organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal stucture of methyl 2-({[2-(meth­­oxy­carbon­yl)phen­yl]carbamo­yl}amino)­benzoate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco, and cLaboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
*Correspondence e-mail: m.khouili@usms.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 March 2015; accepted 30 March 2015; online 9 April 2015)

In the title compound, C17H16N2O5, the dihedral angles between the central urea [N—C(=O)—N] fragment and its attached benzene rings are 20.20 (14) and 24.24 (13)°; the dihedral angle between the aromatic rings is 42.1 (1)°. The mol­ecular conformation is consolidated by two intra­molecular N—H⋯O hydrogen bonds, which both generate S(6) rings. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(14) loops. The dimers are linked by further C—H⋯O inter­actions into (011) sheets.

1. Related literature

For the medical and biological activities of urea derivatives, see: Abad et al. (2004[Abad, A., Agulló, C., Cuñat, A. C., Jiménez, R. & Vilanova, C. (2004). J. Agric. Food Chem. 52, 4675-4683.]); Chen et al. (2005[Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38-41.]); Batra et al. (2006[Batra, S., Tusi, Z. & Madapa, S. (2006). Anti-Infective Agent. Med. Chem. 5, 135-160.]). For cytokinin activity, see: Wang et al. (2001[Wang, J. L., Li, A.-X., Li, Y.-H., Di, X.-H. & Miao, F.-M. (2001). Acta Chim. Sin. 59, 1490-1494.]); Ricci et al. (2005[Ricci, A., Carra, A., Rolli, E., Bertoletti, C., Morini, G., Incerti, M. & Vicini, P. (2005). Plant Growth Regul. 23, 261-268.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16N2O5

  • Mr = 328.32

  • Monoclinic, P 21 /c

  • a = 9.005 (8) Å

  • b = 23.80 (2) Å

  • c = 7.400 (7) Å

  • β = 93.66 (4)°

  • V = 1583 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.42 × 0.36 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 11500 measured reflections

  • 3364 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 0.95

  • 3364 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O5 0.86 1.96 2.677 (3) 140
N3—H3N⋯O2 0.86 1.92 2.659 (3) 144
C6—H6⋯O3i 0.93 2.57 3.442 (4) 157
C17—H17C⋯O2ii 0.96 2.46 3.176 (4) 132
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Urea derivatives are very interesting reagents due to their useful properties and important medical and biological applications, such as insecticidal, fungicidal, herbicidal, anti-infectives and plant-growth regulating activities (Abad et al., 2004; Chen et al., 2005, Batra et al., 2006), especially cytokinin activity (Wang et al., 2001; Ricci et al., 2005). Symmetrical disubstituted ureas generally form a polar hydrogen-bond chain, with anti NH donors and carbonyl O-atom acceptors in a bifurcated motif. As part of our studies in this area, the title compound C17H16N2O5 was synthesized and its crystal structure is reported in the present work.

The molecular structure of the title compound, a symmetrical urea derivative, is displayed in Fig. 1. This molecule is build up from two methyl benzoate linked through N–C(=O)–N fragment but not symmetric. The dihedral angle between the two phenyl rings (C3 to C8) and (C10 to C15) is of 42.1 (1)°.

In the crystal, the molecular conformation is stabilized by two intramolecular N—H···O hydrogen bonds and each molecule is linked to its symmetric by two intermolecular C—H···O hydrogen bonds to form centrosymmetric dimers as shown in Fig.2.

Related literature top

For the medical and biological activities of urea derivatives, see: Abad et al. (2004); Chen et al. (2005); Batra et al. (2006). For cytokinin activity, see: Wang et al. (2001); Ricci et al. (2005).

Experimental top

A solution of 2-(methoxycarbonyl)benzoic acid (100 mg, 0.56 mmol), DPPA (0.194 ml, 0.90 mmol) and Et3N (0.127 ml, 0.90 mmol) in toluene (3 ml) was refluxed for 4 h. After cooling to room temperature, the reaction mixture was concentrated. The residue was purified by column chromatography using EtOAc-Hexane (1:9 v/v) as eluent to give yellow blocks with yield = 40% and m.p. = 411 K.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C–H = 0.93–0.96 Å; N—H = 0.86 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq for aromatic, C—H, N–H and Uiso(H) = 1.5 Ueq for methyl. Two outlier (1 0 0) and (0 2 0) was omitted in the last cycles of refinement.

Structure description top

Urea derivatives are very interesting reagents due to their useful properties and important medical and biological applications, such as insecticidal, fungicidal, herbicidal, anti-infectives and plant-growth regulating activities (Abad et al., 2004; Chen et al., 2005, Batra et al., 2006), especially cytokinin activity (Wang et al., 2001; Ricci et al., 2005). Symmetrical disubstituted ureas generally form a polar hydrogen-bond chain, with anti NH donors and carbonyl O-atom acceptors in a bifurcated motif. As part of our studies in this area, the title compound C17H16N2O5 was synthesized and its crystal structure is reported in the present work.

The molecular structure of the title compound, a symmetrical urea derivative, is displayed in Fig. 1. This molecule is build up from two methyl benzoate linked through N–C(=O)–N fragment but not symmetric. The dihedral angle between the two phenyl rings (C3 to C8) and (C10 to C15) is of 42.1 (1)°.

In the crystal, the molecular conformation is stabilized by two intramolecular N—H···O hydrogen bonds and each molecule is linked to its symmetric by two intermolecular C—H···O hydrogen bonds to form centrosymmetric dimers as shown in Fig.2.

For the medical and biological activities of urea derivatives, see: Abad et al. (2004); Chen et al. (2005); Batra et al. (2006). For cytokinin activity, see: Wang et al. (2001); Ricci et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing hydrogen-bonded (dashed lines) dimers.
Methyl 2-({[2-(methoxycarbonyl)phenyl]carbamoyl}amino)benzoate top
Crystal data top
C17H16N2O5F(000) = 688
Mr = 328.32Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3364 reflections
a = 9.005 (8) Åθ = 2.4–26.7°
b = 23.80 (2) ŵ = 0.10 mm1
c = 7.400 (7) ÅT = 296 K
β = 93.66 (4)°Block, yellow
V = 1583 (3) Å30.42 × 0.36 × 0.29 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD
diffractometer
3364 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 117
Tmin = 0.693, Tmax = 0.747k = 2930
11500 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3364 reflectionsΔρmax = 0.21 e Å3
220 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (11)
Crystal data top
C17H16N2O5V = 1583 (3) Å3
Mr = 328.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.005 (8) ŵ = 0.10 mm1
b = 23.80 (2) ÅT = 296 K
c = 7.400 (7) Å0.42 × 0.36 × 0.29 mm
β = 93.66 (4)°
Data collection top
Bruker X8 APEXII CCD
diffractometer
3364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1667 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.066
11500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.95Δρmax = 0.21 e Å3
3364 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8216 (3)0.50547 (11)0.6105 (4)0.0617 (8)
H1A0.87960.53510.56240.093*
H1B0.80230.47720.51940.093*
H1C0.87550.48910.71360.093*
C20.5813 (3)0.49037 (10)0.7155 (3)0.0413 (6)
C30.4424 (2)0.51598 (9)0.7748 (3)0.0370 (6)
C40.4261 (3)0.57446 (9)0.7763 (3)0.0463 (6)
H40.50280.59680.73770.056*
C50.3000 (3)0.59993 (10)0.8334 (3)0.0524 (7)
H50.29130.63890.83240.063*
C60.1861 (3)0.56676 (10)0.8925 (3)0.0496 (7)
H60.10120.58370.93280.060*
C70.1975 (3)0.50878 (9)0.8921 (3)0.0421 (6)
H70.11990.48710.93150.050*
C80.3249 (3)0.48226 (9)0.8331 (3)0.0377 (6)
C90.2326 (3)0.38375 (10)0.8583 (3)0.0429 (6)
C100.2281 (3)0.27870 (9)0.8808 (3)0.0420 (6)
C110.0793 (3)0.27180 (10)0.8152 (3)0.0519 (7)
H110.02190.30310.78270.062*
C120.0181 (3)0.21894 (11)0.7988 (4)0.0607 (8)
H120.08000.21500.75350.073*
C130.0991 (3)0.17166 (11)0.8482 (4)0.0627 (8)
H130.05600.13620.83710.075*
C140.2450 (3)0.17759 (10)0.9142 (3)0.0511 (7)
H140.29970.14570.94780.061*
C150.3129 (3)0.23038 (9)0.9319 (3)0.0407 (6)
C160.4711 (3)0.23461 (10)1.0022 (3)0.0460 (6)
C170.6894 (3)0.18555 (11)1.1114 (4)0.0695 (9)
H17A0.69800.20261.22920.104*
H17B0.74700.20661.03000.104*
H17C0.72580.14771.11960.104*
N20.2964 (2)0.33173 (7)0.8915 (3)0.0472 (5)
H2N0.39030.33060.92090.057*
N30.3414 (2)0.42374 (7)0.8385 (3)0.0443 (5)
H3N0.43110.41400.81690.053*
O10.68143 (18)0.52810 (7)0.6650 (2)0.0536 (5)
O20.60738 (18)0.44002 (7)0.7108 (2)0.0557 (5)
O30.0994 (2)0.39320 (7)0.8476 (3)0.0692 (6)
O40.5330 (2)0.18523 (7)1.0436 (3)0.0618 (5)
O50.5419 (2)0.27802 (7)1.0207 (3)0.0710 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (16)0.080 (2)0.0678 (19)0.0038 (14)0.0124 (14)0.0022 (15)
C20.0424 (15)0.0422 (15)0.0387 (14)0.0047 (12)0.0025 (12)0.0035 (11)
C30.0377 (14)0.0362 (13)0.0364 (13)0.0004 (11)0.0018 (11)0.0031 (10)
C40.0503 (16)0.0346 (13)0.0536 (16)0.0020 (12)0.0010 (13)0.0064 (11)
C50.0583 (18)0.0350 (14)0.0638 (18)0.0053 (13)0.0029 (14)0.0007 (12)
C60.0504 (16)0.0481 (15)0.0501 (16)0.0133 (13)0.0017 (13)0.0014 (12)
C70.0438 (15)0.0390 (14)0.0435 (15)0.0014 (12)0.0039 (12)0.0005 (11)
C80.0414 (14)0.0359 (13)0.0352 (13)0.0003 (11)0.0029 (11)0.0003 (10)
C90.0443 (16)0.0388 (14)0.0465 (15)0.0055 (12)0.0091 (12)0.0008 (11)
C100.0484 (16)0.0390 (14)0.0396 (14)0.0089 (12)0.0111 (12)0.0001 (10)
C110.0528 (18)0.0471 (16)0.0561 (17)0.0068 (13)0.0063 (14)0.0036 (12)
C120.0591 (19)0.0541 (18)0.0686 (19)0.0156 (15)0.0011 (15)0.0027 (14)
C130.066 (2)0.0463 (16)0.076 (2)0.0211 (15)0.0036 (16)0.0101 (14)
C140.0626 (19)0.0346 (14)0.0570 (17)0.0066 (13)0.0117 (14)0.0041 (12)
C150.0467 (15)0.0362 (13)0.0404 (14)0.0069 (11)0.0115 (12)0.0024 (10)
C160.0584 (18)0.0328 (14)0.0480 (16)0.0052 (13)0.0128 (13)0.0008 (11)
C170.0476 (18)0.0535 (17)0.107 (3)0.0005 (14)0.0035 (17)0.0059 (16)
N20.0441 (12)0.0362 (11)0.0614 (14)0.0054 (10)0.0046 (11)0.0055 (10)
N30.0384 (12)0.0321 (11)0.0632 (14)0.0010 (9)0.0094 (10)0.0043 (9)
O10.0435 (11)0.0497 (10)0.0688 (12)0.0056 (8)0.0134 (9)0.0033 (8)
O20.0486 (11)0.0416 (10)0.0780 (13)0.0030 (9)0.0137 (9)0.0019 (9)
O30.0417 (11)0.0492 (11)0.1177 (18)0.0013 (9)0.0138 (11)0.0042 (10)
O40.0544 (12)0.0369 (10)0.0938 (15)0.0016 (9)0.0033 (10)0.0022 (9)
O50.0606 (13)0.0380 (11)0.1121 (17)0.0105 (9)0.0126 (12)0.0073 (10)
Geometric parameters (Å, º) top
C1—O11.453 (3)C10—N21.404 (3)
C1—H1A0.9600C10—C111.405 (4)
C1—H1B0.9600C10—C151.418 (3)
C1—H1C0.9600C11—C121.376 (3)
C2—O21.222 (3)C11—H110.9300
C2—O11.342 (3)C12—C131.377 (4)
C2—C31.483 (3)C12—H120.9300
C3—C41.400 (3)C13—C141.379 (4)
C3—C81.417 (3)C13—H130.9300
C4—C51.378 (3)C14—C151.400 (3)
C4—H40.9300C14—H140.9300
C5—C61.387 (3)C15—C161.489 (4)
C5—H50.9300C16—O51.217 (3)
C6—C71.384 (3)C16—O41.328 (3)
C6—H60.9300C17—O41.465 (3)
C7—C81.403 (3)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—N31.401 (3)C17—H17C0.9600
C9—O31.218 (3)N2—H2N0.8600
C9—N21.381 (3)N3—H3N0.8646
C9—N31.381 (3)
O1—C1—H1A109.5C12—C11—C10120.3 (2)
O1—C1—H1B109.5C12—C11—H11119.8
H1A—C1—H1B109.5C10—C11—H11119.8
O1—C1—H1C109.5C11—C12—C13121.4 (3)
H1A—C1—H1C109.5C11—C12—H12119.3
H1B—C1—H1C109.5C13—C12—H12119.3
O2—C2—O1121.0 (2)C12—C13—C14119.1 (2)
O2—C2—C3125.3 (2)C12—C13—H13120.5
O1—C2—C3113.7 (2)C14—C13—H13120.5
C4—C3—C8118.7 (2)C13—C14—C15121.7 (2)
C4—C3—C2120.1 (2)C13—C14—H14119.2
C8—C3—C2121.2 (2)C15—C14—H14119.2
C5—C4—C3121.9 (2)C14—C15—C10118.6 (2)
C5—C4—H4119.0C14—C15—C16119.7 (2)
C3—C4—H4119.0C10—C15—C16121.7 (2)
C4—C5—C6119.1 (2)O5—C16—O4121.1 (3)
C4—C5—H5120.4O5—C16—C15125.4 (2)
C6—C5—H5120.4O4—C16—C15113.5 (2)
C7—C6—C5120.7 (2)O4—C17—H17A109.5
C7—C6—H6119.6O4—C17—H17B109.5
C5—C6—H6119.6H17A—C17—H17B109.5
C6—C7—C8120.8 (2)O4—C17—H17C109.5
C6—C7—H7119.6H17A—C17—H17C109.5
C8—C7—H7119.6H17B—C17—H17C109.5
N3—C8—C7121.7 (2)C9—N2—C10128.3 (2)
N3—C8—C3119.4 (2)C9—N2—H2N117.6
C7—C8—C3118.7 (2)C10—N2—H2N114.0
O3—C9—N2125.1 (2)C9—N3—C8127.8 (2)
O3—C9—N3124.7 (2)C9—N3—H3N120.8
N2—C9—N3110.3 (2)C8—N3—H3N111.1
N2—C10—C11122.0 (2)C2—O1—C1116.1 (2)
N2—C10—C15119.2 (2)C16—O4—C17117.03 (19)
C11—C10—C15118.8 (2)
O2—C2—C3—C4179.2 (2)C13—C14—C15—C16179.4 (2)
O1—C2—C3—C40.7 (3)N2—C10—C15—C14177.6 (2)
O2—C2—C3—C80.1 (3)C11—C10—C15—C140.3 (3)
O1—C2—C3—C8179.83 (19)N2—C10—C15—C162.0 (3)
C8—C3—C4—C50.3 (3)C11—C10—C15—C16179.9 (2)
C2—C3—C4—C5178.9 (2)C14—C15—C16—O5178.9 (2)
C3—C4—C5—C60.5 (4)C10—C15—C16—O50.8 (4)
C4—C5—C6—C70.9 (4)C14—C15—C16—O40.5 (3)
C5—C6—C7—C80.4 (3)C10—C15—C16—O4179.9 (2)
C6—C7—C8—N3177.4 (2)O3—C9—N2—C1015.1 (4)
C6—C7—C8—C30.4 (3)N3—C9—N2—C10164.8 (2)
C4—C3—C8—N3177.8 (2)C11—C10—N2—C96.1 (4)
C2—C3—C8—N31.4 (3)C15—C10—N2—C9176.1 (2)
C4—C3—C8—C70.8 (3)O3—C9—N3—C811.5 (4)
C2—C3—C8—C7178.4 (2)N2—C9—N3—C8168.6 (2)
N2—C10—C11—C12177.0 (2)C7—C8—N3—C916.1 (3)
C15—C10—C11—C120.9 (4)C3—C8—N3—C9167.0 (2)
C10—C11—C12—C131.0 (4)O2—C2—O1—C11.7 (3)
C11—C12—C13—C140.5 (4)C3—C2—O1—C1178.3 (2)
C12—C13—C14—C150.2 (4)O5—C16—O4—C170.2 (4)
C13—C14—C15—C100.2 (4)C15—C16—O4—C17179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O50.861.962.677 (3)140
N3—H3N···O20.861.922.659 (3)144
C6—H6···O3i0.932.573.442 (4)157
C17—H17C···O2ii0.962.463.176 (4)132
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O50.861.962.677 (3)140
N3—H3N···O20.861.922.659 (3)144
C6—H6···O3i0.932.573.442 (4)157
C17—H17C···O2ii0.962.463.176 (4)132
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, for financial support.

References

First citationAbad, A., Agulló, C., Cuñat, A. C., Jiménez, R. & Vilanova, C. (2004). J. Agric. Food Chem. 52, 4675–4683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBatra, S., Tusi, Z. & Madapa, S. (2006). Anti-Infective Agent. Med. Chem. 5, 135–160.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRicci, A., Carra, A., Rolli, E., Bertoletti, C., Morini, G., Incerti, M. & Vicini, P. (2005). Plant Growth Regul. 23, 261–268.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. L., Li, A.-X., Li, Y.-H., Di, X.-H. & Miao, F.-M. (2001). Acta Chim. Sin. 59, 1490–1494.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds