organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of diiso­propyl­aminium di­chloro­acetate

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili 1#, Beijing, People's Republic of China
*Correspondence e-mail: shanguangzhi@imb.pumc.edu.cn

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 30 March 2015; accepted 17 April 2015; online 30 April 2015)

In the title compound, C6H16N+·C2HCl2O2, the cation exhibits non-crystallographic C2 symmetry. In the crystal, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds into chains propagating along [010].

1. Related literature

For the background to the biological activity of the title compound, see: Gelernt & Herbert (2009[Gelernt, M. D. & Herbert, V. (1982). Nutr. Cancer, 3, 129-133.]); Yamane et al. (2014[Yamane, K., Indalao, I.-L., Chida, J., Yamamoto, Y., Hanawa, M. & Kido, H. (2014). PLos ONE, 9, e98032.]); Liu et al. (2015[Liu, D.-X., Wang, F.-F., Yue, J., Jing, X.-B. & Huang, Y.-B. (2015). Drug Deliv. 22, 136-143.]). For a related structure, see: Yu & Qian (2009[Yu, Y.-H. & Qian, K. (2009). Acta Cryst. E65, o1278.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H16N+·C2HCl2O2

  • Mr = 230.13

  • Monoclinic, P 21 /c

  • a = 10.0272 (2) Å

  • b = 9.04914 (17) Å

  • c = 13.6496 (3) Å

  • β = 106.433 (2)°

  • V = 1187.94 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.71 mm−1

  • T = 120 K

  • 0.36 × 0.28 × 0.24 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.662, Tmax = 1.000

  • 11039 measured reflections

  • 2107 independent reflections

  • 1911 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.03

  • 2107 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.92 1.87 2.788 (2) 177
N1—H1B⋯O2ii 0.92 1.90 2.757 (2) 154
C6—H6⋯O1iii 1.00 2.38 3.258 (2) 146
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diisopropylaminium dichlorocacetate (DADA) is the effective constituent of Vitamin B15 (Gelernt et al., 2009). Recently, DADA has been found as a potential PDK4 inhibitor for treatment of severe influenza (Yamane et al., 2014). Moreover the desirable therapeutic effects of colorectal cancer in mat is shown (Liu et al., 2015). No data about the crystal structure of diisopropylaminium dichlorocacetate has been reported so far.

The title molecule is shown in Fig. 1. The asymmetric unit contains one diisopropylaminium cation and one dichloroacetate anion. In the crystal structure, the cations and anions are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig.2) to form chains propagating along [010].

Related literature top

For the background to the biological activity of the title compound, see: Gelernt & Herbert (2009); Yamane et al. (2014); Liu et al. (2015). For a related structure, see: Yu & Qian (2009).

Experimental top

Single crystals suitable for X-ray analysis were obtained by slow solvent evaporation from a solution of the title compound in a dichloromethane/cyclohexane mixture (1:1 v/v) at room temperature.

Refinement top

All H atoms were positioned geometrically and constrained to ride on the parent atoms, with N—H = 0.92 Å and C—H = 0.98–1.00 Å, and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C, N) for other H atoms.

Structure description top

Diisopropylaminium dichlorocacetate (DADA) is the effective constituent of Vitamin B15 (Gelernt et al., 2009). Recently, DADA has been found as a potential PDK4 inhibitor for treatment of severe influenza (Yamane et al., 2014). Moreover the desirable therapeutic effects of colorectal cancer in mat is shown (Liu et al., 2015). No data about the crystal structure of diisopropylaminium dichlorocacetate has been reported so far.

The title molecule is shown in Fig. 1. The asymmetric unit contains one diisopropylaminium cation and one dichloroacetate anion. In the crystal structure, the cations and anions are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig.2) to form chains propagating along [010].

For the background to the biological activity of the title compound, see: Gelernt & Herbert (2009); Yamane et al. (2014); Liu et al. (2015). For a related structure, see: Yu & Qian (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The displacement parameters are shown at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b direction. Dashed lines indicate hydrogen bonds.
Bis(propan-2-yl)azanium 2,2-dichloroacetate top
Crystal data top
C6H16N+·C2HCl2O2F(000) = 488
Mr = 230.13Dx = 1.287 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.0272 (2) ÅCell parameters from 5039 reflections
b = 9.04914 (17) Åθ = 4.6–66.9°
c = 13.6496 (3) ŵ = 4.71 mm1
β = 106.433 (2)°T = 120 K
V = 1187.94 (4) Å3Block, colourless
Z = 40.36 × 0.28 × 0.24 mm
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2107 independent reflections
Radiation source: sealed X-ray tube, Enhance Ultra (Cu) X-ray Source1911 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4674 pixels mm-1θmax = 66.9°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 710
Tmin = 0.662, Tmax = 1.000l = 1616
11039 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0344P)2 + 1.3398P]
where P = (Fo2 + 2Fc2)/3
2107 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C6H16N+·C2HCl2O2V = 1187.94 (4) Å3
Mr = 230.13Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.0272 (2) ŵ = 4.71 mm1
b = 9.04914 (17) ÅT = 120 K
c = 13.6496 (3) Å0.36 × 0.28 × 0.24 mm
β = 106.433 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2107 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1911 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 1.000Rint = 0.026
11039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.81 e Å3
2107 reflectionsΔρmin = 0.85 e Å3
122 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K. .

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53986 (5)0.16195 (6)0.60806 (5)0.04006 (18)
Cl20.62278 (7)0.05527 (9)0.76920 (6)0.0651 (3)
O10.86608 (14)0.08510 (15)0.66082 (12)0.0292 (3)
O20.84614 (15)0.15792 (15)0.68081 (12)0.0308 (3)
N10.15036 (16)0.05351 (17)0.75375 (12)0.0202 (3)
H1A0.05630.06070.72300.024*
H1B0.18010.14410.78220.024*
C20.80092 (19)0.0312 (2)0.66498 (14)0.0216 (4)
C30.2208 (2)0.0234 (2)0.67193 (15)0.0268 (4)
H30.32180.00500.70500.032*
C60.1729 (2)0.0574 (2)0.83878 (15)0.0256 (4)
H60.14010.15630.80870.031*
C40.1577 (2)0.1123 (3)0.61147 (17)0.0331 (5)
H4A0.05680.09980.58550.050*
H4B0.19720.12530.55400.050*
H4C0.17850.19950.65580.050*
C10.6441 (2)0.0036 (2)0.65013 (17)0.0291 (5)
H10.61220.07720.59890.035*
C70.0847 (3)0.0110 (3)0.90727 (17)0.0362 (5)
H7A0.01300.00490.86690.054*
H7B0.09430.08400.96190.054*
H7C0.11580.08580.93730.054*
C50.2054 (3)0.1610 (3)0.60590 (18)0.0421 (6)
H5A0.24860.24510.64830.063*
H5B0.25130.14500.55220.063*
H5C0.10650.18150.57470.063*
C80.3249 (2)0.0689 (3)0.8971 (2)0.0436 (6)
H8A0.35930.02830.92470.065*
H8B0.33630.13950.95330.065*
H8C0.37790.10290.85110.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0265 (3)0.0351 (3)0.0558 (4)0.0130 (2)0.0072 (2)0.0078 (2)
Cl20.0341 (3)0.0849 (5)0.0860 (5)0.0143 (3)0.0328 (3)0.0510 (4)
O10.0201 (7)0.0203 (7)0.0470 (9)0.0020 (6)0.0090 (6)0.0021 (6)
O20.0266 (7)0.0206 (7)0.0473 (9)0.0036 (6)0.0139 (6)0.0056 (6)
N10.0162 (7)0.0192 (8)0.0250 (8)0.0001 (6)0.0055 (6)0.0007 (6)
C20.0188 (9)0.0231 (10)0.0229 (9)0.0003 (8)0.0056 (7)0.0012 (7)
C30.0173 (9)0.0376 (12)0.0271 (10)0.0007 (8)0.0091 (8)0.0046 (9)
C60.0270 (10)0.0204 (10)0.0292 (10)0.0020 (8)0.0078 (8)0.0026 (8)
C40.0333 (12)0.0334 (12)0.0334 (11)0.0038 (9)0.0106 (9)0.0076 (9)
C10.0187 (10)0.0231 (10)0.0434 (12)0.0032 (8)0.0053 (9)0.0030 (9)
C70.0416 (13)0.0394 (13)0.0313 (11)0.0023 (10)0.0161 (10)0.0025 (10)
C50.0558 (15)0.0426 (14)0.0327 (12)0.0147 (12)0.0201 (11)0.0021 (10)
C80.0314 (12)0.0473 (14)0.0466 (14)0.0040 (11)0.0020 (10)0.0203 (12)
Geometric parameters (Å, º) top
Cl1—C11.771 (2)C6—C81.511 (3)
Cl2—C11.780 (2)C4—H4A0.9800
O1—C21.248 (2)C4—H4B0.9800
O2—C21.230 (2)C4—H4C0.9800
N1—H1A0.9200C1—H11.0000
N1—H1B0.9200C7—H7A0.9800
N1—C31.505 (2)C7—H7B0.9800
N1—C61.503 (2)C7—H7C0.9800
C2—C11.548 (3)C5—H5A0.9800
C3—H31.0000C5—H5B0.9800
C3—C41.514 (3)C5—H5C0.9800
C3—C51.519 (3)C8—H8A0.9800
C6—H61.0000C8—H8B0.9800
C6—C71.516 (3)C8—H8C0.9800
H1A—N1—H1B107.3H4B—C4—H4C109.5
C3—N1—H1A108.1Cl1—C1—Cl2109.02 (12)
C3—N1—H1B108.1Cl1—C1—H1108.8
C6—N1—H1A108.1Cl2—C1—H1108.8
C6—N1—H1B108.1C2—C1—Cl1113.38 (14)
C6—N1—C3116.92 (15)C2—C1—Cl2107.99 (14)
O1—C2—C1112.56 (16)C2—C1—H1108.8
O2—C2—O1128.50 (18)C6—C7—H7A109.5
O2—C2—C1118.92 (17)C6—C7—H7B109.5
N1—C3—H3108.9C6—C7—H7C109.5
N1—C3—C4109.89 (16)H7A—C7—H7B109.5
N1—C3—C5107.58 (17)H7A—C7—H7C109.5
C4—C3—H3108.9H7B—C7—H7C109.5
C4—C3—C5112.62 (18)C3—C5—H5A109.5
C5—C3—H3108.9C3—C5—H5B109.5
N1—C6—H6108.7C3—C5—H5C109.5
N1—C6—C7107.75 (16)H5A—C5—H5B109.5
N1—C6—C8111.19 (16)H5A—C5—H5C109.5
C7—C6—H6108.7H5B—C5—H5C109.5
C8—C6—H6108.7C6—C8—H8A109.5
C8—C6—C7111.81 (19)C6—C8—H8B109.5
C3—C4—H4A109.5C6—C8—H8C109.5
C3—C4—H4B109.5H8A—C8—H8B109.5
C3—C4—H4C109.5H8A—C8—H8C109.5
H4A—C4—H4B109.5H8B—C8—H8C109.5
H4A—C4—H4C109.5
O1—C2—C1—Cl1157.58 (15)C3—N1—C6—C7175.93 (16)
O1—C2—C1—Cl281.51 (19)C3—N1—C6—C861.2 (2)
O2—C2—C1—Cl123.8 (2)C6—N1—C3—C467.1 (2)
O2—C2—C1—Cl297.11 (19)C6—N1—C3—C5169.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.921.872.788 (2)177
N1—H1B···O2ii0.921.902.757 (2)154
C6—H6···O1iii1.002.383.258 (2)146
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.921.872.788 (2)177.3
N1—H1B···O2ii0.921.902.757 (2)154.2
C6—H6···O1iii1.002.383.258 (2)146.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National S&T Major Special Project on Major New Drug Innovation (2012ZX09301002-001-019)

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGelernt, M. D. & Herbert, V. (1982). Nutr. Cancer, 3, 129–133.  CrossRef CAS PubMed Google Scholar
First citationLiu, D.-X., Wang, F.-F., Yue, J., Jing, X.-B. & Huang, Y.-B. (2015). Drug Deliv. 22, 136–143.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamane, K., Indalao, I.-L., Chida, J., Yamamoto, Y., Hanawa, M. & Kido, H. (2014). PLos ONE, 9, e98032.  CrossRef PubMed Google Scholar
First citationYu, Y.-H. & Qian, K. (2009). Acta Cryst. E65, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds