organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1-(3-chloro­phen­yl)-5-hy­dr­oxy-3-methyl-1H-pyrazol-4-yl](p-tol­yl)methanone

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 February 2015; accepted 27 March 2015; online 2 April 2015)

In the title compound C18H15ClN2O2, the dihedral angles between the central pyrazole ring and the pendant chloro­benzene and p-tolyl rings are 17.68 (10) and 51.26 (12)°, respectively. An intra­molecular O—H⋯O hydrogen bond is observed, which closes an S(6) ring.

1. Related literature

For background to 4-acyl­pyrazolone derivatives, see: Jadeja et al. (2012[Jadeja, R. N., Vyas, K. M., Gupta, V. K., Joshi, R. G. & Ratna Prabha, C. (2012). Polyhedron, 31, 767-778.]); Chiba et al. (1998[Chiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). J. Med. Chem. 41, 4001-4011.]); Marchetti et al. (2005[Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909-2945.]). For related structures, see: Sharma et al. (2014[Sharma, N., Parihar, S., Jadeja, R. N., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o1136-o1137.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H15ClN2O2

  • Mr = 326.77

  • Triclinic, [P \overline 1]

  • a = 5.1469 (5) Å

  • b = 12.0773 (12) Å

  • c = 13.0892 (11) Å

  • α = 87.247 (7)°

  • β = 84.396 (7)°

  • γ = 79.024 (9)°

  • V = 794.57 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.745, Tmax = 1.000

  • 5633 measured reflections

  • 3099 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.164

  • S = 1.00

  • 3099 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O14 0.82 1.90 2.581 (3) 140

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Acyl-pyrazolones derivatives and their coordination complexes are broadly used in many fields, especially in biological, clinical and analytical applications (Chiba et al., (1998); Marchetti et al., (2005). Due to the presence of two oxygen donor atoms and facile keto-enol tautomerism, they easily coordinate with metal ions after deprotonation of the enolic hydrogen and provide stable metal complexes with six-membered chelate rings. In addition, 4-acyl pyrazolones can form a variety of Schiff bases and are reported to be superior reagents in biological, clinical and analytical applications (Jadeja et al., (2012). In this article we are reporting synthesis and crystal structure of a new 4-acylpyrazolone derivative.

The overall molecular geometry of the title compound, has a normal range and are in good agreement with the corresponding values obtained in case of related structures (Abdel-Aziz et al.,2012; Sharma et al., 2014). In the title compound C18H15Cl1N2O2, all the rings are planar. The dihedral angle between central pyrazole ring and chlorobenzene ring is 17.68 (10)°, between pyrazole ring and p-tolyl ring is 51.26 (12)° and between chlorobenzene ring and p-tolyl ring is 68.78 (10) °. The bond length of C4- C3 is 1.409 Å that is near to typical C—C double bond indicate that there is double bond between C4—C3. So its geometry becomes planner. The C3—O3 bond(1.291 Å) is much longer than a typical C=O double bond, indicate that C3—O3 bond is single bond and H is attached to O3 and the molecule is in enol form.

Related literature top

For background to 4-acylpyrazolone derivatives, see: Jadeja et al. (2012); Chiba et al. (1998); Marchetti et al. (2005). For related structures, see: Sharma et al. (2014); Abdel-Aziz et al. (2012).

Experimental top

1-(3,Chlorophenyl)-3-methyl-5-pyrazolone (20.9 g, 0.1 mol) and 80 ml of dry 1,4-dioxane were placed in a three necked 250 ml round bottom flask equipped with a stirrer, an addition funnel and a reflux condenser. The reaction mass was heated at 70 °C for 10 min. To the resulting yellow solution was added in small portions calcium hydroxide (14.82 g, 0.2 mol) and then toluoyl chloride (15.5 g, 0.1 mol) was added drop wise. During this addition, the whole mass was converted into a thick paste. After the complete addition, the reaction mixture was heated to reflux for 2 h. The yellowish mixture was cooled to room temperature and poured into a 250 ml solution of ice-cold hydrochloric acid (2 M) under stirring. The yellow precipitate was filtered, washed with water and dried in a vacuum. After drying a pale-yellow solid was obtained and recrystallized from an acetone-water mixture. (Yield 20.3 g m, 62%). Yellow blocks were obtained by the slow evaporation of the compound in acetone-water mixture (3–4 days).

Refinement top

All the H atoms were geometrically fixed and allowed to ride on their parent Carbon atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C),.

Structure description top

4-Acyl-pyrazolones derivatives and their coordination complexes are broadly used in many fields, especially in biological, clinical and analytical applications (Chiba et al., (1998); Marchetti et al., (2005). Due to the presence of two oxygen donor atoms and facile keto-enol tautomerism, they easily coordinate with metal ions after deprotonation of the enolic hydrogen and provide stable metal complexes with six-membered chelate rings. In addition, 4-acyl pyrazolones can form a variety of Schiff bases and are reported to be superior reagents in biological, clinical and analytical applications (Jadeja et al., (2012). In this article we are reporting synthesis and crystal structure of a new 4-acylpyrazolone derivative.

The overall molecular geometry of the title compound, has a normal range and are in good agreement with the corresponding values obtained in case of related structures (Abdel-Aziz et al.,2012; Sharma et al., 2014). In the title compound C18H15Cl1N2O2, all the rings are planar. The dihedral angle between central pyrazole ring and chlorobenzene ring is 17.68 (10)°, between pyrazole ring and p-tolyl ring is 51.26 (12)° and between chlorobenzene ring and p-tolyl ring is 68.78 (10) °. The bond length of C4- C3 is 1.409 Å that is near to typical C—C double bond indicate that there is double bond between C4—C3. So its geometry becomes planner. The C3—O3 bond(1.291 Å) is much longer than a typical C=O double bond, indicate that C3—O3 bond is single bond and H is attached to O3 and the molecule is in enol form.

For background to 4-acylpyrazolone derivatives, see: Jadeja et al. (2012); Chiba et al. (1998); Marchetti et al. (2005). For related structures, see: Sharma et al. (2014); Abdel-Aziz et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
[1-(3-chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazol-4-yl](p-tolyl)methanone top
Crystal data top
C18H15ClN2O2Z = 2
Mr = 326.77F(000) = 340
Triclinic, P1Dx = 1.366 Mg m3
Dm = 1.37 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1469 (5) ÅCell parameters from 1318 reflections
b = 12.0773 (12) Åθ = 4.1–26.7°
c = 13.0892 (11) ŵ = 0.25 mm1
α = 87.247 (7)°T = 293 K
β = 84.396 (7)°Block, yellow
γ = 79.024 (9)°0.30 × 0.20 × 0.20 mm
V = 794.57 (13) Å3
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω Scan scansh = 66
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2010)
k = 1412
Tmin = 0.745, Tmax = 1.000l = 1615
5633 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H15ClN2O2γ = 79.024 (9)°
Mr = 326.77V = 794.57 (13) Å3
Triclinic, P1Z = 2
a = 5.1469 (5) ÅMo Kα radiation
b = 12.0773 (12) ŵ = 0.25 mm1
c = 13.0892 (11) ÅT = 293 K
α = 87.247 (7)°0.30 × 0.20 × 0.20 mm
β = 84.396 (7)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2010)
1411 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 1.000Rint = 0.041
5633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3099 reflectionsΔρmin = 0.20 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3593 (2)0.51342 (10)0.37363 (9)0.1138 (5)
O140.9153 (4)0.0200 (2)0.12991 (19)0.0789 (8)
N20.6078 (5)0.2834 (2)0.0517 (2)0.0628 (8)
O30.5663 (4)0.10070 (19)0.01592 (18)0.0789 (8)
H30.63220.05180.02520.118*
N10.7645 (5)0.3616 (2)0.0144 (2)0.0660 (8)
C70.4381 (6)0.3048 (3)0.1427 (3)0.0612 (9)
C140.9791 (6)0.1164 (3)0.1490 (3)0.0661 (10)
C80.4715 (6)0.3904 (3)0.2042 (3)0.0671 (10)
H80.59980.43400.18500.080*
C151.1641 (6)0.1285 (3)0.2406 (3)0.0584 (9)
C40.8677 (6)0.2055 (3)0.0821 (3)0.0596 (9)
C50.9158 (6)0.3162 (3)0.0646 (3)0.0591 (9)
C181.5098 (7)0.1494 (4)0.4158 (3)0.0759 (11)
C161.3803 (7)0.0454 (3)0.2639 (3)0.0721 (10)
H161.41150.01900.22170.087*
C90.3107 (7)0.4095 (3)0.2944 (3)0.0751 (11)
C110.0854 (7)0.2626 (4)0.2618 (3)0.0858 (12)
H110.04250.21880.28140.103*
C201.1174 (7)0.2212 (3)0.3063 (3)0.0737 (10)
H200.96910.27740.29210.088*
C30.6724 (6)0.1890 (3)0.0040 (3)0.0626 (9)
C120.2420 (6)0.2418 (3)0.1708 (3)0.0733 (11)
H120.21660.18590.12840.088*
C61.1176 (6)0.3801 (3)0.1179 (3)0.0733 (11)
H6A1.04830.41910.17800.110*
H6B1.27840.32820.13770.110*
H6C1.15440.43380.07210.110*
C100.1147 (7)0.3465 (4)0.3240 (3)0.0851 (13)
H100.00580.36120.38470.102*
C171.5527 (7)0.0571 (4)0.3503 (3)0.0835 (12)
H171.70120.00090.36410.100*
C191.2894 (8)0.2317 (4)0.3935 (3)0.0827 (12)
H191.25520.29490.43700.099*
C211.6955 (8)0.1619 (4)0.5112 (3)0.1139 (16)
H21A1.64880.12170.56610.171*
H21B1.87520.13160.49700.171*
H21C1.68020.24040.53080.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1352 (10)0.1143 (10)0.0849 (9)0.0078 (7)0.0057 (7)0.0276 (8)
O140.0959 (17)0.0706 (17)0.0744 (18)0.0365 (14)0.0131 (13)0.0027 (14)
N20.0660 (17)0.0642 (19)0.0591 (19)0.0223 (14)0.0078 (14)0.0016 (16)
O30.0893 (16)0.0740 (17)0.0770 (19)0.0360 (14)0.0159 (14)0.0026 (15)
N10.0724 (17)0.064 (2)0.063 (2)0.0256 (15)0.0060 (15)0.0046 (15)
C70.0538 (19)0.071 (2)0.053 (2)0.0069 (17)0.0046 (16)0.0139 (18)
C140.068 (2)0.079 (3)0.054 (2)0.0241 (19)0.0048 (17)0.008 (2)
C80.070 (2)0.065 (2)0.062 (2)0.0086 (18)0.0025 (18)0.0011 (19)
C150.069 (2)0.061 (2)0.049 (2)0.0225 (17)0.0024 (17)0.0053 (18)
C40.0609 (19)0.065 (2)0.056 (2)0.0222 (17)0.0037 (16)0.0032 (18)
C50.065 (2)0.063 (2)0.050 (2)0.0180 (17)0.0011 (16)0.0082 (17)
C180.078 (2)0.103 (3)0.056 (3)0.041 (2)0.000 (2)0.008 (2)
C160.083 (2)0.070 (3)0.061 (3)0.015 (2)0.0024 (19)0.006 (2)
C90.085 (2)0.080 (3)0.050 (2)0.007 (2)0.0008 (19)0.002 (2)
C110.071 (2)0.104 (3)0.078 (3)0.017 (2)0.014 (2)0.008 (3)
C200.089 (2)0.075 (3)0.056 (3)0.014 (2)0.0051 (19)0.006 (2)
C30.064 (2)0.070 (2)0.058 (2)0.0267 (18)0.0003 (17)0.0068 (19)
C120.062 (2)0.084 (3)0.072 (3)0.0156 (19)0.0028 (19)0.007 (2)
C60.086 (2)0.072 (3)0.065 (2)0.0315 (19)0.0070 (19)0.007 (2)
C100.078 (3)0.100 (3)0.064 (3)0.002 (2)0.016 (2)0.018 (2)
C170.078 (2)0.095 (3)0.073 (3)0.011 (2)0.006 (2)0.007 (3)
C190.106 (3)0.088 (3)0.059 (3)0.035 (2)0.006 (2)0.012 (2)
C210.112 (3)0.170 (5)0.071 (3)0.069 (3)0.024 (2)0.011 (3)
Geometric parameters (Å, º) top
Cl1—C91.735 (4)C18—C191.376 (5)
O14—C141.276 (4)C18—C211.516 (5)
N2—C31.352 (4)C16—C171.386 (4)
N2—N11.397 (3)C16—H160.9300
N2—C71.410 (4)C9—C101.390 (5)
O3—C31.293 (3)C11—C101.369 (5)
O3—H30.8200C11—C121.377 (4)
N1—C51.307 (4)C11—H110.9300
C7—C81.386 (4)C20—C191.391 (4)
C7—C121.388 (4)C20—H200.9300
C14—C41.418 (4)C12—H120.9300
C14—C151.477 (4)C6—H6A0.9600
C8—C91.376 (4)C6—H6B0.9600
C8—H80.9300C6—H6C0.9600
C15—C161.370 (4)C10—H100.9300
C15—C201.376 (5)C17—H170.9300
C4—C31.396 (4)C19—H190.9300
C4—C51.438 (4)C21—H21A0.9600
C5—C61.508 (4)C21—H21B0.9600
C18—C171.371 (5)C21—H21C0.9600
C3—N2—N1110.0 (2)C10—C11—H11119.4
C3—N2—C7129.8 (3)C12—C11—H11119.4
N1—N2—C7119.7 (3)C15—C20—C19120.8 (3)
C3—O3—H3109.5C15—C20—H20119.6
C5—N1—N2106.5 (2)C19—C20—H20119.6
C8—C7—C12120.3 (3)O3—C3—N2123.5 (3)
C8—C7—N2118.6 (3)O3—C3—C4128.3 (3)
C12—C7—N2121.1 (3)N2—C3—C4108.2 (3)
O14—C14—C4118.5 (3)C11—C12—C7119.6 (4)
O14—C14—C15117.6 (3)C11—C12—H12120.2
C4—C14—C15123.9 (3)C7—C12—H12120.2
C9—C8—C7118.6 (3)C5—C6—H6A109.5
C9—C8—H8120.7C5—C6—H6B109.5
C7—C8—H8120.7H6A—C6—H6B109.5
C16—C15—C20118.8 (3)C5—C6—H6C109.5
C16—C15—C14120.4 (3)H6A—C6—H6C109.5
C20—C15—C14120.8 (3)H6B—C6—H6C109.5
C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)
C3—C4—C5103.9 (3)C11—C10—H10120.7
C14—C4—C5136.4 (3)C9—C10—H10120.7
N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)
N1—C5—C6118.3 (3)C18—C17—H17119.2
C4—C5—C6130.2 (3)C16—C17—H17119.2
C17—C18—C19118.1 (4)C18—C19—C20120.5 (4)
C17—C18—C21121.9 (4)C18—C19—H19119.7
C19—C18—C21120.0 (4)C20—C19—H19119.7
C15—C16—C17120.1 (4)C18—C21—H21A109.5
C15—C16—H16119.9C18—C21—H21B109.5
C17—C16—H16119.9H21A—C21—H21B109.5
C8—C9—C10121.7 (4)C18—C21—H21C109.5
C8—C9—Cl1118.7 (3)H21A—C21—H21C109.5
C10—C9—Cl1119.5 (3)H21B—C21—H21C109.5
C10—C11—C12121.2 (4)
C3—N2—N1—C51.8 (4)C7—C8—C9—C101.0 (6)
C7—N2—N1—C5174.8 (3)C7—C8—C9—Cl1177.9 (3)
C3—N2—C7—C8158.0 (4)C16—C15—C20—C191.4 (5)
N1—N2—C7—C813.5 (5)C14—C15—C20—C19179.0 (3)
C3—N2—C7—C1221.7 (5)N1—N2—C3—O3177.2 (3)
N1—N2—C7—C12166.8 (3)C7—N2—C3—O35.1 (6)
C12—C7—C8—C91.5 (5)N1—N2—C3—C42.2 (4)
N2—C7—C8—C9178.3 (3)C7—N2—C3—C4174.3 (3)
O14—C14—C15—C1641.9 (5)C14—C4—C3—O32.2 (6)
C4—C14—C15—C16138.7 (4)C5—C4—C3—O3177.7 (4)
O14—C14—C15—C20135.7 (4)C14—C4—C3—N2177.1 (3)
C4—C14—C15—C2043.8 (5)C5—C4—C3—N21.7 (4)
O14—C14—C4—C36.5 (5)C10—C11—C12—C71.8 (6)
C15—C14—C4—C3173.0 (3)C8—C7—C12—C111.8 (5)
O14—C14—C4—C5167.1 (4)N2—C7—C12—C11177.9 (3)
C15—C14—C4—C513.5 (7)C12—C11—C10—C91.3 (6)
N2—N1—C5—C40.7 (4)C8—C9—C10—C111.0 (6)
N2—N1—C5—C6177.1 (3)Cl1—C9—C10—C11178.0 (3)
C3—C4—C5—N10.6 (4)C19—C18—C17—C160.3 (6)
C14—C4—C5—N1174.9 (4)C21—C18—C17—C16179.1 (3)
C3—C4—C5—C6175.3 (4)C15—C16—C17—C181.7 (5)
C14—C4—C5—C61.0 (7)C17—C18—C19—C200.5 (5)
C20—C15—C16—C172.2 (5)C21—C18—C19—C20179.9 (3)
C14—C15—C16—C17179.8 (3)C15—C20—C19—C180.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O140.821.902.581 (3)140
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O140.821.902.581 (3)140
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095–o1096.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). J. Med. Chem. 41, 4001–4011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJadeja, R. N., Vyas, K. M., Gupta, V. K., Joshi, R. G. & Ratna Prabha, C. (2012). Polyhedron, 31, 767–778.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909–2945.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, N., Parihar, S., Jadeja, R. N., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o1136–o1137.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds