metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[bis­­[μ3-2-(2-nitro­phen­yl)acetato-κ3O:O:O′]disilver(I)]

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and cState Key Laboratory of Materials, Synthesis and New Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by U. Flörke, University of Paderborn, Germany (Received 22 March 2015; accepted 17 April 2015; online 25 April 2015)

The title compound, [Ag2(C8H6NO4)2]n, is a silver complex of 2-(2-nitro­phen­yl)acetic acid. The mol­ecules are not conventional crystallographic inversion dimers but consist of two independent ligands and two AgI ions, each with a distorted T-shaped coordination environment. The dihedral angles between acetate groups and the benzene rings are 51.1 (2) and 57.9 (2)°. The nitro groups are oriented at dihedral angles of 23.6 (5) and 32.3 (3)° with respect to the parent benzene rings. The dimers form polymeric chains along the a-axis direction. The Ag⋯Ag separation within a dimer is 2.8200 (5) and between symmetry-related dimers is 3.6182 (5) Å. The polymeric chains are inter­linked by C—H⋯O hydrogen-bond inter­actions.

1. Related literature

For related structures see: Danish et al. (2011a[Danish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011a). Acta Cryst. E67, m734-m735.],b[Danish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011b). Acta Cryst. E67, m938-m939.], 2015a[Danish, M., Tahir, M. N., Iftikhar, S., Raza, M. A. & Ashfaq, M. (2015a). Acta Cryst. E71, m52-m53.],b[Danish, M., Tahir, M. N., Iftikhar, S., Raza, M. A. & Ashfaq, M. (2015b). Acta Cryst. E71, m59-m60.]); Li et al. (2011[Li, Y., Dong, X., Gou, Y., Jiang, Z. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 1663-1672.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ag2(C8H6NO4)2]

  • Mr = 576.02

  • Monoclinic, P 21 /c

  • a = 5.5249 (3) Å

  • b = 15.8838 (10) Å

  • c = 20.0257 (11) Å

  • β = 96.853 (3)°

  • V = 1744.83 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 296 K

  • 0.37 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.485, Tmax = 0.682

  • 14170 measured reflections

  • 3781 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.066

  • S = 1.10

  • 3781 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O4i 0.97 2.53 3.312 (6) 138
C10—H10B⋯O8ii 0.97 2.35 3.205 (6) 146
C6—H6⋯O8iii 0.93 2.48 3.322 (6) 151
C15—H15⋯O7iv 0.93 2.59 3.268 (6) 130
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Structural commentary top

We have reported the crystal structure of catena- poly[[tri­methyl­tin(IV)]-µ-2-(2-nitro­phenyl)­acetato-κ2O:O'] (Danish et al., 2015a) and tetra-aqua-bis-[2-(2-nitro­phenyl)­acetato-κO]cobalt(II) (Danish et al., 2015b). The title silver complex (I), (Fig. 1) is in continuation of synthesizing various metal complexes with this legand and other studies of these complexes. We have also reported the crystal structures of catena-poly[bis-(µ3–2-methyl­benzoato)disilver(I)] (Danish et al., 2011a) and catena-poly[bis-(µ3–2-methyl-3,5-di­nitro­benzoato)disilver (I)] (Danish et al., 2011b) which are related to (I). Similarly, the crystal structures of bis­(N,N-di­methyl­pyridin-4-amine)-((4-hy­droxy­phenyl) acetato)-silver dihydrate (Li et al., 2011), is related to the title compound.

In (I), the two ligands of (2-nitro­phenyl)­acetatic acid have been coordinated to to two silver ions making a dimer. The structural behaviour of both ligands is different. In one ligand the acetato moiety A (O1/C1/C2/O2) and benzene ring B (C3–C8) are planar with r.m.s. deviation of 0.0041 and 0.0091 Å, respectively. The dihedral angle between A/B is 57.87 (17)°. The nitro group is oriented at a dihedtal angle of 23.6 (5)° with the parent benzene ring. In the second ligand the acetato moiety C (O5/C9/C10/O6) and benzene ring D (C11—C16) are also planar with r. m. s. deviation of 0.0046 and 0.0147 Å, respectively. The dihedral angle between C/D is 51.13 (16)°. The adjacent nitro group makes dihedral angle of 32.3 (3)° with D. The central eight membered ring (Ag1/O1/C1/O2/Ag2/O5/C9/O6) is not exactly planar. The dimers are inter­linked from opposite ends due to Ag—O bonds in the form of one dimensional polymers extending along the a-axis. One of the H-atoms of each methlenic group makes H-bonding with adjacent nitro group of parental ligand in the one-dimensional chain. The polymers are inter­linked due to C—H···O inter­actions, where C-atoms are of benzene rings and O-atoms are of nitro groups, therfore, stabilizing the molecules in the form of three dimensional polymeric network ultimately.

Synthesis and crystallization top

The sodium salt of (2-nitro­phenyl)­acetic acid was prepared in water with one molar ratio of (2-nitro­phenyl)­acetic acid and Na(HCO3). In this solution one mole of silver nitrate AgNO3 (1.08 g) dissolved in water was added and stirred for 5 minutes. Curd white precipitate formed was dissolved by adding few drops of liquid ammonia and kept for crystallization in dark. Needle like colourless crystals were obtained after two weeks.

Yield: 45% Melting Point: 395 K (Decomposes)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Related literature top

For related structures see: Danish et al. (2011a,b, 2015a,b); Li et al. (2011)

Structure description top

We have reported the crystal structure of catena- poly[[tri­methyl­tin(IV)]-µ-2-(2-nitro­phenyl)­acetato-κ2O:O'] (Danish et al., 2015a) and tetra-aqua-bis-[2-(2-nitro­phenyl)­acetato-κO]cobalt(II) (Danish et al., 2015b). The title silver complex (I), (Fig. 1) is in continuation of synthesizing various metal complexes with this legand and other studies of these complexes. We have also reported the crystal structures of catena-poly[bis-(µ3–2-methyl­benzoato)disilver(I)] (Danish et al., 2011a) and catena-poly[bis-(µ3–2-methyl-3,5-di­nitro­benzoato)disilver (I)] (Danish et al., 2011b) which are related to (I). Similarly, the crystal structures of bis­(N,N-di­methyl­pyridin-4-amine)-((4-hy­droxy­phenyl) acetato)-silver dihydrate (Li et al., 2011), is related to the title compound.

In (I), the two ligands of (2-nitro­phenyl)­acetatic acid have been coordinated to to two silver ions making a dimer. The structural behaviour of both ligands is different. In one ligand the acetato moiety A (O1/C1/C2/O2) and benzene ring B (C3–C8) are planar with r.m.s. deviation of 0.0041 and 0.0091 Å, respectively. The dihedral angle between A/B is 57.87 (17)°. The nitro group is oriented at a dihedtal angle of 23.6 (5)° with the parent benzene ring. In the second ligand the acetato moiety C (O5/C9/C10/O6) and benzene ring D (C11—C16) are also planar with r. m. s. deviation of 0.0046 and 0.0147 Å, respectively. The dihedral angle between C/D is 51.13 (16)°. The adjacent nitro group makes dihedral angle of 32.3 (3)° with D. The central eight membered ring (Ag1/O1/C1/O2/Ag2/O5/C9/O6) is not exactly planar. The dimers are inter­linked from opposite ends due to Ag—O bonds in the form of one dimensional polymers extending along the a-axis. One of the H-atoms of each methlenic group makes H-bonding with adjacent nitro group of parental ligand in the one-dimensional chain. The polymers are inter­linked due to C—H···O inter­actions, where C-atoms are of benzene rings and O-atoms are of nitro groups, therfore, stabilizing the molecules in the form of three dimensional polymeric network ultimately.

For related structures see: Danish et al. (2011a,b, 2015a,b); Li et al. (2011)

Synthesis and crystallization top

The sodium salt of (2-nitro­phenyl)­acetic acid was prepared in water with one molar ratio of (2-nitro­phenyl)­acetic acid and Na(HCO3). In this solution one mole of silver nitrate AgNO3 (1.08 g) dissolved in water was added and stirred for 5 minutes. Curd white precipitate formed was dissolved by adding few drops of liquid ammonia and kept for crystallization in dark. Needle like colourless crystals were obtained after two weeks.

Yield: 45% Melting Point: 395 K (Decomposes)

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anisotropic displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing which shows that molecules form polymeric network due to interlinkage of dimers. The dimers are interlinked due to H-bondings. The H-atoms not involved in H-bondings are omitted for clarity.
catena-Poly[bis[µ3-2-(2-nitrophenyl)acetato-κ3O:O:O']disilver(I)] top
Crystal data top
[Ag2(C8H6NO4)2]F(000) = 1120
Mr = 576.02Dx = 2.193 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5249 (3) ÅCell parameters from 3113 reflections
b = 15.8838 (10) Åθ = 1.6–27.0°
c = 20.0257 (11) ŵ = 2.30 mm1
β = 96.853 (3)°T = 296 K
V = 1744.83 (17) Å3Needle, colorless
Z = 40.37 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3781 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 1.6°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2020
Tmin = 0.485, Tmax = 0.682l = 2525
14170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0165P)2 + 3.0884P]
where P = (Fo2 + 2Fc2)/3
3781 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ag2(C8H6NO4)2]V = 1744.83 (17) Å3
Mr = 576.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5249 (3) ŵ = 2.30 mm1
b = 15.8838 (10) ÅT = 296 K
c = 20.0257 (11) Å0.37 × 0.22 × 0.18 mm
β = 96.853 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3781 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3113 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.682Rint = 0.027
14170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.10Δρmax = 0.47 e Å3
3781 reflectionsΔρmin = 0.55 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.94971 (5)0.08333 (2)0.04106 (2)0.04649 (10)
Ag20.55095 (5)0.00701 (2)0.08051 (2)0.04710 (10)
O10.6850 (4)0.17796 (16)0.00365 (15)0.0446 (7)
O20.3776 (5)0.11268 (17)0.04293 (16)0.0507 (8)
O30.6222 (7)0.3128 (3)0.10446 (17)0.0813 (12)
O40.9451 (7)0.3737 (3)0.0785 (2)0.0857 (12)
O51.1302 (5)0.02471 (16)0.09716 (15)0.0455 (7)
O60.8165 (4)0.09755 (16)0.12586 (14)0.0422 (7)
O71.0110 (7)0.0492 (2)0.2652 (2)0.0769 (11)
O80.6646 (7)0.0985 (3)0.28321 (19)0.0891 (13)
N10.7356 (7)0.3501 (2)0.06550 (19)0.0519 (9)
N20.8701 (7)0.1072 (3)0.26878 (18)0.0534 (10)
C10.4719 (7)0.1752 (2)0.0172 (2)0.0376 (9)
C20.3050 (7)0.2495 (2)0.0012 (2)0.0439 (10)
H2A0.16570.23060.02920.053*
H2B0.24450.26720.04260.053*
C30.4109 (6)0.3250 (2)0.02943 (19)0.0321 (8)
C40.6114 (7)0.3702 (2)0.00200 (19)0.0344 (8)
C50.7012 (8)0.4370 (3)0.0343 (3)0.0583 (12)
H50.84070.46450.01490.070*
C60.5883 (11)0.4634 (3)0.0944 (3)0.0666 (14)
H60.64860.50950.11580.080*
C70.3877 (11)0.4226 (3)0.1231 (2)0.0654 (14)
H70.30800.44100.16400.079*
C80.3015 (8)0.3533 (3)0.0914 (2)0.0531 (11)
H80.16600.32480.11220.064*
C91.0388 (6)0.0834 (2)0.12825 (19)0.0338 (8)
C101.2235 (7)0.1397 (3)0.1690 (2)0.0448 (10)
H10A1.31760.16830.13790.054*
H10B1.33520.10380.19720.054*
C111.1271 (7)0.2051 (2)0.21313 (18)0.0333 (8)
C120.9564 (7)0.1916 (2)0.25696 (18)0.0366 (8)
C130.8654 (9)0.2561 (3)0.2933 (2)0.0609 (13)
H130.74550.24570.32110.073*
C140.9568 (12)0.3357 (3)0.2873 (3)0.0778 (18)
H140.89730.38010.31080.093*
C151.1325 (11)0.3498 (3)0.2474 (3)0.0747 (17)
H151.19970.40330.24530.090*
C161.2119 (8)0.2866 (3)0.2102 (2)0.0518 (11)
H161.32810.29850.18150.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02941 (16)0.04213 (18)0.0682 (2)0.00658 (13)0.00686 (14)0.02080 (15)
Ag20.02920 (16)0.04436 (18)0.0678 (2)0.00628 (13)0.00618 (14)0.02365 (16)
O10.0297 (14)0.0374 (15)0.069 (2)0.0081 (11)0.0160 (13)0.0225 (13)
O20.0301 (14)0.0367 (15)0.086 (2)0.0014 (11)0.0084 (14)0.0291 (15)
O30.090 (3)0.112 (3)0.041 (2)0.009 (2)0.0057 (19)0.018 (2)
O40.054 (2)0.101 (3)0.093 (3)0.003 (2)0.031 (2)0.015 (2)
O50.0312 (14)0.0391 (15)0.0670 (19)0.0026 (11)0.0095 (13)0.0276 (13)
O60.0265 (14)0.0419 (15)0.0569 (18)0.0024 (11)0.0010 (12)0.0243 (13)
O70.093 (3)0.0350 (18)0.096 (3)0.0016 (18)0.016 (2)0.0170 (18)
O80.065 (2)0.135 (4)0.065 (2)0.032 (2)0.0004 (19)0.044 (2)
N10.050 (2)0.053 (2)0.049 (2)0.0084 (18)0.0069 (19)0.0121 (18)
N20.056 (2)0.059 (2)0.042 (2)0.0120 (19)0.0094 (18)0.0205 (18)
C10.035 (2)0.0286 (19)0.049 (2)0.0023 (15)0.0027 (17)0.0075 (16)
C20.0245 (19)0.032 (2)0.075 (3)0.0038 (15)0.0060 (19)0.0145 (19)
C30.0283 (18)0.0251 (17)0.043 (2)0.0057 (14)0.0039 (16)0.0032 (15)
C40.0321 (19)0.0316 (19)0.039 (2)0.0009 (15)0.0023 (16)0.0012 (15)
C50.054 (3)0.042 (2)0.081 (4)0.013 (2)0.012 (3)0.004 (2)
C60.096 (4)0.039 (3)0.070 (4)0.002 (3)0.033 (3)0.018 (2)
C70.102 (4)0.053 (3)0.040 (3)0.024 (3)0.002 (3)0.013 (2)
C80.058 (3)0.041 (2)0.053 (3)0.008 (2)0.019 (2)0.001 (2)
C90.0315 (19)0.0311 (19)0.038 (2)0.0021 (15)0.0025 (16)0.0100 (16)
C100.029 (2)0.051 (2)0.055 (3)0.0056 (17)0.0051 (18)0.022 (2)
C110.035 (2)0.0276 (18)0.035 (2)0.0015 (14)0.0060 (16)0.0048 (15)
C120.040 (2)0.038 (2)0.030 (2)0.0071 (16)0.0068 (16)0.0018 (15)
C130.071 (3)0.081 (4)0.029 (2)0.024 (3)0.000 (2)0.005 (2)
C140.111 (5)0.052 (3)0.063 (4)0.038 (3)0.021 (3)0.027 (3)
C150.103 (5)0.029 (2)0.083 (4)0.002 (3)0.027 (3)0.011 (2)
C160.061 (3)0.037 (2)0.054 (3)0.013 (2)0.009 (2)0.002 (2)
Geometric parameters (Å, º) top
Ag1—O12.167 (2)C3—C41.379 (5)
Ag1—O52.221 (2)C3—C81.388 (5)
Ag1—O2i2.405 (3)C4—C51.365 (5)
Ag1—Ag22.8200 (4)C5—C61.354 (7)
Ag1—Ag1ii3.1998 (7)C5—H50.9300
Ag2—O62.174 (2)C6—C71.351 (7)
Ag2—O22.219 (3)C6—H60.9300
Ag2—O5iii2.404 (2)C7—C81.384 (7)
Ag2—Ag2iv3.2140 (7)C7—H70.9300
O1—C11.241 (4)C8—H80.9300
O2—C11.259 (4)C9—C101.518 (5)
O2—Ag1iii2.405 (3)C10—C111.503 (5)
O3—N11.211 (5)C10—H10A0.9700
O4—N11.215 (5)C10—H10B0.9700
O5—C91.260 (4)C11—C121.380 (5)
O5—Ag2i2.404 (2)C11—C161.380 (5)
O6—C91.244 (4)C12—C131.386 (6)
O7—N21.214 (5)C13—C141.373 (8)
O8—N21.212 (5)C13—H130.9300
N1—C41.476 (5)C14—C151.348 (8)
N2—C121.451 (5)C14—H140.9300
C1—C21.509 (5)C15—C161.354 (7)
C2—C31.498 (5)C15—H150.9300
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700
O1—Ag1—O5162.60 (9)C4—C3—C2126.1 (3)
O1—Ag1—O2i119.49 (9)C8—C3—C2118.4 (4)
O5—Ag1—O2i76.16 (9)C5—C4—C3122.4 (4)
O1—Ag1—Ag286.12 (7)C5—C4—N1116.5 (4)
O5—Ag1—Ag277.51 (6)C3—C4—N1121.0 (3)
O2i—Ag1—Ag2153.31 (6)C6—C5—C4120.4 (4)
O1—Ag1—Ag1ii123.20 (8)C6—C5—H5119.8
O5—Ag1—Ag1ii61.69 (8)C4—C5—H5119.8
O2i—Ag1—Ag1ii86.43 (8)C7—C6—C5119.8 (4)
Ag2—Ag1—Ag1ii84.972 (15)C7—C6—H6120.1
O6—Ag2—O2161.91 (10)C5—C6—H6120.1
O6—Ag2—O5iii118.69 (9)C6—C7—C8119.7 (4)
O2—Ag2—O5iii76.23 (9)C6—C7—H7120.2
O6—Ag2—Ag186.72 (6)C8—C7—H7120.2
O2—Ag2—Ag177.83 (6)C7—C8—C3122.1 (4)
O5iii—Ag2—Ag1154.04 (6)C7—C8—H8119.0
O6—Ag2—Ag2iv119.58 (8)C3—C8—H8119.0
O2—Ag2—Ag2iv65.40 (9)O6—C9—O5124.5 (3)
O5iii—Ag2—Ag2iv95.20 (7)O6—C9—C10120.8 (3)
Ag1—Ag2—Ag2iv74.507 (13)O5—C9—C10114.7 (3)
C1—O1—Ag1121.2 (2)C11—C10—C9117.4 (3)
C1—O2—Ag2129.1 (2)C11—C10—H10A107.9
C1—O2—Ag1iii126.9 (2)C9—C10—H10A107.9
Ag2—O2—Ag1iii102.88 (10)C11—C10—H10B107.9
C9—O5—Ag1129.8 (2)C9—C10—H10B108.0
C9—O5—Ag2i127.3 (2)H10A—C10—H10B107.2
Ag1—O5—Ag2i102.86 (9)C12—C11—C16115.8 (4)
C9—O6—Ag2120.7 (2)C12—C11—C10125.7 (3)
O3—N1—O4124.4 (4)C16—C11—C10118.5 (4)
O3—N1—C4118.4 (4)C11—C12—C13122.5 (4)
O4—N1—C4117.1 (4)C11—C12—N2120.7 (4)
O8—N2—O7123.6 (4)C13—C12—N2116.7 (4)
O8—N2—C12118.7 (4)C14—C13—C12118.3 (5)
O7—N2—C12117.7 (4)C14—C13—H13120.8
O1—C1—O2124.6 (3)C12—C13—H13120.8
O1—C1—C2119.8 (3)C15—C14—C13120.2 (5)
O2—C1—C2115.6 (3)C15—C14—H14119.9
C3—C2—C1117.0 (3)C13—C14—H14119.9
C3—C2—H2A108.0C14—C15—C16120.4 (5)
C1—C2—H2A108.0C14—C15—H15119.8
C3—C2—H2B108.0C16—C15—H15119.8
C1—C2—H2B108.0C15—C16—C11122.5 (5)
H2A—C2—H2B107.3C15—C16—H16118.7
C4—C3—C8115.5 (3)C11—C16—H16118.7
Ag1—O1—C1—O212.5 (6)Ag2—O6—C9—O511.1 (5)
Ag1—O1—C1—C2169.0 (3)Ag2—O6—C9—C10170.6 (3)
Ag2—O2—C1—O15.5 (6)Ag1—O5—C9—O69.8 (6)
Ag1iii—O2—C1—O1160.2 (3)Ag2i—O5—C9—O6167.2 (3)
Ag2—O2—C1—C2175.9 (3)Ag1—O5—C9—C10171.8 (3)
Ag1iii—O2—C1—C218.3 (5)Ag2i—O5—C9—C1011.2 (5)
O1—C1—C2—C31.4 (6)O6—C9—C10—C118.0 (6)
O2—C1—C2—C3180.0 (4)O5—C9—C10—C11173.6 (4)
C1—C2—C3—C457.6 (6)C9—C10—C11—C1247.7 (6)
C1—C2—C3—C8122.1 (4)C9—C10—C11—C16131.7 (4)
C8—C3—C4—C51.7 (6)C16—C11—C12—C133.2 (6)
C2—C3—C4—C5177.9 (4)C10—C11—C12—C13176.2 (4)
C8—C3—C4—N1176.2 (3)C16—C11—C12—N2174.5 (3)
C2—C3—C4—N14.1 (6)C10—C11—C12—N26.1 (6)
O3—N1—C4—C5155.5 (4)O8—N2—C12—C11150.3 (4)
O4—N1—C4—C523.1 (5)O7—N2—C12—C1131.5 (5)
O3—N1—C4—C322.5 (6)O8—N2—C12—C1331.9 (5)
O4—N1—C4—C3158.8 (4)O7—N2—C12—C13146.4 (4)
C3—C4—C5—C62.5 (7)C11—C12—C13—C142.7 (6)
N1—C4—C5—C6175.5 (4)N2—C12—C13—C14175.1 (4)
C4—C5—C6—C71.0 (8)C12—C13—C14—C150.7 (7)
C5—C6—C7—C81.0 (8)C13—C14—C15—C163.4 (8)
C6—C7—C8—C31.8 (7)C14—C15—C16—C112.8 (8)
C4—C3—C8—C70.4 (6)C12—C11—C16—C150.4 (6)
C2—C3—C8—C7179.9 (4)C10—C11—C16—C15179.0 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4iii0.972.533.312 (6)138
C10—H10B···O8i0.972.353.205 (6)146
C6—H6···O8v0.932.483.322 (6)151
C15—H15···O7vi0.932.593.268 (6)130
Symmetry codes: (i) x+1, y, z; (iii) x1, y, z; (v) x, y+1/2, z1/2; (vi) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.972.533.312 (6)137.7
C10—H10B···O8ii0.972.353.205 (6)146.1
C6—H6···O8iii0.932.483.322 (6)151.1
C15—H15···O7iv0.932.593.268 (6)130.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011a). Acta Cryst. E67, m734–m735.  CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011b). Acta Cryst. E67, m938–m939.  CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Tahir, M. N., Iftikhar, S., Raza, M. A. & Ashfaq, M. (2015a). Acta Cryst. E71, m52–m53.  CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Tahir, M. N., Iftikhar, S., Raza, M. A. & Ashfaq, M. (2015b). Acta Cryst. E71, m59–m60.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Dong, X., Gou, Y., Jiang, Z. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 1663–1672.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds