organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­butyl­ammonium bromide–1,2-di­iodo-3,4,5,6-tetra­fluoro­benzene–di­chloro­methane (2/2/1)

aDepartment of Chemistry, University of Ottawa, D'Iorio Hall, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
*Correspondence e-mail: dbryce@uottawa.ca

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 12 March 2015; accepted 1 April 2015; online 9 April 2015)

The crystallization of a 1:1 molar solution of 1,2-di­iodo-3,4,5,6-tetra­fluoro­benzene (o-DITFB) and tetra­butyl­ammonium bromide (n-Bu4NBr) from di­chloro­methane yielded pure white crystals of a halogen-bonded compound, C16H36N+·Br·C6F4I2·0.5CH2Cl2 or [(n-Bu4NBr)(o-DITFB)]·0.5CH2Cl2. The compound may be described as a quaternary system and may be classified as a salt–cocrystal solvate. The asymmetric unit contains one mol­ecule of solvent, two o-DITFB mol­ecules, two cations (n-Bu4N+) and two crystallographically distinct bromide ions [θIBr-I = 144.18 (1) and 135.35 (1)°]. The bromide ion is a bidentate halogen-bond acceptor which inter­acts with two covalently bonded iodines (i.e. halogen-bond donors), resulting in a one-dimensional polymeric zigzag chain network approximately along the a axis. The observed short contacts and angles are characteristic of the non-covalent inter­action [dC—I⋯Br = 3.1593 (4)–3.2590 (5) Å; θC—I⋯Br = 174.89 (7) and 178.16 (7)°]. It is noted that iodine acts as both a halogen-bond donor and a weak CH hydrogen-bond acceptor, while the bromide ions act as acceptors for weak CH hydrogen bonds and halogen bonds.

1. Related literature

The halogen-bonding motif of a polymeric anionic zigzag chain has been described for halogen-bonded compounds of phospho­nium halides and di­iodo­perfluoro­benzenes, see: Abate et al. (2009[Abate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluor. Chem. 130, 1171-1177.]). For the structure of o-DITFB, see: Viger-Gravel (2014[Viger-Gravel, J., Leclerc, S., Korobkov, I. & Bryce, D. L. (2014). J. Am. Chem. Soc. 136, 6929-6942.]) and of n-Bu4NBr, see: Elsegood (2011[Elsegood, M. R. J. (2011). Acta Cryst. E67, o2599.]). The title compound may be classified as a salt–cocrystal solvate, see: Bond (2012[Bond, A. D. (2012). Pharmaceutical Salts and Co-crystals, RSC Drug Discovery Series, No. 16, edited by J. Wouters & L. Quéré, ch. 2. Cambridge: Royal Society of Chemistry.]). For weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C16H36N+·2Br·2C6F4I2·CH2Cl2

  • Mr = 1533.38

  • Triclinic, [P \overline 1]

  • a = 13.1654 (3) Å

  • b = 15.0483 (3) Å

  • c = 16.2559 (4) Å

  • α = 66.668 (1)°

  • β = 84.654 (1)°

  • γ = 80.842 (1)°

  • V = 2917.90 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.65 mm−1

  • T = 200 K

  • 0.24 × 0.24 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.534, Tmax = 0.746

  • 42707 measured reflections

  • 14456 independent reflections

  • 12211 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.02

  • 14456 reflections

  • 568 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Contacts below the sum of the van der Waals radii involving DITFB (Å, °)

C—X⋯H X⋯H C—X⋯H
C30—F2⋯H30Bi 2.6538 (15) 120.189 (17)
C33—F2⋯H33Ai 2.8610 (19) 170.331 (18)
C31—F5⋯H31Bi 2.6222 (17) 140.526 (17)
C25—F7⋯H25B 2.518 (2) 172.421 (16)
C45—F7⋯H45Bii 2.4890 (15) 149.87 (3)
C26—I2⋯H26Aiii 3.0204 (3) 115.88 (7)
Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) x, −1 + y, z; (iii) 1 + x, y, z.

Table 2
Halogen-bond geometry (Å, °)

C—XY XY C—XY YXY YXY
C1—I1⋯Br1 3.2582 (5) 177.15 (8) I1⋯Br1⋯I4 144.180 (13)
C2—I4⋯Br1iv 3.1593 (4) 178.16 (7)    
C1—I2⋯Br2iii 3.2452 (4) 176.83 (7) I3⋯Br2⋯I2 134.350 (12)
C2—I3⋯Br2v 3.2590 (5) 174.89 (7)    
Symmetry codes: (iv) x, 1 + y, z; (iii) 1 + x, y,z; (v) x, 1 + y, z.

Data collection: APEX2, Bruker (2005[Bruker (2005). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT Bruker (2005[Bruker (2005). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP Bruker (2005[Bruker (2005). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS03 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Experimental top

Data collection results for [(n-Bu4NBr)(o-DITFB)]·CH2Cl2 represent the best data sets obtained in several trials. Crystals were mounted on thin glass fibers using paraffin oil. Prior to data collection, crystals were cooled to 200.15 °K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with the APEX II software package (BRUKER AXS, 2005). Due to lower symmetry in order to ensure adequate data completeness and redundancy, diffraction data were collected with a sequence of 0.3° ω scans at 0, 90, 180, and 270° in φ. Initial unit cell parameters were determined from 60 data frames with 0.3° ω scan each collected at the different sections of the Ewald sphere. Semi-empirical absorption corrections based on equivalent reflections were applied. In structural models for the compound, hydrogen atom positions were located from the differences in Fourier maps. However, after initial positioning, all hydrogen atoms were constrained to suitable geometries and subsequently treated as idealized contributions during the refinement. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12.

Refinement details top

Systematic absences in the diffraction data set and unit-cell parameters were consistent with the triclinic P1 (No. 2) space group. Solutions in this centrosymmetric space group yielded chemically reasonable and computationally stable results of refinement. The structure was solved by direct methods, completed with difference Fourier synthesis, and refined with full-matrix least-squares procedures based on F2. In the structure all molecular fragments are located in general positions.

In the structural model hydrogen atom positions were located from the differences in Fourier maps. However, after initial positioning, all hydrogen atomic positions were constrained to suitable geometries and subsequently treated as idealized contributions. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12 (Sheldrick, 2008).

Related literature top

The halogen-bonding motif of a polymeric anionic zigzag chain has been described for halogen-bonded compounds of phosphonium halides and diiodoperfluorobenzenes, see:Abate et al., 2009). For the structure of o-DITFB, see: Viger-Gravel (2014) and of n-Bu4NBr, see: Elsegood (2011). The title compound may be classified as a salt–cocrystal solvate, see: Bond (2012). For hydrogen bonds and halogen bonds, see: Desiraju & Steiner (1999).

Structure description top

Data collection results for [(n-Bu4NBr)(o-DITFB)]·CH2Cl2 represent the best data sets obtained in several trials. Crystals were mounted on thin glass fibers using paraffin oil. Prior to data collection, crystals were cooled to 200.15 °K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with the APEX II software package (BRUKER AXS, 2005). Due to lower symmetry in order to ensure adequate data completeness and redundancy, diffraction data were collected with a sequence of 0.3° ω scans at 0, 90, 180, and 270° in φ. Initial unit cell parameters were determined from 60 data frames with 0.3° ω scan each collected at the different sections of the Ewald sphere. Semi-empirical absorption corrections based on equivalent reflections were applied. In structural models for the compound, hydrogen atom positions were located from the differences in Fourier maps. However, after initial positioning, all hydrogen atoms were constrained to suitable geometries and subsequently treated as idealized contributions during the refinement. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12.

The halogen-bonding motif of a polymeric anionic zigzag chain has been described for halogen-bonded compounds of phosphonium halides and diiodoperfluorobenzenes, see:Abate et al., 2009). For the structure of o-DITFB, see: Viger-Gravel (2014) and of n-Bu4NBr, see: Elsegood (2011). The title compound may be classified as a salt–cocrystal solvate, see: Bond (2012). For hydrogen bonds and halogen bonds, see: Desiraju & Steiner (1999).

Refinement details top

Systematic absences in the diffraction data set and unit-cell parameters were consistent with the triclinic P1 (No. 2) space group. Solutions in this centrosymmetric space group yielded chemically reasonable and computationally stable results of refinement. The structure was solved by direct methods, completed with difference Fourier synthesis, and refined with full-matrix least-squares procedures based on F2. In the structure all molecular fragments are located in general positions.

In the structural model hydrogen atom positions were located from the differences in Fourier maps. However, after initial positioning, all hydrogen atomic positions were constrained to suitable geometries and subsequently treated as idealized contributions. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12 (Sheldrick, 2008).

Computing details top

Data collection: APEX2, Bruker (2005); cell refinement: APEX2 and SAINT Bruker (2005); data reduction: SAINT and XPREP Bruker (2005); program(s) used to solve structure: SHELXS03 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Halogen bonding environment of [(n-Bu4NBr)(o-DITFB)]·CH2Cl2, where iodine is in purple, carbon in black, fluorine in green, and bromine in orange.
[Figure 2] Fig. 2. (a) Detail of crystal structure showing selected weak hydrogen bond contacts to bromide and to iodine. (b, c) 2 x 2 x 2 supercell of [(n-Bu4NBr)(o-DITFB)]·CH2Cl2 viewed along the b axis where in (b) the cation is present and in (c) is absent to clarify the image. Rows of the polymeric bromide anionic chains are separated by n-Bu4N+ cations. Hydrogen atoms are not shown for clarity, iodine is in purple, carbon in black, fluorine in green, bromine in orange, and chlorine in blue.
Tetrabutylammonium bromide–1,2-diiodo-3,4,5,6-tetrafluorobenzene–dichloromethane (2/2/1) top
Crystal data top
2C16H36N+·2Br·2C6F4I2·CH2Cl2Z = 2
Mr = 1533.38F(000) = 1492
Triclinic, P1Dx = 1.745 Mg m3
a = 13.1654 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0483 (3) ÅCell parameters from 9968 reflections
c = 16.2559 (4) Åθ = 2.8–28.3°
α = 66.668 (1)°µ = 3.65 mm1
β = 84.654 (1)°T = 200 K
γ = 80.842 (1)°Block, colourless
V = 2917.90 (12) Å30.24 × 0.24 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
12211 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.4°, θmin = 2.0°
Tmin = 0.534, Tmax = 0.746h = 1717
42707 measured reflectionsk = 2020
14456 independent reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0216P)2 + 2.2414P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
14456 reflectionsΔρmax = 0.99 e Å3
568 parametersΔρmin = 0.99 e Å3
Crystal data top
2C16H36N+·2Br·2C6F4I2·CH2Cl2γ = 80.842 (1)°
Mr = 1533.38V = 2917.90 (12) Å3
Triclinic, P1Z = 2
a = 13.1654 (3) ÅMo Kα radiation
b = 15.0483 (3) ŵ = 3.65 mm1
c = 16.2559 (4) ÅT = 200 K
α = 66.668 (1)°0.24 × 0.24 × 0.12 mm
β = 84.654 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
14456 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
12211 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.746Rint = 0.022
42707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.02Δρmax = 0.99 e Å3
14456 reflectionsΔρmin = 0.99 e Å3
568 parameters
Special details top

Experimental. Data collection is performed with four batch runs at phi = 0.00 ° (600 frames), at phi = 90.00 ° (600 frames), at phi = 180.00 ° (600 frames), and at phi = 270.00 ° (600 frames). A fifth batch run is collected at phi = 0.00 ° (50 frames) to monitor crystal and diffractometer stability. Frame width = 0.30 ° in omega. Data is merged, corrected for decay (if any), and treated with multi-scan absorption corrections (if required). All symmetry-equivalent reflections are merged for centrosymmetric data. Friedel pairs are not merged for noncentrosymmetric data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.24735 (2)0.72180 (2)0.14178 (2)0.04521 (5)
I20.01151 (2)0.59950 (2)0.19674 (2)0.03492 (4)
I30.70784 (2)0.18215 (2)0.37143 (2)0.03702 (4)
I40.44346 (2)0.05201 (2)0.31053 (2)0.03407 (4)
Br10.28482 (2)0.88557 (2)0.21586 (2)0.04897 (7)
Br20.81851 (2)0.63216 (2)0.32589 (2)0.03880 (6)
F10.03880 (12)0.46121 (11)0.09146 (11)0.0500 (4)
F20.17634 (14)0.43539 (12)0.03182 (12)0.0566 (4)
F30.34622 (15)0.52720 (15)0.07434 (13)0.0693 (5)
F40.37602 (14)0.64816 (16)0.00315 (14)0.0698 (5)
F50.42205 (13)0.12714 (11)0.36785 (11)0.0526 (4)
F60.55057 (16)0.19756 (12)0.43805 (12)0.0635 (5)
F70.74257 (15)0.10137 (13)0.48392 (12)0.0594 (5)
F80.80628 (12)0.06286 (13)0.45697 (12)0.0572 (4)
N10.91649 (15)0.31256 (13)0.48925 (12)0.0302 (4)
N20.68646 (16)0.83381 (15)0.02856 (14)0.0387 (5)
C10.2196 (2)0.62142 (19)0.08822 (17)0.0392 (5)
C20.13221 (19)0.57390 (17)0.11037 (16)0.0350 (5)
C30.12048 (19)0.51035 (18)0.07065 (17)0.0383 (5)
C40.1907 (2)0.49549 (19)0.00793 (18)0.0429 (6)
C50.2762 (2)0.5427 (2)0.01434 (19)0.0483 (6)
C60.2901 (2)0.6044 (2)0.02608 (19)0.0468 (6)
C70.54822 (19)0.00556 (17)0.37100 (15)0.0329 (5)
C80.64711 (19)0.05500 (17)0.39466 (15)0.0334 (5)
C90.7104 (2)0.01755 (19)0.43258 (18)0.0408 (6)
C100.6785 (2)0.06638 (19)0.44735 (17)0.0438 (6)
C110.5823 (2)0.11516 (18)0.42431 (17)0.0437 (6)
C120.5173 (2)0.07841 (17)0.38746 (16)0.0385 (5)
C130.94820 (19)0.21590 (16)0.56604 (16)0.0336 (5)
H13A1.01180.18330.54690.040*
H13B0.89370.17380.57660.040*
C140.9674 (2)0.22143 (17)0.65406 (17)0.0369 (5)
H14A0.90330.24980.67660.044*
H14B1.02070.26440.64490.044*
C151.0030 (2)0.11948 (17)0.72286 (17)0.0389 (5)
H15A0.94920.07700.73210.047*
H15B1.06630.09100.69950.047*
C161.0244 (2)0.1222 (2)0.81190 (19)0.0517 (7)
H16A1.04630.05570.85460.077*
H16B0.96170.15000.83540.077*
H16C1.07910.16260.80330.077*
C170.81947 (19)0.36712 (16)0.51409 (16)0.0339 (5)
H17A0.83220.37690.56880.041*
H17B0.80650.43250.46530.041*
C180.7229 (2)0.31889 (19)0.53080 (19)0.0430 (6)
H18A0.73100.25680.58420.052*
H18B0.71150.30380.47860.052*
C190.6312 (2)0.3865 (2)0.5458 (2)0.0548 (7)
H19A0.63580.38850.60540.066*
H19B0.63470.45330.50020.066*
C200.5300 (2)0.3569 (2)0.5408 (3)0.0623 (8)
H20A0.47450.40350.55100.093*
H20B0.52510.29150.58670.093*
H20C0.52400.35640.48140.093*
C210.99919 (19)0.38009 (17)0.46600 (16)0.0351 (5)
H21A0.96980.44570.42450.042*
H21B1.01570.38610.52160.042*
C221.0985 (2)0.34942 (19)0.42390 (18)0.0403 (6)
H22A1.12650.28180.46210.048*
H22B1.08510.35080.36440.048*
C231.1766 (2)0.4183 (2)0.41343 (18)0.0458 (6)
H23A1.19580.41060.47360.055*
H23B1.14460.48650.38220.055*
C241.2730 (3)0.3988 (3)0.3611 (3)0.0737 (10)
H24A1.32070.44470.35590.111*
H24B1.25460.40740.30110.111*
H24C1.30600.33180.39250.111*
C250.89861 (19)0.28809 (17)0.41017 (15)0.0336 (5)
H25A0.96430.25620.39340.040*
H25B0.84880.24020.42930.040*
C260.8586 (2)0.37464 (19)0.32801 (17)0.0445 (6)
H26A0.90470.42550.31130.053*
H26B0.78940.40280.34220.053*
C270.8526 (3)0.3456 (2)0.24908 (19)0.0537 (7)
H27A0.83690.40560.19480.064*
H27B0.92090.31270.23860.064*
C280.7739 (4)0.2797 (3)0.2609 (2)0.0872 (14)
H28A0.77510.26440.20750.131*
H28B0.70540.31230.26930.131*
H28C0.78950.21910.31360.131*
C290.6285 (2)0.8347 (2)0.04838 (18)0.0444 (6)
H29A0.55440.85400.03840.053*
H29B0.65140.88600.10430.053*
C300.6398 (2)0.7404 (2)0.06305 (18)0.0450 (6)
H30A0.62020.68720.00720.054*
H30B0.71240.72280.07900.054*
C310.5710 (2)0.7528 (2)0.13814 (19)0.0513 (7)
H31A0.49870.77080.12150.062*
H31B0.59030.80720.19320.062*
C320.5780 (3)0.6617 (3)0.1580 (2)0.0667 (9)
H32A0.53160.67390.20620.100*
H32B0.55820.60760.10400.100*
H32C0.64890.64470.17680.100*
C330.80217 (19)0.81006 (19)0.01584 (18)0.0413 (6)
H33A0.81660.74310.01680.050*
H33B0.83600.80980.06780.050*
C340.8511 (2)0.8777 (2)0.0685 (2)0.0566 (8)
H34A0.82270.87420.12130.068*
H34B0.83400.94570.07230.068*
C350.9686 (2)0.8509 (2)0.0705 (3)0.0621 (8)
H35A0.99850.90310.12140.075*
H35B0.99560.84850.01460.075*
C361.0036 (3)0.7566 (3)0.0790 (2)0.0651 (9)
H36A1.07890.74390.07870.098*
H36B0.98000.75910.13550.098*
H36C0.97490.70420.02870.098*
C370.6580 (2)0.93582 (19)0.02917 (18)0.0426 (6)
H37A0.66770.98400.03260.051*
H37B0.58390.94420.04580.051*
C380.7171 (2)0.9601 (2)0.0910 (2)0.0497 (7)
H38A0.78910.96610.06790.060*
H38B0.71840.90690.15130.060*
C390.6675 (2)1.0547 (2)0.0975 (2)0.0508 (7)
H39A0.65661.10490.03620.061*
H39B0.59911.04510.12810.061*
C400.7296 (3)1.0921 (3)0.1474 (3)0.0656 (9)
H40A0.69211.15250.15050.098*
H40B0.79611.10530.11580.098*
H40C0.74091.04290.20820.098*
C410.6578 (2)0.7557 (2)0.11715 (17)0.0447 (6)
H41A0.68300.69110.11490.054*
H41B0.69470.76090.16510.054*
C420.5454 (2)0.7588 (3)0.1429 (2)0.0557 (8)
H42A0.50700.75220.09650.067*
H42B0.51870.82240.14690.067*
C430.5291 (3)0.6755 (3)0.2335 (2)0.0658 (9)
H43A0.57460.67880.27720.079*
H43B0.45720.68630.25490.079*
C440.5493 (4)0.5770 (3)0.2329 (3)0.1005 (15)
H44A0.53790.52880.29360.151*
H44B0.62070.56470.21290.151*
H44C0.50260.57170.19200.151*
C450.8462 (3)0.9249 (3)0.6717 (3)0.0774 (11)
H45A0.83780.95230.71850.093*
H45B0.79380.96250.62640.093*
Cl10.96601 (9)0.93975 (8)0.62159 (9)0.0951 (4)
Cl20.82419 (9)0.80409 (9)0.71994 (8)0.0888 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03980 (9)0.05145 (10)0.05094 (10)0.01695 (7)0.00179 (7)0.02342 (8)
I20.03671 (8)0.03464 (8)0.03288 (8)0.00851 (6)0.00126 (6)0.01166 (6)
I30.03450 (8)0.03702 (8)0.04262 (9)0.00278 (6)0.00354 (6)0.01896 (7)
I40.03396 (8)0.03321 (7)0.03537 (8)0.00373 (6)0.00246 (6)0.01365 (6)
Br10.04762 (15)0.04415 (14)0.05824 (17)0.00928 (12)0.01439 (13)0.01921 (13)
Br20.04265 (14)0.03591 (12)0.03926 (13)0.00107 (10)0.00096 (10)0.01773 (10)
F10.0502 (9)0.0472 (9)0.0607 (10)0.0161 (7)0.0022 (8)0.0267 (8)
F20.0659 (11)0.0518 (9)0.0629 (11)0.0038 (8)0.0069 (9)0.0369 (9)
F30.0623 (12)0.0857 (14)0.0656 (12)0.0023 (10)0.0197 (9)0.0428 (11)
F40.0482 (10)0.0924 (14)0.0811 (13)0.0296 (10)0.0273 (9)0.0455 (12)
F50.0615 (10)0.0444 (8)0.0529 (10)0.0109 (7)0.0088 (8)0.0251 (7)
F60.1002 (15)0.0406 (9)0.0601 (11)0.0073 (9)0.0051 (10)0.0307 (8)
F70.0777 (12)0.0600 (10)0.0569 (10)0.0328 (9)0.0055 (9)0.0305 (9)
F80.0427 (9)0.0709 (11)0.0721 (12)0.0089 (8)0.0122 (8)0.0397 (10)
N10.0384 (11)0.0249 (8)0.0298 (10)0.0065 (8)0.0003 (8)0.0128 (7)
N20.0352 (11)0.0435 (11)0.0329 (11)0.0073 (9)0.0077 (8)0.0135 (9)
C10.0386 (13)0.0418 (13)0.0379 (13)0.0072 (10)0.0002 (10)0.0156 (11)
C20.0347 (12)0.0338 (11)0.0327 (12)0.0040 (9)0.0000 (10)0.0094 (10)
C30.0371 (13)0.0334 (12)0.0420 (14)0.0015 (10)0.0053 (11)0.0126 (10)
C40.0492 (15)0.0374 (13)0.0424 (14)0.0044 (11)0.0077 (12)0.0182 (11)
C50.0466 (16)0.0520 (16)0.0424 (15)0.0030 (12)0.0055 (12)0.0194 (13)
C60.0385 (14)0.0522 (16)0.0479 (16)0.0098 (12)0.0067 (12)0.0180 (13)
C70.0398 (13)0.0323 (11)0.0285 (11)0.0077 (10)0.0013 (9)0.0133 (9)
C80.0393 (13)0.0325 (11)0.0315 (12)0.0092 (10)0.0016 (10)0.0148 (9)
C90.0413 (14)0.0446 (14)0.0391 (13)0.0116 (11)0.0003 (11)0.0172 (11)
C100.0611 (17)0.0429 (14)0.0353 (13)0.0238 (13)0.0012 (12)0.0179 (11)
C110.0699 (19)0.0314 (12)0.0328 (13)0.0113 (12)0.0031 (12)0.0151 (10)
C120.0497 (15)0.0326 (12)0.0309 (12)0.0029 (11)0.0011 (10)0.0115 (10)
C130.0415 (13)0.0232 (10)0.0360 (12)0.0028 (9)0.0038 (10)0.0114 (9)
C140.0420 (13)0.0288 (11)0.0397 (13)0.0023 (10)0.0081 (11)0.0126 (10)
C150.0375 (13)0.0316 (11)0.0444 (14)0.0035 (10)0.0056 (11)0.0109 (10)
C160.0633 (19)0.0399 (14)0.0478 (16)0.0004 (13)0.0224 (14)0.0111 (12)
C170.0430 (13)0.0269 (10)0.0333 (12)0.0016 (9)0.0005 (10)0.0146 (9)
C180.0451 (15)0.0359 (12)0.0485 (15)0.0038 (11)0.0050 (12)0.0188 (11)
C190.0519 (17)0.0463 (15)0.0639 (19)0.0016 (13)0.0139 (14)0.0242 (14)
C200.0519 (18)0.0566 (18)0.076 (2)0.0023 (14)0.0054 (16)0.0281 (17)
C210.0461 (14)0.0296 (11)0.0352 (12)0.0133 (10)0.0016 (10)0.0161 (10)
C220.0419 (14)0.0409 (13)0.0433 (14)0.0118 (11)0.0003 (11)0.0194 (11)
C230.0490 (16)0.0524 (15)0.0399 (14)0.0205 (13)0.0037 (12)0.0166 (12)
C240.056 (2)0.100 (3)0.074 (2)0.034 (2)0.0123 (17)0.038 (2)
C250.0423 (13)0.0328 (11)0.0325 (12)0.0110 (10)0.0009 (10)0.0181 (10)
C260.0639 (18)0.0395 (13)0.0329 (13)0.0169 (12)0.0028 (12)0.0131 (11)
C270.072 (2)0.0612 (18)0.0331 (14)0.0214 (16)0.0030 (13)0.0207 (13)
C280.132 (4)0.093 (3)0.053 (2)0.062 (3)0.013 (2)0.026 (2)
C290.0418 (14)0.0528 (15)0.0347 (13)0.0069 (12)0.0113 (11)0.0157 (12)
C300.0450 (15)0.0517 (15)0.0356 (13)0.0007 (12)0.0046 (11)0.0161 (12)
C310.0551 (17)0.0572 (17)0.0408 (15)0.0060 (14)0.0102 (13)0.0169 (13)
C320.075 (2)0.075 (2)0.062 (2)0.0110 (18)0.0065 (17)0.0371 (18)
C330.0327 (13)0.0423 (13)0.0429 (14)0.0074 (10)0.0051 (11)0.0140 (11)
C340.0508 (17)0.0497 (16)0.0546 (18)0.0076 (13)0.0063 (14)0.0119 (14)
C350.0478 (17)0.0564 (18)0.076 (2)0.0086 (14)0.0156 (16)0.0225 (17)
C360.056 (2)0.068 (2)0.063 (2)0.0088 (16)0.0014 (16)0.0234 (17)
C370.0373 (13)0.0464 (14)0.0414 (14)0.0091 (11)0.0077 (11)0.0183 (12)
C380.0478 (16)0.0523 (16)0.0492 (16)0.0066 (13)0.0120 (13)0.0226 (13)
C390.0463 (16)0.0487 (15)0.0551 (17)0.0009 (12)0.0016 (13)0.0206 (13)
C400.066 (2)0.0583 (19)0.080 (2)0.0045 (16)0.0077 (18)0.0354 (18)
C410.0383 (14)0.0573 (16)0.0324 (13)0.0026 (12)0.0042 (10)0.0119 (12)
C420.0429 (16)0.074 (2)0.0429 (16)0.0010 (14)0.0027 (12)0.0188 (15)
C430.0457 (18)0.102 (3)0.0432 (17)0.0143 (18)0.0068 (13)0.0208 (18)
C440.089 (3)0.089 (3)0.095 (3)0.019 (2)0.030 (3)0.010 (3)
C450.096 (3)0.073 (2)0.057 (2)0.016 (2)0.0007 (19)0.0295 (18)
Cl10.0980 (8)0.0768 (6)0.1320 (10)0.0225 (6)0.0321 (7)0.0670 (7)
Cl20.0813 (7)0.1009 (8)0.1077 (8)0.0284 (6)0.0117 (6)0.0625 (7)
Geometric parameters (Å, º) top
I1—C12.109 (3)C9—C101.372 (4)
I2—C22.112 (2)C10—C111.362 (4)
I3—C82.115 (2)C11—C121.381 (4)
I4—C72.112 (2)C13—C141.512 (3)
F1—C31.344 (3)C14—C151.528 (3)
F2—C41.346 (3)C15—C161.517 (4)
F3—C51.342 (3)C17—C181.513 (4)
F4—C61.348 (3)C18—C191.517 (4)
F5—C121.345 (3)C19—C201.489 (4)
F6—C111.341 (3)C21—C221.510 (4)
F7—C101.351 (3)C22—C231.526 (3)
F8—C91.349 (3)C23—C241.515 (4)
N1—C171.517 (3)C25—C261.514 (3)
N1—C131.521 (3)C26—C271.522 (4)
N1—C251.517 (3)C27—C281.495 (4)
N1—C211.527 (3)C29—C301.512 (4)
N2—C331.522 (3)C30—C311.522 (4)
N2—C291.520 (3)C31—C321.515 (4)
N2—C411.516 (3)C33—C341.507 (4)
N2—C371.525 (3)C34—C351.537 (4)
C1—C61.379 (4)C35—C361.477 (5)
C1—C21.395 (3)C37—C381.509 (4)
C2—C31.382 (3)C38—C391.508 (4)
C3—C41.372 (4)C39—C401.508 (4)
C4—C51.371 (4)C41—C421.499 (4)
C5—C61.373 (4)C42—C431.534 (4)
C7—C121.385 (3)C43—C441.468 (6)
C7—C81.398 (3)C45—Cl21.733 (4)
C8—C91.383 (3)C45—Cl11.711 (4)
C17—N1—C13111.15 (18)F8—C9—C8121.0 (2)
C17—N1—C25110.59 (18)C10—C9—C8121.7 (3)
C13—N1—C25106.52 (16)C11—C10—C9120.0 (2)
C17—N1—C21106.23 (17)C11—C10—F7119.9 (2)
C13—N1—C21111.40 (18)C9—C10—F7120.1 (3)
C25—N1—C21111.01 (17)F6—C11—C10120.5 (2)
C33—N2—C29111.5 (2)F6—C11—C12120.2 (3)
C33—N2—C41105.38 (18)C10—C11—C12119.3 (2)
C29—N2—C41111.8 (2)F5—C12—C7120.7 (2)
C33—N2—C37111.4 (2)F5—C12—C11117.6 (2)
C29—N2—C37105.28 (18)C7—C12—C11121.7 (2)
C41—N2—C37111.6 (2)N1—C13—C14116.31 (18)
C6—C1—C2118.5 (2)C13—C14—C15110.04 (19)
C6—C1—I1118.13 (19)C16—C15—C14111.6 (2)
C2—C1—I1123.34 (19)C18—C17—N1116.13 (18)
C3—C2—C1118.9 (2)C17—C18—C19109.8 (2)
C3—C2—I2117.59 (18)C20—C19—C18113.7 (3)
C1—C2—I2123.40 (18)C22—C21—N1116.31 (18)
F1—C3—C2121.0 (2)C23—C22—C21110.0 (2)
F1—C3—C4117.2 (2)C22—C23—C24112.3 (3)
C2—C3—C4121.7 (2)C26—C25—N1114.90 (19)
F2—C4—C5119.9 (2)C25—C26—C27111.6 (2)
F2—C4—C3120.8 (3)C28—C27—C26114.6 (3)
C5—C4—C3119.3 (2)C30—C29—N2116.9 (2)
F3—C5—C4119.8 (3)C29—C30—C31109.6 (2)
F3—C5—C6120.7 (3)C32—C31—C30113.3 (3)
C4—C5—C6119.6 (3)N2—C33—C34116.3 (2)
F4—C6—C5117.6 (3)C35—C34—C33111.4 (2)
F4—C6—C1120.5 (3)C36—C35—C34114.1 (3)
C5—C6—C1121.9 (3)C38—C37—N2116.5 (2)
C12—C7—C8118.6 (2)C37—C38—C39110.2 (2)
C12—C7—I4118.16 (18)C40—C39—C38113.8 (3)
C8—C7—I4123.29 (17)C42—C41—N2116.1 (2)
C9—C8—C7118.7 (2)C41—C42—C43109.7 (2)
C9—C8—I3117.76 (19)C44—C43—C42115.3 (3)
C7—C8—I3123.47 (16)Cl2—C45—Cl1113.4 (2)
F8—C9—C10117.4 (2)
C6—C1—C2—C31.2 (4)F6—C11—C12—F51.1 (4)
I1—C1—C2—C3179.13 (18)C10—C11—C12—F5178.2 (2)
C6—C1—C2—I2175.3 (2)F6—C11—C12—C7178.9 (2)
I1—C1—C2—I22.6 (3)C10—C11—C12—C71.8 (4)
C1—C2—C3—F1178.4 (2)C17—N1—C13—C1457.7 (3)
I2—C2—C3—F14.8 (3)C25—N1—C13—C14178.2 (2)
C1—C2—C3—C42.3 (4)C21—N1—C13—C1460.6 (3)
I2—C2—C3—C4174.47 (19)N1—C13—C14—C15177.5 (2)
F1—C3—C4—F21.2 (4)C13—C14—C15—C16179.3 (2)
C2—C3—C4—F2178.1 (2)C13—N1—C17—C1864.7 (3)
F1—C3—C4—C5178.9 (2)C25—N1—C17—C1853.4 (3)
C2—C3—C4—C51.8 (4)C21—N1—C17—C18173.9 (2)
F2—C4—C5—F31.4 (4)N1—C17—C18—C19174.5 (2)
C3—C4—C5—F3178.7 (2)C17—C18—C19—C20166.0 (3)
F2—C4—C5—C6179.6 (2)C17—N1—C21—C22170.0 (2)
C3—C4—C5—C60.3 (4)C13—N1—C21—C2268.8 (3)
F3—C5—C6—F40.0 (4)C25—N1—C21—C2249.7 (3)
C4—C5—C6—F4179.0 (3)N1—C21—C22—C23174.3 (2)
F3—C5—C6—C1179.8 (3)C21—C22—C23—C24172.9 (3)
C4—C5—C6—C10.8 (4)C17—N1—C25—C2654.9 (3)
C2—C1—C6—F4179.5 (2)C13—N1—C25—C26175.8 (2)
I1—C1—C6—F42.4 (4)C21—N1—C25—C2662.8 (3)
C2—C1—C6—C50.3 (4)N1—C25—C26—C27174.5 (2)
I1—C1—C6—C5177.8 (2)C25—C26—C27—C2867.3 (4)
C12—C7—C8—C90.7 (3)C33—N2—C29—C3061.0 (3)
I4—C7—C8—C9178.92 (18)C41—N2—C29—C3056.7 (3)
C12—C7—C8—I3178.46 (17)C37—N2—C29—C30178.1 (2)
I4—C7—C8—I31.2 (3)N2—C29—C30—C31176.1 (2)
C7—C8—C9—F8179.7 (2)C29—C30—C31—C32179.5 (3)
I3—C8—C9—F82.5 (3)C29—N2—C33—C3458.5 (3)
C7—C8—C9—C100.0 (4)C41—N2—C33—C34180.0 (2)
I3—C8—C9—C10177.9 (2)C37—N2—C33—C3458.8 (3)
F8—C9—C10—C11179.8 (2)N2—C33—C34—C35175.8 (3)
C8—C9—C10—C110.2 (4)C33—C34—C35—C3667.8 (4)
F8—C9—C10—F70.8 (4)C33—N2—C37—C3850.4 (3)
C8—C9—C10—F7179.5 (2)C29—N2—C37—C38171.4 (2)
C9—C10—C11—F6179.7 (2)C41—N2—C37—C3867.1 (3)
F7—C10—C11—F60.3 (4)N2—C37—C38—C39169.2 (2)
C9—C10—C11—C121.0 (4)C37—C38—C39—C40171.8 (3)
F7—C10—C11—C12179.6 (2)C33—N2—C41—C42176.2 (3)
C8—C7—C12—F5178.4 (2)C29—N2—C41—C4254.9 (3)
I4—C7—C12—F52.0 (3)C37—N2—C41—C4262.7 (3)
C8—C7—C12—C111.6 (4)N2—C41—C42—C43180.0 (3)
I4—C7—C12—C11178.04 (19)C41—C42—C43—C4469.2 (4)
Contacts below the sum of the van der Waals radii involving DITFB (Å, °) top
C—X···HX···HC—X···H
C30—F2···H30Bi2.6538 (15)120.189 (17)
C33—F2···H33Ai2.8610 (19)170.331 (18)
C31—F5···H31Bi2.6222 (17)140.526 (17)
C25—F7···H25B2.518 (2)172.421 (16)
C45—F7···H45Bii2.4890 (15)149.87 (3)
C26—I2···H26Aiii3.0204 (3)115.88 (7)
Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, -1 + y, z; (iii) 1 + x, y, z.
Halogen-bond geometry ( Å, °) top
C—X···YX···YC—X···YY···X···YY···X···Y
C1—I1···Br13.2582 (5)177.15 (8)I1···Br1···I4144.180 (13)
C2—I4···Br1iv3.1593 (4)178.16 (7)
C1—I2···Br2iii3.2452 (4)176.83 (7)I3···Br2···I2134.350 (12)
C2—I3···Br2v3.2590 (5)174.89 (7)
Symmetry codes: (iv) x, 1 + y, z; (iii) 1 + x, y,z; (v) x, 1 + y, z.
 

Acknowledgements

DLB thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding and JVG thanks the Fonds de Recherche du Québec – Nature et Technologies (FRQNT) for a scholarship.

References

First citationAbate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluor. Chem. 130, 1171–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationBond, A. D. (2012). Pharmaceutical Salts and Co-crystals, RSC Drug Discovery Series, No. 16, edited by J. Wouters & L. Quéré, ch. 2. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationBruker (2005). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationElsegood, M. R. J. (2011). Acta Cryst. E67, o2599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationViger-Gravel, J., Leclerc, S., Korobkov, I. & Bryce, D. L. (2014). J. Am. Chem. Soc. 136, 6929–6942.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds