 (6) | |
H6A | 0.2283 | 0.1748 | 1.0451 | 0.013* | |
H6B | 0.3012 | 0.0373 | 1.1161 | 0.013* | |
C5 | 0.23917 (16) | −0.0678 (4) | 0.97205 (19) | 0.0124 (6) | |
H5A | 0.2842 | −0.1156 | 0.9508 | 0.015* | |
H5B | 0.2219 | −0.1721 | 1.0055 | 0.015* | |
C7 | 0.42237 (16) | 0.1000 (4) | 1.04603 (19) | 0.0132 (6) | |
H7A | 0.4613 | 0.1809 | 1.0273 | 0.016* | |
H7B | 0.4074 | −0.0098 | 1.0003 | 0.016* | |
C10 | 0.42071 (19) | 0.5163 (4) | 1.0745 (2) | 0.0193 (7) | |
H10A | 0.4779 | 0.4604 | 1.1017 | 0.029* | |
H10B | 0.4218 | 0.6369 | 1.1079 | 0.029* | |
H10C | 0.4028 | 0.5367 | 1.0019 | 0.029* | |
C1 | 0.05856 (19) | 0.1108 (4) | 0.62341 (19) | 0.0215 (7) | |
H1A | 0.0668 | 0.2451 | 0.6151 | 0.032* | |
H1B | −0.002 | 0.0793 | 0.5887 | 0.032* | |
H1C | 0.0922 | 0.0373 | 0.5946 | 0.032* | |
C3 | 0.03637 (17) | 0.0745 (4) | 0.78593 (19) | 0.0138 (6) | |
H3 | −0.0224 | 0.1072 | 0.7612 | 0.017* | |
C4 | 0.08539 (16) | 0.0273 (4) | 0.8808 (2) | 0.0134 (6) | |
H4 | 0.0682 | 0.0206 | 0.9359 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01055 (17) | 0.00944 (18) | 0.01216 (18) | −0.00016 (15) | 0.00545 (14) | 0.00046 (14) |
Cl1 | 0.0154 (4) | 0.0136 (4) | 0.0110 (3) | 0.0043 (3) | 0.0068 (3) | 0.0018 (3) |
Cl2 | 0.0162 (4) | 0.0190 (4) | 0.0114 (3) | 0.0037 (3) | 0.0048 (3) | 0.0018 (3) |
Cl3 | 0.0113 (3) | 0.0140 (4) | 0.0119 (3) | 0.0003 (3) | 0.0051 (3) | 0.0012 (3) |
Cl4 | 0.0185 (4) | 0.0115 (4) | 0.0420 (5) | −0.0021 (3) | 0.0196 (4) | −0.0007 (3) |
N3 | 0.0081 (12) | 0.0116 (12) | 0.0062 (11) | 0.0000 (10) | 0.0020 (10) | 0.0009 (9) |
N2 | 0.0094 (12) | 0.0063 (13) | 0.0093 (11) | −0.0013 (9) | 0.0017 (10) | −0.0026 (9) |
N1 | 0.0130 (12) | 0.0092 (13) | 0.0098 (12) | −0.0028 (10) | 0.0007 (10) | −0.0026 (9) |
C9 | 0.0158 (15) | 0.0119 (15) | 0.0110 (14) | −0.0007 (12) | 0.0049 (12) | −0.0017 (11) |
C2 | 0.0153 (15) | 0.0090 (15) | 0.0138 (15) | −0.0033 (12) | 0.0063 (13) | −0.0046 (11) |
C8 | 0.0107 (14) | 0.0169 (16) | 0.0182 (15) | 0.0005 (13) | 0.0020 (12) | 0.0005 (13) |
C6 | 0.0070 (14) | 0.0142 (16) | 0.0101 (14) | −0.0004 (11) | 0.0029 (12) | 0.0007 (11) |
C5 | 0.0095 (14) | 0.0109 (16) | 0.0163 (15) | 0.0002 (12) | 0.0045 (12) | 0.0023 (12) |
C7 | 0.0092 (14) | 0.0142 (16) | 0.0184 (15) | 0.0006 (12) | 0.0079 (12) | 0.0011 (12) |
C10 | 0.0273 (17) | 0.0147 (17) | 0.0151 (15) | −0.0083 (13) | 0.0075 (13) | −0.0039 (12) |
C1 | 0.0277 (18) | 0.0217 (18) | 0.0119 (15) | 0.0021 (14) | 0.0044 (14) | 0.0009 (13) |
C3 | 0.0098 (14) | 0.0136 (17) | 0.0179 (15) | −0.0019 (12) | 0.0055 (13) | −0.0039 (12) |
C4 | 0.0106 (14) | 0.0146 (15) | 0.0165 (15) | −0.0034 (12) | 0.0070 (13) | −0.0037 (12) |
Cu1—Cl4 | 2.2267 (7) | C8—H8A | 0.98 |
Cu1—Cl3 | 2.2447 (6) | C8—H8B | 0.98 |
Cu1—Cl2 | 2.2456 (8) | C8—H8C | 0.98 |
Cu1—Cl1 | 2.2644 (7) | C6—C5 | 1.527 (4) |
N3—C6 | 1.499 (3) | C6—H6A | 0.99 |
N3—C7 | 1.507 (3) | C6—H6B | 0.99 |
N3—C9 | 1.509 (3) | C5—H5A | 0.99 |
N3—H3N | 0.93 | C5—H5B | 0.99 |
N2—C2 | 1.324 (3) | C7—H7A | 0.99 |
N2—C4 | 1.379 (3) | C7—H7B | 0.99 |
N2—C5 | 1.458 (3) | C10—H10A | 0.98 |
N1—C2 | 1.329 (3) | C10—H10B | 0.98 |
N1—C3 | 1.374 (3) | C10—H10C | 0.98 |
N1—C1 | 1.463 (3) | C1—H1A | 0.98 |
C9—C10 | 1.513 (4) | C1—H1B | 0.98 |
C9—H9A | 0.99 | C1—H1C | 0.98 |
C9—H9B | 0.99 | C3—C4 | 1.337 (4) |
C2—H2 | 0.95 | C3—H3 | 0.95 |
C8—C7 | 1.508 (4) | C4—H4 | 0.95 |
Cl4—Cu1—Cl3 | 134.47 (3) | C5—C6—H6A | 108.6 |
Cl4—Cu1—Cl2 | 99.16 (3) | N3—C6—H6B | 108.6 |
Cl3—Cu1—Cl2 | 100.69 (3) | C5—C6—H6B | 108.6 |
Cl4—Cu1—Cl1 | 97.04 (3) | H6A—C6—H6B | 107.5 |
Cl3—Cu1—Cl1 | 98.33 (3) | N2—C5—C6 | 112.7 (2) |
Cl2—Cu1—Cl1 | 133.31 (3) | N2—C5—H5A | 109 |
C6—N3—C7 | 112.7 (2) | C6—C5—H5A | 109 |
C6—N3—C9 | 109.68 (18) | N2—C5—H5B | 109 |
C7—N3—C9 | 113.2 (2) | C6—C5—H5B | 109 |
C6—N3—H3N | 107 | H5A—C5—H5B | 107.8 |
C7—N3—H3N | 107 | N3—C7—C8 | 113.7 (2) |
C9—N3—H3N | 107 | N3—C7—H7A | 108.8 |
C2—N2—C4 | 108.8 (2) | C8—C7—H7A | 108.8 |
C2—N2—C5 | 126.0 (2) | N3—C7—H7B | 108.8 |
C4—N2—C5 | 125.19 (19) | C8—C7—H7B | 108.8 |
C2—N1—C3 | 108.4 (2) | H7A—C7—H7B | 107.7 |
C2—N1—C1 | 125.8 (2) | C9—C10—H10A | 109.5 |
C3—N1—C1 | 125.9 (2) | C9—C10—H10B | 109.5 |
N3—C9—C10 | 112.5 (2) | H10A—C10—H10B | 109.5 |
N3—C9—H9A | 109.1 | C9—C10—H10C | 109.5 |
C10—C9—H9A | 109.1 | H10A—C10—H10C | 109.5 |
N3—C9—H9B | 109.1 | H10B—C10—H10C | 109.5 |
C10—C9—H9B | 109.1 | N1—C1—H1A | 109.5 |
H9A—C9—H9B | 107.8 | N1—C1—H1B | 109.5 |
N2—C2—N1 | 108.4 (2) | H1A—C1—H1B | 109.5 |
N2—C2—H2 | 125.8 | N1—C1—H1C | 109.5 |
N1—C2—H2 | 125.8 | H1A—C1—H1C | 109.5 |
C7—C8—H8A | 109.5 | H1B—C1—H1C | 109.5 |
C7—C8—H8B | 109.5 | C4—C3—N1 | 107.6 (2) |
H8A—C8—H8B | 109.5 | C4—C3—H3 | 126.2 |
C7—C8—H8C | 109.5 | N1—C3—H3 | 126.2 |
H8A—C8—H8C | 109.5 | C3—C4—N2 | 106.8 (2) |
H8B—C8—H8C | 109.5 | C3—C4—H4 | 126.6 |
N3—C6—C5 | 114.8 (2) | N2—C4—H4 | 126.6 |
N3—C6—H6A | 108.6 | ||
C6—N3—C9—C10 | −176.3 (2) | C4—N2—C5—C6 | −72.8 (3) |
C7—N3—C9—C10 | 56.9 (3) | N3—C6—C5—N2 | −88.4 (3) |
C4—N2—C2—N1 | −0.5 (3) | C6—N3—C7—C8 | −63.9 (3) |
C5—N2—C2—N1 | 179.5 (2) | C9—N3—C7—C8 | 61.3 (3) |
C3—N1—C2—N2 | 0.4 (3) | C2—N1—C3—C4 | −0.1 (3) |
C1—N1—C2—N2 | 179.5 (2) | C1—N1—C3—C4 | −179.2 (2) |
C7—N3—C6—C5 | −65.8 (3) | N1—C3—C4—N2 | −0.2 (3) |
C9—N3—C6—C5 | 167.1 (2) | C2—N2—C4—C3 | 0.4 (3) |
C2—N2—C5—C6 | 107.2 (3) | C5—N2—C4—C3 | −179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Cl1 | 0.93 | 2.29 | 3.134 (2) | 150 |
N3—H3N···Cl3 | 0.93 | 2.79 | 3.399 (2) | 124 |
C2—H2···Cl4i | 0.95 | 2.66 | 3.480 (3) | 145 |
C3—H3···Cl2ii | 0.95 | 2.75 | 3.423 (3) | 128 |
C3—H3···Cl3ii | 0.95 | 2.77 | 3.537 (3) | 138 |
C4—H4···Cl2iii | 0.95 | 2.84 | 3.608 (3) | 139 |
C9—H9A···Cl1iii | 0.99 | 2.78 | 3.617 (3) | 143 |
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Cl1 | 0.93 | 2.29 | 3.134 (2) | 150 |
N3—H3N···Cl3 | 0.93 | 2.79 | 3.399 (2) | 124 |
C2—H2···Cl4i | 0.95 | 2.66 | 3.480 (3) | 145 |
C3—H3···Cl2ii | 0.95 | 2.75 | 3.423 (3) | 128 |
C3—H3···Cl3ii | 0.95 | 2.77 | 3.537 (3) | 138 |
C4—H4···Cl2iii | 0.95 | 2.84 | 3.608 (3) | 139 |
C9—H9A···Cl1iii | 0.99 | 2.78 | 3.617 (3) | 143 |
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors are grateful to A. Schwärzler for technical assistance.
References
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Elangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, m201–m203. CSD CrossRef IUCr Journals Google Scholar
Elangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, m224–m226. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Główka, M. L. & Gilli, G. (1989). Acta Cryst. C45, 408–410. CSD CrossRef IUCr Journals Google Scholar
Håkansson, M. & Jagner, S. (1990). Inorg. Chem. 29, 5241–5244. Google Scholar
Laus, G., Wurst, K. & Schottenberger, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 413–415. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Russell, J. H. & Wallwork, S. C. (1969). Acta Cryst. B25, 1691–1695. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2007). Acta Cryst. E63, m2915–m2916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1-[2-(Diethylazaniumyl)ethyl]-3-methylimidazolium ions in deprotonated form can act as bidentate ligands (Laus et al., 2012). In this work, it is shown that they are also capable of coordinating in protonated form. The structure of the ion pair of 3-(2-(diethylammonio)ethyl-1- methylimidazolium tetrachlorocuprate (II) is shown in Figure 1. The anion adopts a distorted tetrahedral geometry. The Cl—Cu—Cl angles range from 97° to 134°. The heterocyclic rings of the cation are oriented parallel to the (3 7 2) and (3 7 2) planes with an interplanar angle of 32.5°. The side chain is twisted out of the heterocyclic ring plane. In the crystal structure, the cations and anions are linked by N—H···Cl and C—H···Cl hydrogen bonds (Figure 2).