organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 6-(2-fluoro­phen­yl)-4-hy­dr­oxy-2-sulfanyl­­idene-4-tri­fluoro­meth­yl-1,3-diazinane-5-carboxyl­ate

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 March 2015; accepted 23 March 2015; online 2 April 2015)

In the title compound, C14H14F4N2O3S, the central di­hydro­pyrimidine ring adopts a sofa conformation with the C atom bearing the 2-fluoro­benzene ring displaced by 0.596 (3) Å from the other five atoms. The 2-fluoro­benzene ring is positioned axially and bis­ects the pyrimidine ring with a dihedral angle of 70.92 (8)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) ring. The crystal structure features C—H⋯F, N—H⋯S and N—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network.

1. Related literature

For the bioactivity of di­hydro­pyrimidines, see: Atwal et al. (1989[Atwal, K. S., Rovnyak, G. C. O., O'Reilly, B. C. & Schwartz, J. (1989). J. Org. Chem. 54, 5898-5907.]); Brier et al. (2004[Brier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072-13082.]); Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]); Moran et al. (2007[Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.]); Zorkun et al. (2006[Zorkun, I. S., İnci, S., Saraç, S., Çelebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582-8589.]). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]). For related structures, see: Mosslemin et al. (2009[Mosslemin, M. H., Nateghi, M. R., Sadoughi, H. & Lamei, A. (2009). Acta Cryst. E65, o1339.]); Li et al. (2011[Li, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704-o1705.]); Huang et al. (2012[Huang, B.-J., Zhu, L. & He, Q. (2012). Acta Cryst. E68, o880.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H14F4N2O3S

  • Mr = 366.33

  • Monoclinic, P 21 /c

  • a = 10.937 (3) Å

  • b = 9.934 (3) Å

  • c = 14.629 (4) Å

  • β = 108.239 (5)°

  • V = 1509.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.09 mm

2.2. Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.957

  • 7619 measured reflections

  • 2646 independent reflections

  • 2138 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.03

  • 2646 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.84 2.07 2.787 (3) 143
C10—H10⋯F2i 0.95 2.62 3.285 (6) 128
C13—H13⋯F1ii 0.95 2.56 3.262 (8) 131
N1—H1⋯S1iii 0.88 2.52 3.389 (2) 171
N2—H2⋯O3iv 0.88 2.23 3.079 (3) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker,1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). One of the most popular fluorine- containing functional groups in drug molecules is the trifluoromethyl moiety. Because it contains three fluorine atoms, it exerts significant changes on neighbouring groups, such as increasing the acidity of other centers nearby. It is also one of the most lipophilic groups known, so it provides an extremely useful way of making a molecule more easily delivered to the active site in the body. This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H14F4N2O3S (I) was isolated and the structure confirmed by X-ray diffraction. The molecular structure of the title compound is shown in Fig. 1. The 2-fluoro phenyl ring at chiral carbon atom C6 is positioned axially and bisects the pyrimidine ring with a dihedral angle of 70.92 (8) °. The hexahydro pyrimidine ring adopts a sofa conformation with atom C6 displaced by -0.5961 (3) Å from the mean plane of the other five atoms (N1/C2/N2/C5/C4). The carbonyl group of the exocyclic ester at C5 adopts a cis orientation with respect to C5—C4 single bond. The 2-fluoro phenyl ring adopts an anti periplanar conformation with respect to C6—H6 bond of the pyrimidine ring. The molecular structure is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. The crystal structure is primarily stabilized by intermolecular C10—H10···F2 and C13—H13···F1 interactions which result in two dimensional sheets along [011] (Table. 1; Fig. 2). The packing is further stabilized by intermolecular N—H···S hydrogen bonds resulting in a centrosymmetric head to head dimer with graph set R22(8) notation (Bernstein et al., 1995) and intermolecular N—H···O hydrogen bonds form a molecular chain along the crystallographic b axis (Table. 1; Fig. 3).

Related literature top

For the bioactivity of dihydropyrimidines, see: Atwal et al. (1989); Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For related structures, see: Mosslemin et al. (2009); Li et al. (2011); Huang et al. (2012).

Experimental top

The title compound was synthesized by the reaction of 2-fluorobenzaldehyde (1.24 g, 10 mmol), ethyl 4, 4, 4, trifluoroacetoacetate (2.21 g, 12 mmol) and thiourea (1.14 g, 15 mmol) in 15 ml ethanol was refluxed for 6 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with TLC and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered and dried. The compound was recrystallized from ethanol solvent by slow evaporation method, yielding colorless blocks (yield 82%; m.p. 455 K).

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H (aromatic) = 0.95 ° A and C—H (aliphatic) = 0.98 ° A, 0.99 ° A or 1.00 ° A, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). One of the most popular fluorine- containing functional groups in drug molecules is the trifluoromethyl moiety. Because it contains three fluorine atoms, it exerts significant changes on neighbouring groups, such as increasing the acidity of other centers nearby. It is also one of the most lipophilic groups known, so it provides an extremely useful way of making a molecule more easily delivered to the active site in the body. This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H14F4N2O3S (I) was isolated and the structure confirmed by X-ray diffraction. The molecular structure of the title compound is shown in Fig. 1. The 2-fluoro phenyl ring at chiral carbon atom C6 is positioned axially and bisects the pyrimidine ring with a dihedral angle of 70.92 (8) °. The hexahydro pyrimidine ring adopts a sofa conformation with atom C6 displaced by -0.5961 (3) Å from the mean plane of the other five atoms (N1/C2/N2/C5/C4). The carbonyl group of the exocyclic ester at C5 adopts a cis orientation with respect to C5—C4 single bond. The 2-fluoro phenyl ring adopts an anti periplanar conformation with respect to C6—H6 bond of the pyrimidine ring. The molecular structure is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. The crystal structure is primarily stabilized by intermolecular C10—H10···F2 and C13—H13···F1 interactions which result in two dimensional sheets along [011] (Table. 1; Fig. 2). The packing is further stabilized by intermolecular N—H···S hydrogen bonds resulting in a centrosymmetric head to head dimer with graph set R22(8) notation (Bernstein et al., 1995) and intermolecular N—H···O hydrogen bonds form a molecular chain along the crystallographic b axis (Table. 1; Fig. 3).

For the bioactivity of dihydropyrimidines, see: Atwal et al. (1989); Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For related structures, see: Mosslemin et al. (2009); Li et al. (2011); Huang et al. (2012).

Computing details top

Data collection: SMART (Bruker,1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing of the title compound showing C—H···F interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit-cell packing depicting the N—H···S and N—H···O interactions with dotted lines. H atoms not involved in hydrogen bonding have been excluded.
Ethyl 6-(2-fluorophenyl)-4-hydroxy-2-sulfanylidene-4-trifluoromethyl- 1,3-diazinane-5-carboxylate top
Crystal data top
C14H14F4N2O3SF(000) = 752
Mr = 366.33Dx = 1.612 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2646 reflections
a = 10.937 (3) Åθ = 2.0–25.0°
b = 9.934 (3) ŵ = 0.28 mm1
c = 14.629 (4) ÅT = 100 K
β = 108.239 (5)°Block, colourless
V = 1509.7 (8) Å30.15 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2646 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1213
Tmin = 0.952, Tmax = 0.957k = 117
7619 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.0341P]
where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H14F4N2O3SV = 1509.7 (8) Å3
Mr = 366.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.937 (3) ŵ = 0.28 mm1
b = 9.934 (3) ÅT = 100 K
c = 14.629 (4) Å0.15 × 0.12 × 0.09 mm
β = 108.239 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2646 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2138 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.957Rint = 0.034
7619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
2646 reflectionsΔρmin = 0.29 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09623 (6)0.40020 (7)0.12780 (4)0.0190 (2)
O10.35850 (17)0.71225 (18)0.25205 (13)0.0243 (5)
O20.44764 (17)0.50537 (18)0.22450 (13)0.0214 (4)
O30.18273 (16)0.75721 (18)0.15250 (12)0.0194 (4)
H30.22030.77770.19260.029*
N10.10705 (19)0.5616 (2)0.09977 (14)0.0177 (5)
H10.09680.57900.04360.021*
N20.0313 (2)0.4589 (2)0.24785 (14)0.0178 (5)
H20.02440.40480.28750.021*
F10.36294 (14)0.50800 (15)0.00967 (10)0.0242 (4)
F20.29456 (14)0.70124 (16)0.04041 (10)0.0238 (4)
F30.42992 (13)0.68945 (15)0.03915 (10)0.0225 (4)
F40.18118 (15)0.23990 (15)0.27621 (10)0.0270 (4)
C10.3263 (2)0.6310 (3)0.02677 (18)0.0183 (6)
C20.0206 (2)0.4780 (2)0.16074 (18)0.0165 (6)
C30.3585 (2)0.5968 (3)0.22634 (18)0.0189 (6)
C60.1299 (2)0.5223 (3)0.28213 (17)0.0182 (6)
H60.09960.61450.30620.022*
C50.2516 (2)0.5364 (3)0.19469 (17)0.0164 (6)
H50.27870.44540.16640.020*
C40.2143 (2)0.6238 (3)0.12085 (18)0.0163 (6)
C70.5546 (3)0.5477 (3)0.2590 (2)0.0270 (7)
H7A0.63370.49810.22340.032*
H7B0.57110.64510.24650.032*
C80.5230 (3)0.5208 (3)0.3643 (2)0.0334 (7)
H8A0.50170.42540.37700.050*
H8B0.59750.54330.38510.050*
H8C0.44930.57610.39990.050*
C90.1537 (2)0.4440 (3)0.36335 (17)0.0163 (6)
C100.1553 (2)0.5097 (3)0.44637 (17)0.0182 (6)
H100.13680.60330.45300.022*
C110.1832 (2)0.4416 (3)0.51975 (18)0.0210 (6)
H110.18700.48890.57520.025*
C120.2054 (2)0.3050 (3)0.51222 (19)0.0235 (6)
H120.22250.25790.56340.028*
C130.2031 (2)0.2362 (3)0.43111 (17)0.0214 (6)
H130.21760.14180.42590.026*
C140.1794 (2)0.3073 (3)0.35795 (18)0.0199 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0188 (4)0.0194 (4)0.0211 (4)0.0030 (3)0.0096 (3)0.0022 (3)
O10.0242 (10)0.0196 (11)0.0303 (10)0.0003 (8)0.0104 (8)0.0030 (8)
O20.0194 (10)0.0217 (10)0.0250 (10)0.0018 (8)0.0098 (8)0.0004 (8)
O30.0205 (10)0.0177 (10)0.0216 (10)0.0009 (8)0.0089 (8)0.0010 (8)
N10.0208 (11)0.0191 (12)0.0152 (11)0.0020 (9)0.0086 (9)0.0033 (9)
N20.0176 (11)0.0212 (12)0.0139 (11)0.0037 (9)0.0040 (9)0.0029 (9)
F10.0250 (8)0.0219 (9)0.0227 (8)0.0002 (7)0.0035 (7)0.0039 (7)
F20.0231 (8)0.0304 (9)0.0186 (8)0.0043 (7)0.0074 (6)0.0092 (7)
F30.0169 (7)0.0278 (9)0.0232 (8)0.0058 (6)0.0071 (6)0.0019 (7)
F40.0400 (9)0.0207 (9)0.0240 (8)0.0038 (7)0.0154 (7)0.0038 (7)
C10.0189 (13)0.0156 (13)0.0225 (14)0.0026 (11)0.0097 (11)0.0005 (11)
C20.0163 (13)0.0144 (13)0.0189 (13)0.0023 (10)0.0055 (11)0.0011 (10)
C30.0158 (13)0.0224 (16)0.0166 (13)0.0023 (11)0.0023 (10)0.0026 (11)
C60.0175 (13)0.0159 (14)0.0207 (13)0.0004 (11)0.0052 (11)0.0001 (11)
C50.0185 (13)0.0155 (13)0.0155 (12)0.0016 (11)0.0058 (11)0.0004 (10)
C40.0170 (13)0.0136 (13)0.0189 (13)0.0016 (10)0.0066 (11)0.0009 (10)
C70.0168 (14)0.0304 (16)0.0372 (17)0.0008 (12)0.0134 (13)0.0010 (13)
C80.0311 (16)0.046 (2)0.0301 (16)0.0089 (15)0.0197 (14)0.0049 (14)
C90.0127 (12)0.0202 (14)0.0156 (12)0.0032 (11)0.0041 (10)0.0031 (11)
C100.0144 (13)0.0177 (14)0.0207 (14)0.0010 (10)0.0030 (11)0.0020 (11)
C110.0206 (14)0.0273 (15)0.0160 (13)0.0013 (12)0.0070 (11)0.0014 (11)
C120.0243 (14)0.0253 (16)0.0235 (14)0.0033 (12)0.0111 (11)0.0080 (12)
C130.0281 (14)0.0154 (14)0.0228 (14)0.0002 (12)0.0110 (11)0.0038 (11)
C140.0229 (14)0.0183 (14)0.0186 (13)0.0014 (11)0.0068 (11)0.0032 (11)
Geometric parameters (Å, º) top
S1—C21.688 (3)C6—H61.0000
O1—C31.207 (3)C5—C41.537 (3)
O2—C31.327 (3)C5—H51.0000
O2—C71.473 (3)C7—C81.494 (4)
O3—C41.411 (3)C7—H7A0.9900
O3—H30.8400C7—H7B0.9900
N1—C21.361 (3)C8—H8A0.9800
N1—C41.442 (3)C8—H8B0.9800
N1—H10.8800C8—H8C0.9800
N2—C21.329 (3)C9—C101.384 (3)
N2—C61.466 (3)C9—C141.384 (4)
N2—H20.8800C10—C111.381 (4)
F1—C11.343 (3)C10—H100.9500
F2—C11.337 (3)C11—C121.377 (4)
F3—C11.335 (3)C11—H110.9500
F4—C141.365 (3)C12—C131.377 (4)
C1—C41.531 (3)C12—H120.9500
C3—C51.510 (3)C13—C141.373 (4)
C6—C91.509 (3)C13—H130.9500
C6—C51.537 (3)
C3—O2—C7117.0 (2)N1—C4—C1107.66 (19)
C4—O3—H3109.5O3—C4—C5113.1 (2)
C2—N1—C4124.5 (2)N1—C4—C5108.7 (2)
C2—N1—H1117.8C1—C4—C5110.1 (2)
C4—N1—H1117.8O2—C7—C8110.5 (2)
C2—N2—C6124.1 (2)O2—C7—H7A109.6
C2—N2—H2117.9C8—C7—H7A109.6
C6—N2—H2117.9O2—C7—H7B109.6
F3—C1—F2107.4 (2)C8—C7—H7B109.6
F3—C1—F1106.8 (2)H7A—C7—H7B108.1
F2—C1—F1107.3 (2)C7—C8—H8A109.5
F3—C1—C4111.9 (2)C7—C8—H8B109.5
F2—C1—C4111.5 (2)H8A—C8—H8B109.5
F1—C1—C4111.7 (2)C7—C8—H8C109.5
N2—C2—N1117.7 (2)H8A—C8—H8C109.5
N2—C2—S1120.65 (19)H8B—C8—H8C109.5
N1—C2—S1121.70 (19)C10—C9—C14117.0 (2)
O1—C3—O2125.8 (2)C10—C9—C6120.0 (2)
O1—C3—C5123.3 (2)C14—C9—C6122.9 (2)
O2—C3—C5110.9 (2)C11—C10—C9121.2 (3)
N2—C6—C9112.0 (2)C11—C10—H10119.4
N2—C6—C5107.03 (19)C9—C10—H10119.4
C9—C6—C5112.6 (2)C12—C11—C10119.8 (2)
N2—C6—H6108.4C12—C11—H11120.1
C9—C6—H6108.4C10—C11—H11120.1
C5—C6—H6108.4C13—C12—C11120.5 (2)
C3—C5—C6109.46 (19)C13—C12—H12119.7
C3—C5—C4113.1 (2)C11—C12—H12119.7
C6—C5—C4106.6 (2)C14—C13—C12118.4 (3)
C3—C5—H5109.2C14—C13—H13120.8
C6—C5—H5109.2C12—C13—H13120.8
C4—C5—H5109.2F4—C14—C13118.4 (2)
O3—C4—N1109.9 (2)F4—C14—C9118.5 (2)
O3—C4—C1107.2 (2)C13—C14—C9123.0 (2)
C6—N2—C2—N10.1 (4)F3—C1—C4—C562.6 (3)
C6—N2—C2—S1179.87 (18)F2—C1—C4—C5177.09 (19)
C4—N1—C2—N24.3 (4)F1—C1—C4—C557.1 (3)
C4—N1—C2—S1175.49 (18)C3—C5—C4—O354.3 (3)
C7—O2—C3—O11.5 (4)C6—C5—C4—O366.0 (2)
C7—O2—C3—C5176.6 (2)C3—C5—C4—N1176.62 (19)
C2—N2—C6—C9157.1 (2)C6—C5—C4—N156.3 (2)
C2—N2—C6—C533.2 (3)C3—C5—C4—C165.6 (3)
O1—C3—C5—C669.9 (3)C6—C5—C4—C1174.1 (2)
O2—C3—C5—C6108.2 (2)C3—O2—C7—C890.8 (3)
O1—C3—C5—C448.7 (3)N2—C6—C9—C10131.1 (2)
O2—C3—C5—C4133.1 (2)C5—C6—C9—C10108.2 (3)
N2—C6—C5—C3178.0 (2)N2—C6—C9—C1451.4 (3)
C9—C6—C5—C354.5 (3)C5—C6—C9—C1469.3 (3)
N2—C6—C5—C459.4 (2)C14—C9—C10—C110.9 (3)
C9—C6—C5—C4177.1 (2)C6—C9—C10—C11176.7 (2)
C2—N1—C4—O398.7 (3)C9—C10—C11—C122.3 (4)
C2—N1—C4—C1144.9 (2)C10—C11—C12—C131.6 (4)
C2—N1—C4—C525.5 (3)C11—C12—C13—C140.6 (4)
F3—C1—C4—O360.8 (3)C12—C13—C14—F4178.0 (2)
F2—C1—C4—O359.5 (3)C12—C13—C14—C92.2 (4)
F1—C1—C4—O3179.53 (18)C10—C9—C14—F4178.7 (2)
F3—C1—C4—N1179.01 (19)C6—C9—C14—F41.2 (4)
F2—C1—C4—N158.7 (3)C10—C9—C14—C131.4 (4)
F1—C1—C4—N161.3 (3)C6—C9—C14—C13178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.842.072.787 (3)143
C10—H10···F2i0.952.623.285 (6)128
C13—H13···F1ii0.952.563.262 (8)131
N1—H1···S1iii0.882.523.389 (2)171
N2—H2···O3iv0.882.233.079 (3)162
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.842.072.787 (3)143
C10—H10···F2i0.952.623.285 (6)128
C13—H13···F1ii0.952.563.262 (8)131
N1—H1···S1iii0.882.523.389 (2)171
N2—H2···O3iv0.882.233.079 (3)162
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y1/2, z+1/2.
 

Acknowledgements

MSK is thankful to the University Grants Commission (UGC), India, for a UGC–BSR meritorious fellowship..

References

First citationAtwal, K. S., Rovnyak, G. C. O., O'Reilly, B. C. & Schwartz, J. (1989). J. Org. Chem. 54, 5898–5907.  CrossRef CAS Google Scholar
First citationBrier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.  Google Scholar
First citationHuang, B.-J., Zhu, L. & He, Q. (2012). Acta Cryst. E68, o880.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704–o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.  Google Scholar
First citationMosslemin, M. H., Nateghi, M. R., Sadoughi, H. & Lamei, A. (2009). Acta Cryst. E65, o1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZorkun, I. S., İnci, S., Saraç, S., Çelebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds