organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of quinolinium 2-carb­oxy-6-nitro­benzoate monohydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu24663@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 March 2015; accepted 25 March 2015; online 2 April 2015)

In the anion of the title hydrated mol­ecular salt, C9H8N+·C8H4NO6·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carb­oxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C—H⋯N and C—H⋯O inter­actions as well as aromatic ππ stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] inter­actions, resulting in a three-dimensional network.

1. Related literature

For the biological activity of quinoline derivatives, see: Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259-272.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]). For similar structures, see: Castañeda et al. (2014[Castañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, o924-o925.]); Kafka et al. (2012[Kafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199-o3200.]); Li & Chai (2007[Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857-o2859.]); Divya Bharathi et al. (2015[Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261-o262.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H8N+·C8H4NO6·H2O

  • Mr = 358.30

  • Monoclinic, P 21 /c

  • a = 14.7622 (8) Å

  • b = 14.2461 (8) Å

  • c = 7.6395 (4) Å

  • β = 104.434 (2)°

  • V = 1555.90 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 32650 measured reflections

  • 4728 independent reflections

  • 3394 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.04

  • 4728 reflections

  • 248 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4 0.83 (1) 1.92 (1) 2.7416 (14) 171 (19)
O7—H7B⋯O4i 0.84 (1) 2.02 (1) 2.8459 (14) 169 (18)
O1—H1A⋯O7ii 0.84 (1) 1.75 (1) 2.5818 (14) 173 (2)
N2—H2A⋯O3iii 0.91 (1) 1.74 (1) 2.6425 (14) 176 (18)
C16—H16⋯O4iii 0.93 2.49 3.1166 (17) 125
C16—H16⋯O2iv 0.93 2.39 3.1278 (17) 136
C12—H12⋯N1 0.93 2.61 3.4866 (19) 157
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

The quinoline derivatives are known to exhibit wide range of pharmacological activities such as anti­bacterial (Benzerka, et al.2012), anti-viral (Font et al., 1997) and anti-inflammatory (Sloboda et al., 1991). In view of the above importance, we have synthesized the title compound and report herein on its crystal structure.

Structural commentary top

The ORTEP diagram of the title compound (I) is shown in Fig.1. The asymmetric unit of the title compound consists of C9 H8 N+ cation, C8 H4 N O6- anion and a water molecule. The geometric parameters of (I) (Fig. 1) are well agreed with the similar reported structures [Castañeda et al., 2014; Kafka et al., 2012; Li & Chai (2007)].

The quinolinium ring system is planar [r.m.s deviation = 0.0133 (12)Å] and protonated at N2 atom. In the anion, the carboxyl (O1/C7/O2), nitro (O5/N1/O6) and carb­oxy (O3/C8/O4) groups are inclined at an angle of 27.56 (5), 6.86 (8) and 80.21 (1)°, respectively with the attached benzene ring (C1—C6). The dihedral angle between the quinolinium ring system and benzene ring is 89.91 (5)°.

Supra­molecular features top

The molecular structure is stabilized by weak intra­molecular O—H···O and C—H···N hydrogen bonds (Table 1). The crystal structure is stabilized by weak inter­molecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) which link adjacent anions and cations through water molecules into infinite one-dimensional chains along [001]. The crystal structure is further stabilized by weak π···π [Cg1···Cg1i = 3.7023 (8); Cg3···Cg2ii = 3.6590 (9)Å; (i) 1-x,-y,-z; (ii) x,1/2-y,-1/2+z; Cg1, Cg2 and Cg3 are the centroids of the rings (C1—C6), (C13/C14/C15/C16/c17/N2) and (C9—C13/c17), respectively] inter­actions.

Synthesis and crystallization top

Quinoline (3.22 g, 0.99 mol) was dissolved in hot water (25 ml) and after half an hour, a solution of 3-nitro­phthalic acid (5.278 g, 0.38 mol) in methanol (25 ml) was added and stirred for about one hour. A white colour powder was formed. The product was dissolved in aqueous methanol solution (210 ml). Single crystals suitable for X-ray diffraction were obtained from the slow evaporation method at room temperature within a few days.

Refinement top

C-bound H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms for O atoms were located from Fourier map and refined with Uiso(H) = 1.5 Ueq(O). Distance restraints were applied for the distance O—H = 0.82 (1)Å. H atom for N atom was located from Fourier map and refined freely with distance restraint N—H = 0.88 (1)Å.

Related literature top

For the biological activity of quinoline derivatives, see: Font et al. (1997); Sloboda et al. (1991). For similar structures, see: Castañeda et al. (2014); Kafka et al. (2012); Li & Chai (2007); Divya Bharathi et al. (2015).

Structure description top

The quinoline derivatives are known to exhibit wide range of pharmacological activities such as anti­bacterial (Benzerka, et al.2012), anti-viral (Font et al., 1997) and anti-inflammatory (Sloboda et al., 1991). In view of the above importance, we have synthesized the title compound and report herein on its crystal structure.

The ORTEP diagram of the title compound (I) is shown in Fig.1. The asymmetric unit of the title compound consists of C9 H8 N+ cation, C8 H4 N O6- anion and a water molecule. The geometric parameters of (I) (Fig. 1) are well agreed with the similar reported structures [Castañeda et al., 2014; Kafka et al., 2012; Li & Chai (2007)].

The quinolinium ring system is planar [r.m.s deviation = 0.0133 (12)Å] and protonated at N2 atom. In the anion, the carboxyl (O1/C7/O2), nitro (O5/N1/O6) and carb­oxy (O3/C8/O4) groups are inclined at an angle of 27.56 (5), 6.86 (8) and 80.21 (1)°, respectively with the attached benzene ring (C1—C6). The dihedral angle between the quinolinium ring system and benzene ring is 89.91 (5)°.

The molecular structure is stabilized by weak intra­molecular O—H···O and C—H···N hydrogen bonds (Table 1). The crystal structure is stabilized by weak inter­molecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) which link adjacent anions and cations through water molecules into infinite one-dimensional chains along [001]. The crystal structure is further stabilized by weak π···π [Cg1···Cg1i = 3.7023 (8); Cg3···Cg2ii = 3.6590 (9)Å; (i) 1-x,-y,-z; (ii) x,1/2-y,-1/2+z; Cg1, Cg2 and Cg3 are the centroids of the rings (C1—C6), (C13/C14/C15/C16/c17/N2) and (C9—C13/c17), respectively] inter­actions.

For the biological activity of quinoline derivatives, see: Font et al. (1997); Sloboda et al. (1991). For similar structures, see: Castañeda et al. (2014); Kafka et al. (2012); Li & Chai (2007); Divya Bharathi et al. (2015).

Synthesis and crystallization top

Quinoline (3.22 g, 0.99 mol) was dissolved in hot water (25 ml) and after half an hour, a solution of 3-nitro­phthalic acid (5.278 g, 0.38 mol) in methanol (25 ml) was added and stirred for about one hour. A white colour powder was formed. The product was dissolved in aqueous methanol solution (210 ml). Single crystals suitable for X-ray diffraction were obtained from the slow evaporation method at room temperature within a few days.

Refinement details top

C-bound H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms for O atoms were located from Fourier map and refined with Uiso(H) = 1.5 Ueq(O). Distance restraints were applied for the distance O—H = 0.82 (1)Å. H atom for N atom was located from Fourier map and refined freely with distance restraint N—H = 0.88 (1)Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down C face. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Quinolinium 2-carboxy-6-nitrobenzoate monohydrate top
Crystal data top
C9H8N+·C8H4NO6·H2OF(000) = 744
Mr = 358.30Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9970 reflections
a = 14.7622 (8) Åθ = 2.8–30.4°
b = 14.2461 (8) ŵ = 0.12 mm1
c = 7.6395 (4) ÅT = 295 K
β = 104.434 (2)°Block, colourless
V = 1555.90 (15) Å30.26 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4728 independent reflections
Radiation source: fine-focus sealed tube3394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 30.8°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.969, Tmax = 0.979k = 2020
32650 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4484P]
where P = (Fo2 + 2Fc2)/3
4728 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H8N+·C8H4NO6·H2OV = 1555.90 (15) Å3
Mr = 358.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7622 (8) ŵ = 0.12 mm1
b = 14.2461 (8) ÅT = 295 K
c = 7.6395 (4) Å0.26 × 0.24 × 0.18 mm
β = 104.434 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3394 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.025
32650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
4728 reflectionsΔρmin = 0.20 e Å3
248 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64273 (8)0.07483 (8)0.05905 (16)0.0309 (2)
C20.57907 (9)0.14414 (9)0.04652 (19)0.0386 (3)
H20.56290.19000.13540.046*
C30.54012 (9)0.14429 (9)0.09892 (19)0.0405 (3)
H30.49820.19120.11060.049*
C40.56333 (9)0.07465 (9)0.22753 (18)0.0361 (3)
H40.53510.07350.32360.043*
C50.62851 (8)0.00608 (8)0.21529 (16)0.0295 (2)
C60.67125 (8)0.00565 (8)0.07151 (15)0.0276 (2)
C70.65254 (8)0.06752 (8)0.35872 (16)0.0321 (2)
C80.74316 (8)0.06939 (8)0.06354 (16)0.0305 (2)
C90.95815 (10)0.39076 (10)0.1010 (2)0.0450 (3)
H90.99050.44510.14630.054*
C100.87001 (11)0.39591 (13)0.0086 (2)0.0563 (4)
H100.84210.45430.03790.068*
C110.82119 (11)0.31475 (15)0.0772 (2)0.0617 (5)
H110.76100.31960.15150.074*
C120.86022 (10)0.22927 (13)0.0373 (2)0.0552 (4)
H120.82680.17590.08480.066*
C130.95129 (9)0.22011 (10)0.07584 (19)0.0387 (3)
C140.99619 (11)0.13384 (10)0.1225 (2)0.0488 (4)
H140.96530.07840.07970.059*
C151.08465 (11)0.13063 (10)0.2302 (2)0.0497 (4)
H151.11520.07340.25840.060*
C161.12878 (9)0.21365 (10)0.2974 (2)0.0429 (3)
H161.18870.21170.37340.051*
C170.99937 (8)0.30253 (9)0.14427 (17)0.0331 (3)
N10.67819 (8)0.07495 (8)0.22213 (15)0.0389 (3)
H2A1.1177 (11)0.3480 (9)0.304 (2)0.060 (5)*
N21.08727 (7)0.29511 (8)0.25544 (16)0.0364 (2)
O10.58421 (7)0.08353 (8)0.43610 (14)0.0457 (2)
H1A0.6007 (14)0.1247 (11)0.516 (2)0.069*
O20.72664 (7)0.10794 (7)0.39726 (13)0.0445 (2)
O30.82733 (6)0.04668 (7)0.11938 (14)0.0408 (2)
O40.71315 (7)0.14892 (6)0.01135 (13)0.0386 (2)
O50.65803 (10)0.14023 (9)0.32691 (17)0.0659 (4)
O60.72700 (9)0.01019 (9)0.24593 (16)0.0611 (3)
O70.62094 (7)0.21451 (7)0.32298 (13)0.0420 (2)
H7A0.6537 (12)0.1934 (13)0.2261 (17)0.063*
H7B0.6482 (12)0.2591 (10)0.359 (2)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (5)0.0308 (6)0.0300 (6)0.0029 (4)0.0026 (4)0.0001 (4)
C20.0368 (6)0.0332 (6)0.0406 (7)0.0043 (5)0.0001 (5)0.0069 (5)
C30.0350 (6)0.0363 (7)0.0469 (8)0.0107 (5)0.0042 (5)0.0002 (5)
C40.0322 (6)0.0386 (6)0.0368 (6)0.0049 (5)0.0073 (5)0.0027 (5)
C50.0273 (5)0.0287 (5)0.0296 (6)0.0008 (4)0.0014 (4)0.0015 (4)
C60.0245 (5)0.0256 (5)0.0300 (6)0.0016 (4)0.0017 (4)0.0027 (4)
C70.0341 (6)0.0325 (6)0.0281 (6)0.0010 (5)0.0047 (5)0.0021 (5)
C80.0328 (6)0.0293 (5)0.0290 (6)0.0023 (4)0.0068 (4)0.0014 (4)
C90.0443 (7)0.0386 (7)0.0511 (8)0.0053 (6)0.0100 (6)0.0017 (6)
C100.0489 (9)0.0593 (10)0.0580 (10)0.0201 (7)0.0085 (7)0.0066 (8)
C110.0353 (7)0.0846 (13)0.0584 (10)0.0099 (8)0.0011 (7)0.0028 (9)
C120.0359 (7)0.0647 (10)0.0604 (10)0.0080 (7)0.0031 (7)0.0138 (8)
C130.0316 (6)0.0414 (7)0.0437 (7)0.0041 (5)0.0105 (5)0.0058 (6)
C140.0479 (8)0.0350 (7)0.0644 (10)0.0077 (6)0.0157 (7)0.0050 (6)
C150.0469 (8)0.0350 (7)0.0684 (10)0.0049 (6)0.0166 (7)0.0093 (7)
C160.0311 (6)0.0444 (7)0.0519 (8)0.0019 (5)0.0080 (6)0.0107 (6)
C170.0282 (5)0.0364 (6)0.0355 (6)0.0006 (5)0.0094 (5)0.0014 (5)
N10.0401 (6)0.0412 (6)0.0338 (6)0.0060 (5)0.0061 (5)0.0015 (5)
N20.0289 (5)0.0362 (5)0.0429 (6)0.0049 (4)0.0068 (4)0.0021 (5)
O10.0425 (5)0.0521 (6)0.0446 (6)0.0056 (4)0.0148 (4)0.0143 (4)
O20.0439 (5)0.0486 (6)0.0404 (5)0.0147 (4)0.0095 (4)0.0113 (4)
O30.0286 (4)0.0385 (5)0.0539 (6)0.0020 (4)0.0078 (4)0.0039 (4)
O40.0459 (5)0.0293 (4)0.0388 (5)0.0001 (4)0.0071 (4)0.0059 (4)
O50.0789 (9)0.0694 (8)0.0530 (7)0.0109 (6)0.0232 (6)0.0290 (6)
O60.0824 (9)0.0594 (7)0.0506 (6)0.0141 (6)0.0338 (6)0.0025 (5)
O70.0478 (6)0.0417 (5)0.0355 (5)0.0014 (4)0.0086 (4)0.0010 (4)
Geometric parameters (Å, º) top
C1—C21.3828 (17)C10—H100.9300
C1—C61.3907 (16)C11—C121.349 (3)
C1—N11.4666 (16)C11—H110.9300
C2—C31.372 (2)C12—C131.4114 (19)
C2—H20.9300C12—H120.9300
C3—C41.3780 (19)C13—C141.400 (2)
C3—H30.9300C13—C171.4039 (18)
C4—C51.3906 (16)C14—C151.360 (2)
C4—H40.9300C14—H140.9300
C5—C61.3965 (17)C15—C161.386 (2)
C5—C71.4940 (16)C15—H150.9300
C6—C81.5184 (16)C16—N21.3141 (17)
C7—O21.2060 (15)C16—H160.9300
C7—O11.3101 (16)C17—N21.3663 (16)
C8—O41.2453 (14)N1—O61.2120 (16)
C8—O31.2516 (14)N1—O51.2146 (15)
C9—C101.362 (2)N2—H2A0.908 (9)
C9—C171.3996 (19)O1—H1A0.840 (9)
C9—H90.9300O7—H7A0.833 (9)
C10—C111.394 (3)O7—H7B0.836 (9)
C2—C1—C6123.08 (12)C12—C11—C10120.79 (14)
C2—C1—N1116.78 (11)C12—C11—H11119.6
C6—C1—N1120.12 (11)C10—C11—H11119.6
C3—C2—C1119.09 (12)C11—C12—C13120.66 (15)
C3—C2—H2120.5C11—C12—H12119.7
C1—C2—H2120.5C13—C12—H12119.7
C2—C3—C4119.75 (12)C14—C13—C17118.44 (12)
C2—C3—H3120.1C14—C13—C12123.75 (13)
C4—C3—H3120.1C17—C13—C12117.82 (13)
C3—C4—C5120.73 (12)C15—C14—C13120.41 (13)
C3—C4—H4119.6C15—C14—H14119.8
C5—C4—H4119.6C13—C14—H14119.8
C4—C5—C6120.78 (11)C14—C15—C16119.16 (13)
C4—C5—C7119.05 (11)C14—C15—H15120.4
C6—C5—C7120.17 (10)C16—C15—H15120.4
C1—C6—C5116.47 (10)N2—C16—C15121.06 (12)
C1—C6—C8124.05 (11)N2—C16—H16119.5
C5—C6—C8119.47 (10)C15—C16—H16119.5
O2—C7—O1124.07 (12)N2—C17—C9120.40 (12)
O2—C7—C5123.32 (11)N2—C17—C13118.71 (11)
O1—C7—C5112.60 (10)C9—C17—C13120.89 (12)
O4—C8—O3126.02 (11)O6—N1—O5122.75 (13)
O4—C8—C6117.19 (10)O6—N1—C1118.55 (11)
O3—C8—C6116.67 (10)O5—N1—C1118.69 (12)
C10—C9—C17119.08 (14)C16—N2—C17122.19 (11)
C10—C9—H9120.5C16—N2—H2A118.7 (12)
C17—C9—H9120.5C17—N2—H2A119.1 (12)
C9—C10—C11120.77 (15)C7—O1—H1A109.7 (14)
C9—C10—H10119.6H7A—O7—H7B110.4 (18)
C11—C10—H10119.6
C6—C1—C2—C31.47 (19)C17—C9—C10—C110.1 (3)
N1—C1—C2—C3176.70 (11)C9—C10—C11—C120.2 (3)
C1—C2—C3—C41.4 (2)C10—C11—C12—C130.3 (3)
C2—C3—C4—C52.4 (2)C11—C12—C13—C14179.82 (16)
C3—C4—C5—C60.64 (18)C11—C12—C13—C170.1 (2)
C3—C4—C5—C7179.28 (12)C17—C13—C14—C150.7 (2)
C2—C1—C6—C53.15 (17)C12—C13—C14—C15179.01 (16)
N1—C1—C6—C5174.97 (10)C13—C14—C15—C161.9 (2)
C2—C1—C6—C8178.10 (11)C14—C15—C16—N21.5 (2)
N1—C1—C6—C83.78 (17)C10—C9—C17—N2179.26 (14)
C4—C5—C6—C12.06 (16)C10—C9—C17—C130.3 (2)
C7—C5—C6—C1178.02 (10)C14—C13—C17—N20.92 (19)
C4—C5—C6—C8179.13 (11)C12—C13—C17—N2179.37 (13)
C7—C5—C6—C80.78 (16)C14—C13—C17—C9179.54 (14)
C4—C5—C7—O2153.38 (13)C12—C13—C17—C90.2 (2)
C6—C5—C7—O226.54 (18)C2—C1—N1—O6173.03 (12)
C4—C5—C7—O127.15 (16)C6—C1—N1—O65.20 (17)
C6—C5—C7—O1152.93 (11)C2—C1—N1—O57.53 (17)
C1—C6—C8—O4100.90 (14)C6—C1—N1—O5174.24 (12)
C5—C6—C8—O477.82 (14)C15—C16—N2—C170.1 (2)
C1—C6—C8—O382.81 (15)C9—C17—N2—C16179.12 (13)
C5—C6—C8—O398.48 (13)C13—C17—N2—C161.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.83 (1)1.92 (1)2.7416 (14)171 (19)
O7—H7B···O4i0.84 (1)2.02 (1)2.8459 (14)169 (18)
O1—H1A···O7ii0.84 (1)1.75 (1)2.5818 (14)173 (2)
N2—H2A···O3iii0.91 (1)1.74 (1)2.6425 (14)176 (18)
C16—H16···O4iii0.932.493.1166 (17)125
C16—H16···O2iv0.932.393.1278 (17)136
C12—H12···N10.932.613.4866 (19)157
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.833 (9)1.915 (10)2.7416 (14)171 (19)
O7—H7B···O4i0.836 (9)2.021 (10)2.8459 (14)169 (18)
O1—H1A···O7ii0.840 (9)1.745 (10)2.5818 (14)173 (2)
N2—H2A···O3iii0.908 (9)1.736 (9)2.6425 (14)176 (18)
C16—H16···O4iii0.932.493.1166 (17)125
C16—H16···O2iv0.932.393.1278 (17)136
C12—H12···N10.932.613.4866 (19)157
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y, z+1.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, o924–o925.  CSD CrossRef IUCr Journals Google Scholar
First citationDivya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259–272.  CAS PubMed Google Scholar
First citationKafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199–o3200.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857–o2859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds