organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 1-methyl-2-oxo­spiro­[indoline-3,2′-oxirane]-3′-carboxyl­ate

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bUniversity of Madras, Industrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 February 2015; accepted 29 March 2015; online 2 April 2015)

In the title compound, C12H11NO4, the dihedral angle between the indole ring system (r.m.s. deviation = 0.019 Å) and the oxirane ring is 88.8 (2)°. The oxirane O atom and the bridging ester O atom are in an approximate syn conformation [O—C—C—O = −25.4 (3)°] In the crystal, inversion dimers linked by pair of C—H⋯O hydrogen bonds generate R22(8) loops, where the C—H donor group forms part of the oxirane ring. A second C—H⋯O inter­action arising from one of the C—H groups of the benzene ring links the dimers into [001] double chains.

1. Related literature

For the bioactivity of indole derivatives, see: Di Fabio et al. (2007[Di Fabio, R., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.]); Sharma & Tepe (2004[Sharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319-4321.]). For a related structure, see: Savithri et al. (2015[Savithri, M. P., Yuvaraj, P. S., Reddy, B. S. R., Raja, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, o188-o189.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H11NO4

  • Mr = 233.22

  • Triclinic, [P \overline 1]

  • a = 7.1401 (4) Å

  • b = 8.7787 (4) Å

  • c = 9.0678 (4) Å

  • α = 91.517 (3)°

  • β = 104.227 (3)°

  • γ = 94.714 (3)°

  • V = 548.44 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.969

  • 11311 measured reflections

  • 1927 independent reflections

  • 1480 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.173

  • S = 1.06

  • 1927 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 (3) 2.52 (3) 3.414 (3) 157 (2)
C9—H9⋯O1ii 0.93 2.43 3.335 (4) 163
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the bioactivity of indole derivatives, see: Di Fabio et al. (2007); Sharma & Tepe (2004). For a related structure, see: Savithri et al. (2015).

Experimental top

To a solution of the catalyst of diphenyl[(R)-2-pyrrolidinyl]methanol (0.15mmol) and trans-α-ylideneoxindoles 1 (0.5 mmol) in nHexane for HPLC grade (2.7ml) was added TBHP (5.5M in decane solution, 0.6mol) at room temperature (25°C). The resultant heterogeneous mixture was maintained under stirring until the reaction completion (TLC nHexane/EtOAc). After wards, the crude reaction mixture was purified by flash chromatography on silica gel (nHexane/EtOAc) to furnish the epoxy oxindoles trans-2 and cis-3. Colourless blocks were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C-H distances fixed in the range 0.93-0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

For the bioactivity of indole derivatives, see: Di Fabio et al. (2007); Sharma & Tepe (2004). For a related structure, see: Savithri et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing as viewed along the a axis. Dashed lines shows the C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A partial view of the hydrogen-bond interactions C9—H9···O1 and C3—H3···O3 along a axis.
Methyl 1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxylate top
Crystal data top
C12H11NO4Z = 2
Mr = 233.22F(000) = 244
Triclinic, P1Dx = 1.412 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1401 (4) ÅCell parameters from 1927 reflections
b = 8.7787 (4) Åθ = 2.3–25.0°
c = 9.0678 (4) ŵ = 0.11 mm1
α = 91.517 (3)°T = 293 K
β = 104.227 (3)°Block, colourless
γ = 94.714 (3)°0.35 × 0.30 × 0.30 mm
V = 548.44 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1927 independent reflections
Radiation source: fine-focus sealed tube1480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.963, Tmax = 0.969k = 1010
11311 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.102P)2 + 0.172P]
where P = (Fo2 + 2Fc2)/3
1927 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H11NO4γ = 94.714 (3)°
Mr = 233.22V = 548.44 (5) Å3
Triclinic, P1Z = 2
a = 7.1401 (4) ÅMo Kα radiation
b = 8.7787 (4) ŵ = 0.11 mm1
c = 9.0678 (4) ÅT = 293 K
α = 91.517 (3)°0.35 × 0.30 × 0.30 mm
β = 104.227 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1927 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1480 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.969Rint = 0.037
11311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
1927 reflectionsΔρmin = 0.27 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.0254 (2)0.10821 (18)0.36778 (18)0.0462 (5)
O40.1745 (3)0.03538 (19)0.15149 (19)0.0536 (5)
O30.4764 (3)0.0432 (2)0.2809 (2)0.0632 (6)
O10.1739 (3)0.3246 (2)0.1663 (2)0.0643 (6)
N10.2372 (3)0.4866 (2)0.3794 (3)0.0504 (6)
C70.2040 (3)0.3195 (3)0.5623 (3)0.0425 (6)
C20.3047 (4)0.0282 (2)0.2698 (3)0.0429 (6)
C40.1736 (3)0.2320 (2)0.4166 (2)0.0379 (5)
C30.2223 (4)0.0750 (3)0.3974 (3)0.0428 (6)
C60.2456 (3)0.4711 (3)0.5343 (3)0.0486 (6)
C50.1928 (3)0.3492 (3)0.3012 (3)0.0438 (6)
C80.2075 (4)0.2738 (4)0.7065 (3)0.0566 (7)
H80.18110.17150.72470.068*
C110.2901 (4)0.5825 (4)0.6509 (4)0.0717 (10)
H110.31740.68490.63340.086*
C10.2456 (5)0.0803 (4)0.0221 (3)0.0692 (9)
H1A0.13930.12550.05770.104*
H1B0.33910.15340.05210.104*
H1C0.30560.00810.01410.104*
C120.2681 (5)0.6277 (3)0.3066 (5)0.0774 (10)
H12A0.29790.71140.38130.116*
H12B0.15280.64400.23030.116*
H12C0.37420.62140.25970.116*
C100.2921 (5)0.5344 (5)0.7951 (4)0.0845 (12)
H100.32230.60680.87610.101*
C90.2516 (5)0.3848 (5)0.8237 (4)0.0796 (11)
H90.25370.35760.92250.096*
H30.273 (4)0.024 (3)0.488 (3)0.052 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0454 (10)0.0440 (9)0.0450 (9)0.0086 (7)0.0076 (7)0.0005 (7)
O40.0565 (11)0.0523 (11)0.0456 (10)0.0033 (8)0.0026 (8)0.0115 (8)
O30.0524 (13)0.0730 (13)0.0597 (12)0.0065 (9)0.0068 (9)0.0112 (9)
O10.0859 (15)0.0673 (12)0.0455 (11)0.0096 (10)0.0247 (10)0.0167 (9)
N10.0464 (12)0.0339 (11)0.0738 (15)0.0021 (8)0.0206 (10)0.0087 (9)
C70.0352 (12)0.0495 (14)0.0418 (13)0.0004 (10)0.0099 (9)0.0061 (10)
C20.0477 (15)0.0335 (12)0.0425 (13)0.0041 (10)0.0020 (10)0.0010 (9)
C40.0380 (12)0.0387 (12)0.0351 (11)0.0034 (9)0.0078 (9)0.0011 (9)
C30.0477 (14)0.0373 (12)0.0382 (13)0.0010 (10)0.0024 (10)0.0032 (10)
C60.0333 (13)0.0470 (14)0.0650 (17)0.0033 (10)0.0125 (11)0.0104 (11)
C50.0425 (13)0.0441 (13)0.0476 (14)0.0047 (10)0.0154 (10)0.0087 (10)
C80.0495 (15)0.0805 (19)0.0392 (14)0.0009 (13)0.0128 (11)0.0032 (12)
C110.0491 (17)0.0595 (18)0.100 (3)0.0038 (13)0.0116 (16)0.0328 (17)
C10.077 (2)0.082 (2)0.0455 (15)0.0188 (16)0.0083 (13)0.0170 (14)
C120.0574 (18)0.0453 (16)0.137 (3)0.0067 (13)0.0348 (18)0.0312 (17)
C100.061 (2)0.110 (3)0.074 (2)0.0127 (19)0.0073 (16)0.052 (2)
C90.062 (2)0.128 (3)0.0476 (17)0.0067 (19)0.0138 (14)0.0251 (18)
Geometric parameters (Å, º) top
O2—C31.421 (3)C3—H30.95 (3)
O2—C41.433 (3)C6—C111.380 (4)
O4—C21.311 (3)C8—C91.382 (4)
O4—C11.446 (3)C8—H80.9300
O3—C21.201 (3)C11—C101.382 (5)
O1—C51.209 (3)C11—H110.9300
N1—C51.356 (3)C1—H1A0.9600
N1—C61.402 (3)C1—H1B0.9600
N1—C121.446 (3)C1—H1C0.9600
C7—C81.373 (3)C12—H12A0.9600
C7—C61.384 (4)C12—H12B0.9600
C7—C41.470 (3)C12—H12C0.9600
C2—C31.484 (4)C10—C91.367 (5)
C4—C31.466 (3)C10—H100.9300
C4—C51.509 (3)C9—H90.9300
C3—O2—C461.80 (14)O1—C5—C4126.6 (2)
C2—O4—C1116.2 (2)N1—C5—C4106.3 (2)
C5—N1—C6111.2 (2)C7—C8—C9117.8 (3)
C5—N1—C12122.4 (3)C7—C8—H8121.1
C6—N1—C12126.4 (2)C9—C8—H8121.1
C8—C7—C6121.6 (2)C6—C11—C10116.7 (3)
C8—C7—C4131.6 (2)C6—C11—H11121.7
C6—C7—C4106.7 (2)C10—C11—H11121.7
O3—C2—O4125.0 (2)O4—C1—H1A109.5
O3—C2—C3121.3 (2)O4—C1—H1B109.5
O4—C2—C3113.7 (2)H1A—C1—H1B109.5
O2—C4—C358.71 (14)O4—C1—H1C109.5
O2—C4—C7123.07 (19)H1A—C1—H1C109.5
C3—C4—C7125.9 (2)H1B—C1—H1C109.5
O2—C4—C5116.78 (18)N1—C12—H12A109.5
C3—C4—C5121.0 (2)N1—C12—H12B109.5
C7—C4—C5105.51 (19)H12A—C12—H12B109.5
O2—C3—C459.48 (14)N1—C12—H12C109.5
O2—C3—C2119.95 (19)H12A—C12—H12C109.5
C4—C3—C2121.3 (2)H12B—C12—H12C109.5
O2—C3—H3117.1 (15)C9—C10—C11122.8 (3)
C4—C3—H3116.4 (16)C9—C10—H10118.6
C2—C3—H3112.8 (15)C11—C10—H10118.6
C11—C6—C7120.9 (3)C10—C9—C8120.3 (3)
C11—C6—N1128.8 (3)C10—C9—H9119.9
C7—C6—N1110.3 (2)C8—C9—H9119.9
O1—C5—N1127.2 (2)
C1—O4—C2—O34.4 (4)C4—C7—C6—N12.0 (3)
C1—O4—C2—C3178.6 (2)C5—N1—C6—C11178.4 (2)
C3—O2—C4—C7115.0 (2)C12—N1—C6—C112.3 (4)
C3—O2—C4—C5111.7 (2)C5—N1—C6—C70.6 (3)
C8—C7—C4—O244.0 (4)C12—N1—C6—C7178.7 (2)
C6—C7—C4—O2140.1 (2)C6—N1—C5—O1179.6 (2)
C8—C7—C4—C328.9 (4)C12—N1—C5—O10.2 (4)
C6—C7—C4—C3147.0 (2)C6—N1—C5—C41.0 (3)
C8—C7—C4—C5178.4 (2)C12—N1—C5—C4179.7 (2)
C6—C7—C4—C52.5 (2)O2—C4—C5—O137.7 (3)
C4—O2—C3—C2110.9 (2)C3—C4—C5—O130.3 (4)
C7—C4—C3—O2110.4 (2)C7—C4—C5—O1178.4 (2)
C5—C4—C3—O2104.4 (2)O2—C4—C5—N1142.9 (2)
O2—C4—C3—C2108.6 (2)C3—C4—C5—N1149.1 (2)
C7—C4—C3—C2141.0 (2)C7—C4—C5—N12.2 (2)
C5—C4—C3—C24.2 (3)C6—C7—C8—C90.9 (4)
O3—C2—C3—O2157.5 (2)C4—C7—C8—C9176.2 (3)
O4—C2—C3—O225.4 (3)C7—C6—C11—C100.5 (4)
O3—C2—C3—C487.1 (3)N1—C6—C11—C10178.5 (2)
O4—C2—C3—C495.8 (2)C6—C11—C10—C90.3 (5)
C8—C7—C6—C110.8 (4)C11—C10—C9—C80.5 (5)
C4—C7—C6—C11177.1 (2)C7—C8—C9—C100.7 (4)
C8—C7—C6—N1178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.95 (3)2.52 (3)3.414 (3)157 (2)
C9—H9···O1ii0.932.433.335 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.95 (3)2.52 (3)3.414 (3)157 (2)
C9—H9···O1ii0.932.433.335 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Fabio, R., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavithri, M. P., Yuvaraj, P. S., Reddy, B. S. R., Raja, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, o188–o189.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319–4321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds