organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2S)-3-methyl-2-[(naphthalen-1-ylsulfon­yl)amino]­butanoic acid

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 21 March 2015; accepted 8 April 2015; online 15 April 2015)

The title compound, C15H17NO4S, was synthesized from L-valine and naphthalene-1-sulfonyl chloride. The hydrogen-bonded carb­oxy­lic acid groups form a catemer C(4) motif extending along [100]. The catemer structure is reinforced by a rather long N—H⋯O hydrogen bond, between the sulfamide N—H group and a carb­oxy­lic acid O atom [H⋯O = 2.52 (2) Å], and a C—H⋯O hydrogen bond.

1. Related literature

For related structures, see: Aguilar-Castro et al. (2004[Aguilar-Castro, L., Tlahuextl, M., Tapia-Benavides, A. R. & Alvarado-Rodríguez, J. G. (2004). Struct. Chem. 15, 215-221.]); Arshad et al. (2012[Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.]); Mubashar-ur-Rehman et al. (2013[Mubashar-ur-Rehman, H., Arshad, M. N., Asiri, A. M., Khan, I. U. & Bilal, M. (2013). Acta Cryst. E69, o194.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H17NO4S

  • Mr = 307.35

  • Orthorhombic, P 21 21 21

  • a = 5.5006 (3) Å

  • b = 13.7638 (8) Å

  • c = 20.2148 (14) Å

  • V = 1530.45 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.38 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.956

  • 7706 measured reflections

  • 3290 independent reflections

  • 2692 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.095

  • S = 1.02

  • 3290 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.85 (4) 1.86 (4) 2.701 (3) 173 (4)
N1—H1A⋯O1ii 0.83 (2) 2.52 (2) 3.323 (3) 166 (3)
C2—H2⋯O3iii 0.98 2.38 3.348 (4) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (Fig. 1) was synthesized for complexation and other studies.

The crystal structures of N-(p-toluenesulfonyl)-L-valine (Aguilar-Castro et al., 2004) and 2-benzenesulfonamido-3-methylbutyric acid (Arshad et al., 2012) have been reported which contain the L-valine as common moiety as in (I). The crystal structure of 2- (naphthalene-1-sulfonamido)-3-phenylpropanoic acid (Mubashar-ur-Rehman et al., 2013) has also been published which contains the naphthalene-1-sulfonamide group.

In (I), the aminoacetato moiety A (O1/O2/C1/C2/N1) of L-valine and naphthalene ring B (C6–C15) are planar with r.m.s. deviation of 0.0468 and 0.0163 Å, respectively. The dihedral angle between A/B is 69.26 (9)°. The sulfonyl group C (S1/O3/O4) is oriented at a dihedtal angle of 59.9 (1)° with the parent naphthalene ring. The H-atoms of carboxyl, amido and of substituted aminoacetato moiety are involved in H-bondings (Table 1, Fig. 2). There exist two types of ring motifs R22(8) and R33(11). The R22(8) ring is formed due to C—H···O and N—H···O interactions. The R33(11) ring is created due to O—H···O and N—H···O interactions in which three carboxyl groups are involved. The R33(11) rings are connected successively along the a- axis, whereas, the R22(8) rings are connected to R33(11) rings alternatively, from opposite ends (Fig. 2).

Related literature top

For related structures, see: Aguilar-Castro et al. (2004); Arshad et al. (2012); Mubashar-ur-Rehman et al. (2013).

Experimental top

L-Valine (0.117 g, 1 mmol) and naphthalene-1-sulfonyl chloride (0.226 g, 1 mmol) were added to 30 ml of water. The reaction mixture was stirred at 323–328 K and pH of the reaction mixture was maintained at 8–9 by adding 1.0 M sodium bicarbonate solution. The heating was stopped when clear solution was obtained. After one hour 8 ml of 1.0 M HCl solution was added and white precipitate was formed. The precipitate was filtered and dried (yield: 70%; m.p. 421 K). White needles of the title compound were obtained after recrystallization from ethanol.

Refinement top

The coordinates of H-atom of carboxyl and N–H group were freely refined. The other H atoms were positioned geometrically (C–H = 0.93—0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for all other H-atoms.

Structure description top

The title compound (Fig. 1) was synthesized for complexation and other studies.

The crystal structures of N-(p-toluenesulfonyl)-L-valine (Aguilar-Castro et al., 2004) and 2-benzenesulfonamido-3-methylbutyric acid (Arshad et al., 2012) have been reported which contain the L-valine as common moiety as in (I). The crystal structure of 2- (naphthalene-1-sulfonamido)-3-phenylpropanoic acid (Mubashar-ur-Rehman et al., 2013) has also been published which contains the naphthalene-1-sulfonamide group.

In (I), the aminoacetato moiety A (O1/O2/C1/C2/N1) of L-valine and naphthalene ring B (C6–C15) are planar with r.m.s. deviation of 0.0468 and 0.0163 Å, respectively. The dihedral angle between A/B is 69.26 (9)°. The sulfonyl group C (S1/O3/O4) is oriented at a dihedtal angle of 59.9 (1)° with the parent naphthalene ring. The H-atoms of carboxyl, amido and of substituted aminoacetato moiety are involved in H-bondings (Table 1, Fig. 2). There exist two types of ring motifs R22(8) and R33(11). The R22(8) ring is formed due to C—H···O and N—H···O interactions. The R33(11) ring is created due to O—H···O and N—H···O interactions in which three carboxyl groups are involved. The R33(11) rings are connected successively along the a- axis, whereas, the R22(8) rings are connected to R33(11) rings alternatively, from opposite ends (Fig. 2).

For related structures, see: Aguilar-Castro et al. (2004); Arshad et al. (2012); Mubashar-ur-Rehman et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form one dimensional polymeric network with different hydrogen-bond ring motifs. H atoms not involved in hydrogen bonding are omitted for clarity.
(2S)-3-Methyl-2-[(naphthalen-1-ylsulfonyl)amino]butanoic acid top
Crystal data top
C15H17NO4SDx = 1.334 Mg m3
Mr = 307.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2692 reflections
a = 5.5006 (3) Åθ = 3.1–27.0°
b = 13.7638 (8) ŵ = 0.23 mm1
c = 20.2148 (14) ÅT = 296 K
V = 1530.45 (16) Å3Needle, colorless
Z = 40.38 × 0.22 × 0.20 mm
F(000) = 648
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 3.1°
ω scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1017
Tmin = 0.920, Tmax = 0.956l = 2125
7706 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.0587P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3290 reflectionsΔρmax = 0.22 e Å3
198 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C15H17NO4SV = 1530.45 (16) Å3
Mr = 307.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5006 (3) ŵ = 0.23 mm1
b = 13.7638 (8) ÅT = 296 K
c = 20.2148 (14) Å0.38 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2692 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.956Rint = 0.032
7706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.24 e Å3
3290 reflectionsAbsolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
198 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22778 (13)0.44851 (5)0.11598 (4)0.0360 (2)
O10.8107 (4)0.63127 (18)0.00511 (13)0.0473 (6)
H10.836 (7)0.692 (3)0.008 (2)0.071*
O20.4319 (5)0.67953 (17)0.01812 (14)0.0549 (7)
O30.0306 (4)0.43808 (16)0.11995 (12)0.0463 (6)
O40.3786 (4)0.36514 (16)0.12075 (12)0.0509 (6)
N10.2790 (4)0.49709 (18)0.04429 (12)0.0328 (6)
H1A0.180 (5)0.539 (2)0.0325 (16)0.039*
C10.5806 (6)0.6161 (2)0.01096 (15)0.0349 (7)
C20.5237 (5)0.5091 (2)0.01805 (15)0.0329 (7)
H20.63860.48090.04970.039*
C30.5555 (6)0.4565 (3)0.04864 (19)0.0510 (9)
H30.72060.46990.06440.061*
C40.3806 (8)0.4953 (4)0.0997 (2)0.0839 (15)
H4A0.40620.46230.14090.126*
H4B0.40770.56370.10560.126*
H4C0.21680.48470.08500.126*
C50.5323 (12)0.3476 (3)0.0401 (3)0.105 (2)
H5A0.64240.32610.00630.158*
H5B0.57110.31590.08110.158*
H5C0.36870.33180.02760.158*
C60.3219 (5)0.5300 (3)0.17904 (16)0.0410 (8)
C70.5143 (6)0.5024 (3)0.21720 (19)0.0572 (10)
H70.59610.44490.20770.069*
C80.5895 (8)0.5597 (4)0.2704 (2)0.0786 (15)
H80.72160.54020.29590.094*
C90.4737 (8)0.6422 (4)0.2851 (2)0.0762 (15)
H90.52580.67890.32110.091*
C100.2755 (8)0.6745 (3)0.24761 (19)0.0611 (11)
C110.1958 (6)0.6187 (2)0.19223 (17)0.0447 (8)
C120.0009 (7)0.6539 (3)0.1546 (2)0.0542 (10)
H120.05540.61850.11830.065*
C130.1127 (9)0.7393 (3)0.1708 (2)0.0769 (14)
H130.23950.76240.14470.092*
C140.0376 (13)0.7922 (3)0.2262 (3)0.0939 (19)
H140.11740.84950.23750.113*
C150.1496 (11)0.7608 (4)0.2635 (2)0.0829 (17)
H150.19670.79650.30030.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0350 (4)0.0333 (4)0.0397 (4)0.0026 (4)0.0009 (3)0.0062 (4)
O10.0410 (14)0.0304 (12)0.0705 (17)0.0076 (11)0.0045 (11)0.0069 (13)
O20.0536 (15)0.0311 (12)0.0799 (19)0.0074 (13)0.0100 (13)0.0071 (13)
O30.0354 (11)0.0510 (13)0.0525 (14)0.0103 (10)0.0034 (10)0.0064 (13)
O40.0541 (13)0.0363 (12)0.0622 (16)0.0081 (11)0.0020 (13)0.0133 (13)
N10.0310 (13)0.0309 (13)0.0364 (14)0.0026 (12)0.0001 (11)0.0053 (11)
C10.0378 (17)0.0315 (17)0.0354 (17)0.0015 (15)0.0021 (14)0.0008 (14)
C20.0307 (16)0.0291 (16)0.0390 (18)0.0006 (13)0.0007 (13)0.0041 (15)
C30.0468 (19)0.044 (2)0.062 (2)0.0076 (18)0.0161 (17)0.0155 (19)
C40.087 (3)0.120 (4)0.045 (3)0.014 (3)0.002 (2)0.024 (3)
C50.152 (5)0.045 (3)0.119 (5)0.008 (3)0.042 (4)0.031 (3)
C60.0362 (17)0.052 (2)0.0351 (18)0.0101 (15)0.0041 (13)0.0047 (15)
C70.041 (2)0.081 (3)0.050 (2)0.005 (2)0.0005 (16)0.004 (2)
C80.054 (2)0.135 (5)0.048 (3)0.023 (3)0.010 (2)0.004 (3)
C90.077 (3)0.111 (4)0.040 (2)0.040 (3)0.001 (2)0.011 (3)
C100.076 (3)0.064 (2)0.044 (2)0.030 (3)0.018 (2)0.0049 (19)
C110.053 (2)0.0432 (19)0.0378 (18)0.0135 (18)0.0101 (16)0.0006 (16)
C120.068 (2)0.047 (2)0.047 (2)0.005 (2)0.0091 (19)0.0024 (19)
C130.102 (3)0.058 (3)0.071 (3)0.023 (3)0.023 (3)0.004 (2)
C140.157 (6)0.045 (3)0.079 (4)0.011 (3)0.047 (4)0.007 (3)
C150.136 (5)0.056 (3)0.056 (3)0.027 (3)0.026 (3)0.020 (2)
Geometric parameters (Å, º) top
S1—O41.419 (2)C5—H5C0.9600
S1—O31.431 (2)C6—C71.364 (4)
S1—N11.621 (3)C6—C111.430 (5)
S1—C61.775 (3)C7—C81.397 (6)
O1—C11.323 (4)C7—H70.9300
O1—H10.85 (4)C8—C91.335 (7)
O2—C11.205 (4)C8—H80.9300
N1—C21.456 (4)C9—C101.401 (6)
N1—H1A0.83 (2)C9—H90.9300
C1—C21.513 (4)C10—C151.412 (6)
C2—C31.540 (5)C10—C111.426 (5)
C2—H20.9800C11—C121.408 (5)
C3—C41.508 (6)C12—C131.366 (5)
C3—C51.514 (6)C12—H120.9300
C3—H30.9800C13—C141.400 (7)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—C151.347 (7)
C4—H4C0.9600C14—H140.9300
C5—H5A0.9600C15—H150.9300
C5—H5B0.9600
O4—S1—O3119.71 (14)C3—C5—H5C109.5
O4—S1—N1107.01 (14)H5A—C5—H5C109.5
O3—S1—N1105.33 (14)H5B—C5—H5C109.5
O4—S1—C6106.96 (16)C7—C6—C11120.6 (3)
O3—S1—C6108.23 (15)C7—C6—S1117.2 (3)
N1—S1—C6109.32 (14)C11—C6—S1122.2 (2)
C1—O1—H1109 (3)C6—C7—C8120.5 (4)
C2—N1—S1122.2 (2)C6—C7—H7119.7
C2—N1—H1A115 (2)C8—C7—H7119.7
S1—N1—H1A115 (2)C9—C8—C7120.7 (4)
O2—C1—O1124.3 (3)C9—C8—H8119.7
O2—C1—C2123.6 (3)C7—C8—H8119.7
O1—C1—C2112.0 (3)C8—C9—C10121.4 (4)
N1—C2—C1109.6 (2)C8—C9—H9119.3
N1—C2—C3111.8 (2)C10—C9—H9119.3
C1—C2—C3110.5 (3)C9—C10—C15121.7 (5)
N1—C2—H2108.3C9—C10—C11119.6 (4)
C1—C2—H2108.3C15—C10—C11118.7 (4)
C3—C2—H2108.3C12—C11—C10118.4 (4)
C4—C3—C5112.0 (4)C12—C11—C6124.5 (3)
C4—C3—C2111.1 (3)C10—C11—C6117.2 (3)
C5—C3—C2110.8 (3)C13—C12—C11120.8 (4)
C4—C3—H3107.5C13—C12—H12119.6
C5—C3—H3107.5C11—C12—H12119.6
C2—C3—H3107.5C12—C13—C14120.4 (5)
C3—C4—H4A109.5C12—C13—H13119.8
C3—C4—H4B109.5C14—C13—H13119.8
H4A—C4—H4B109.5C15—C14—C13120.4 (5)
C3—C4—H4C109.5C15—C14—H14119.8
H4A—C4—H4C109.5C13—C14—H14119.8
H4B—C4—H4C109.5C14—C15—C10121.2 (5)
C3—C5—H5A109.5C14—C15—H15119.4
C3—C5—H5B109.5C10—C15—H15119.4
H5A—C5—H5B109.5
O4—S1—N1—C244.2 (3)S1—C6—C7—C8176.0 (3)
O3—S1—N1—C2172.6 (2)C6—C7—C8—C90.4 (6)
C6—S1—N1—C271.3 (3)C7—C8—C9—C100.6 (7)
S1—N1—C2—C1115.5 (3)C8—C9—C10—C15178.9 (4)
S1—N1—C2—C3121.6 (3)C8—C9—C10—C110.4 (6)
O2—C1—C2—N18.8 (4)C9—C10—C11—C12178.8 (3)
O1—C1—C2—N1172.4 (3)C15—C10—C11—C121.9 (5)
O2—C1—C2—C3114.9 (3)C9—C10—C11—C61.6 (5)
O1—C1—C2—C364.0 (3)C15—C10—C11—C6177.8 (3)
N1—C2—C3—C460.0 (4)C7—C6—C11—C12178.6 (3)
C1—C2—C3—C462.4 (4)S1—C6—C11—C124.7 (4)
N1—C2—C3—C565.3 (4)C7—C6—C11—C101.8 (5)
C1—C2—C3—C5172.3 (4)S1—C6—C11—C10174.9 (2)
O4—S1—C6—C72.0 (3)C10—C11—C12—C130.0 (5)
O3—S1—C6—C7132.3 (3)C6—C11—C12—C13179.6 (4)
N1—S1—C6—C7113.5 (3)C11—C12—C13—C141.7 (6)
O4—S1—C6—C11174.8 (2)C12—C13—C14—C151.6 (8)
O3—S1—C6—C1144.5 (3)C13—C14—C15—C100.4 (8)
N1—S1—C6—C1169.7 (3)C9—C10—C15—C14178.6 (4)
C11—C6—C7—C80.9 (5)C11—C10—C15—C142.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.85 (4)1.86 (4)2.701 (3)173 (4)
N1—H1A···O1ii0.83 (2)2.52 (2)3.323 (3)166 (3)
C2—H2···O3iii0.982.383.348 (4)169
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.85 (4)1.86 (4)2.701 (3)173 (4)
N1—H1A···O1ii0.83 (2)2.52 (2)3.323 (3)166 (3)
C2—H2···O3iii0.982.383.348 (4)168.6
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAguilar-Castro, L., Tlahuextl, M., Tapia-Benavides, A. R. & Alvarado-Rodríguez, J. G. (2004). Struct. Chem. 15, 215–221.  CAS Google Scholar
First citationArshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMubashar-ur-Rehman, H., Arshad, M. N., Asiri, A. M., Khan, I. U. & Bilal, M. (2013). Acta Cryst. E69, o194.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds