organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(2-azido­phen­yl)-5-benzoyl-2-(1H-indol-3-yl)-1H-pyrrole-3-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, Central Leather Research Institute (CSIR), Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 March 2015; accepted 7 April 2015; online 22 April 2015)

In the title compound, C26H16N6O, the dihedral angles between the central pyrrole ring and the pendant indole ring system (r.m.s. deviation = 0.027 Å) and the azide-bearing benzene ring are 37.56 (8) and 51.62 (11)°, respectively. The azide group is almost coplanar with its attached benzene ring [C—C—N—N = 3.8 (3)°]. The benzoyl benzene ring is disordered over two orientations twisted with respect to each other by 9.29 (8)° in a 0.514 (2):0.486 (2) ratio. In the crystal, inversion dimers linked by pairs of Np—H⋯O (p = pyrrole) hydrogen bonds generate R22(10) loops. A second inversion dimer arises from a pair of Ni—H⋯Nc (i = indole and c = cyanide) hydrogen bonds, which generates an R22(16) loop. Together, the hydrogen bonds lead to [011] chains in the crystal.

1. Related literature

For background to indole derivatives, see: Srivastava, Anupam & Pandeya (2011[Srivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1-17.]). For related structures, see: Srinivasan et al. (2012[Srinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.]); Inglebert et al. (2013[Inglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H16N6O

  • Mr = 428.45

  • Triclinic, [P \overline 1]

  • a = 8.1834 (6) Å

  • b = 11.3713 (8) Å

  • c = 12.6853 (8) Å

  • α = 108.070 (3)°

  • β = 105.164 (4)°

  • γ = 90.256 (3)°

  • V = 1078.42 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.987

  • 20625 measured reflections

  • 4315 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.04

  • 4315 reflections

  • 325 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.92 (1) 1.95 (1) 2.8526 (17) 166 (2)
N1—H1A⋯N3ii 0.92 (1) 2.10 (1) 2.988 (2) 163 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y-1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For background to indole derivatives, see: Srivastava, Anupam & Pandeya (2011). For related structures, see: Srinivasan et al. (2012); Inglebert et al. (2013).

Experimental top

To a stirred mixture of 2-azido aldehydes 1 (1.0 mmol), 2- (1H-3-indolylcarbonyl)-3-aryl-2-propenenitriles 2 (1.0 mmol) and phenacylazides 3 (1.0 mmol) in water (3 ml) piperidine (0.25 mmol) was added at 80 0 C. The turbid solution slowly turned into a clear solution followed by the formation of solid with 0.75 min. After completion of the reaction as indicated by thin layer chromatography (TLC), the solid was filtered and washed with pet-ether: EtOAc mixture (1: 1 ratio v/v, 5 ml) to give pure compounds. The compound was recrystallized from methanol to yield yellow crystals. The yield of the isolated product was 91%. Yellow blocks were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

For background to indole derivatives, see: Srivastava, Anupam & Pandeya (2011). For related structures, see: Srinivasan et al. (2012); Inglebert et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along c axis. Hydrogen atoms are omitted for clarity.
4-(2-Azidophenyl)-5-benzoyl-2-(1H-indol-3-yl)-1H-pyrrole-3-carbonitrile top
Crystal data top
C26H16N6OZ = 2
Mr = 428.45F(000) = 444
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1834 (6) ÅCell parameters from 5359 reflections
b = 11.3713 (8) Åθ = 2.6–24.5°
c = 12.6853 (8) ŵ = 0.09 mm1
α = 108.070 (3)°T = 293 K
β = 105.164 (4)°Block, yellow
γ = 90.256 (3)°0.35 × 0.20 × 0.15 mm
V = 1078.42 (13) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4315 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 26.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.901, Tmax = 0.987k = 1414
20625 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.1697P]
where P = (Fo2 + 2Fc2)/3
4315 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H16N6Oγ = 90.256 (3)°
Mr = 428.45V = 1078.42 (13) Å3
Triclinic, P1Z = 2
a = 8.1834 (6) ÅMo Kα radiation
b = 11.3713 (8) ŵ = 0.09 mm1
c = 12.6853 (8) ÅT = 293 K
α = 108.070 (3)°0.35 × 0.20 × 0.15 mm
β = 105.164 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3062 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.987Rint = 0.033
20625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
4315 reflectionsΔρmin = 0.25 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0917 (3)0.39241 (16)0.12464 (15)0.0547 (5)
H10.00750.40970.10240.066*
C20.3428 (2)0.42040 (17)0.15320 (15)0.0543 (5)
C30.4944 (3)0.4692 (2)0.15954 (19)0.0750 (6)
H30.52450.55440.13330.090*
C40.5968 (3)0.3873 (3)0.2057 (2)0.0886 (8)
H40.69870.41730.21170.106*
C50.5540 (3)0.2602 (3)0.2443 (2)0.0820 (7)
H50.62810.20690.27470.098*
C60.4056 (3)0.2119 (2)0.23854 (17)0.0621 (5)
H60.37830.12640.26410.075*
C70.2954 (2)0.29262 (16)0.19367 (14)0.0473 (4)
C80.1326 (2)0.27646 (15)0.17555 (13)0.0454 (4)
C90.0284 (2)0.16159 (14)0.20815 (13)0.0431 (4)
C100.0785 (2)0.12214 (15)0.15429 (13)0.0451 (4)
C110.1096 (2)0.19675 (16)0.05005 (15)0.0515 (4)
C120.1570 (2)0.00185 (15)0.22359 (14)0.0449 (4)
C130.2907 (2)0.06488 (15)0.20018 (15)0.0504 (4)
C140.2675 (3)0.07898 (19)0.09230 (18)0.0664 (5)
H140.16460.04940.03620.080*
C150.3950 (4)0.1362 (2)0.0672 (2)0.0847 (7)
H150.37750.14550.00520.102*
C160.5461 (4)0.1790 (2)0.1486 (3)0.0894 (8)
H160.63170.21730.13140.107*
C170.5740 (3)0.1663 (2)0.2556 (2)0.0759 (6)
H170.67770.19650.31070.091*
C180.4479 (3)0.10869 (17)0.28161 (17)0.0561 (5)
C190.0923 (2)0.03026 (15)0.31786 (14)0.0447 (4)
C200.1247 (2)0.13755 (16)0.42355 (14)0.0476 (4)
N10.2164 (2)0.47857 (14)0.11122 (14)0.0612 (4)
N20.01795 (18)0.06776 (12)0.30625 (11)0.0453 (3)
N30.1341 (2)0.25813 (15)0.03298 (14)0.0697 (5)
N40.4701 (2)0.08726 (16)0.38885 (14)0.0642 (4)
N50.6075 (2)0.12980 (17)0.46065 (17)0.0697 (5)
O10.1155 (2)0.12110 (12)0.51215 (10)0.0720 (4)
N60.7264 (2)0.16569 (9)0.53511 (10)0.1037 (7)
C210.1467 (2)0.26296 (9)0.42353 (10)0.0457 (16)0.486 (6)
C220.0825 (2)0.29348 (9)0.32352 (10)0.0454 (13)0.486 (6)
H220.03160.23150.25420.054*0.486 (6)
C230.0943 (2)0.41672 (9)0.32710 (10)0.0697 (16)0.486 (6)
H230.05130.43710.26020.084*0.486 (6)
C240.1703 (2)0.50943 (9)0.43068 (10)0.094 (2)0.486 (6)
H240.17810.59190.43310.113*0.486 (6)
C250.2345 (2)0.47891 (9)0.53069 (10)0.104 (2)0.486 (6)
H250.28530.54090.60000.125*0.486 (6)
C260.2227 (2)0.35568 (9)0.52712 (10)0.086 (2)0.486 (6)
H260.26570.33530.59400.103*0.486 (6)
C21'0.1727 (2)0.26171 (9)0.41748 (10)0.0465 (16)0.514 (6)
C22'0.1178 (2)0.29254 (9)0.31689 (10)0.0723 (18)0.514 (6)
H22'0.05590.23300.24890.087*0.514 (6)
C23'0.1552 (2)0.41233 (9)0.31797 (10)0.095 (2)0.514 (6)
H23'0.11850.43300.25070.114*0.514 (6)
C24'0.2476 (2)0.50129 (9)0.41964 (10)0.095 (2)0.514 (6)
H24'0.27270.58140.42040.114*0.514 (6)
C25'0.3026 (2)0.47046 (9)0.52023 (10)0.0780 (17)0.514 (6)
H25'0.36440.53000.58830.094*0.514 (6)
C26'0.2651 (2)0.35067 (9)0.51915 (10)0.0523 (12)0.514 (6)
H26'0.30190.33000.58650.063*0.514 (6)
H2A0.060 (2)0.0740 (17)0.3647 (12)0.059 (5)*
H1A0.214 (3)0.5632 (10)0.0821 (18)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0648 (12)0.0460 (10)0.0521 (10)0.0055 (9)0.0199 (9)0.0112 (8)
C20.0572 (11)0.0520 (10)0.0468 (10)0.0059 (9)0.0027 (8)0.0162 (8)
C30.0660 (14)0.0772 (15)0.0734 (14)0.0191 (12)0.0016 (11)0.0303 (12)
C40.0491 (13)0.128 (2)0.0960 (18)0.0048 (15)0.0107 (12)0.0547 (17)
C50.0555 (13)0.110 (2)0.0913 (17)0.0225 (13)0.0218 (12)0.0458 (15)
C60.0607 (12)0.0651 (12)0.0627 (12)0.0152 (10)0.0148 (10)0.0251 (10)
C70.0530 (10)0.0472 (10)0.0397 (9)0.0038 (8)0.0070 (7)0.0160 (7)
C80.0558 (10)0.0413 (9)0.0378 (8)0.0030 (8)0.0124 (7)0.0115 (7)
C90.0537 (10)0.0392 (9)0.0381 (8)0.0053 (7)0.0144 (7)0.0132 (7)
C100.0586 (10)0.0421 (9)0.0391 (8)0.0082 (8)0.0204 (8)0.0136 (7)
C110.0669 (12)0.0448 (9)0.0489 (10)0.0070 (8)0.0234 (9)0.0175 (8)
C120.0570 (10)0.0413 (9)0.0423 (9)0.0072 (8)0.0197 (8)0.0165 (7)
C130.0664 (12)0.0412 (9)0.0556 (10)0.0095 (8)0.0334 (9)0.0185 (8)
C140.0871 (15)0.0662 (12)0.0653 (12)0.0134 (11)0.0384 (11)0.0336 (10)
C150.116 (2)0.0852 (16)0.0867 (17)0.0164 (15)0.0601 (17)0.0484 (14)
C160.099 (2)0.0833 (17)0.119 (2)0.0062 (15)0.0690 (18)0.0466 (16)
C170.0720 (14)0.0661 (13)0.1031 (18)0.0009 (11)0.0456 (13)0.0283 (13)
C180.0648 (12)0.0458 (10)0.0679 (12)0.0084 (9)0.0336 (10)0.0199 (9)
C190.0577 (10)0.0397 (9)0.0411 (9)0.0007 (8)0.0196 (8)0.0143 (7)
C200.0571 (10)0.0467 (10)0.0415 (9)0.0014 (8)0.0220 (8)0.0109 (7)
N10.0754 (11)0.0384 (9)0.0607 (10)0.0011 (8)0.0138 (8)0.0075 (7)
N20.0604 (9)0.0415 (8)0.0373 (7)0.0008 (6)0.0205 (7)0.0115 (6)
N30.1019 (14)0.0555 (10)0.0578 (10)0.0102 (9)0.0425 (10)0.0099 (8)
N40.0575 (10)0.0688 (11)0.0639 (10)0.0039 (8)0.0140 (8)0.0207 (9)
N50.0620 (11)0.0653 (11)0.0799 (13)0.0065 (9)0.0191 (10)0.0210 (10)
O10.1137 (12)0.0603 (8)0.0442 (7)0.0204 (8)0.0357 (7)0.0086 (6)
N60.0723 (14)0.1120 (18)0.1114 (18)0.0078 (13)0.0005 (13)0.0353 (15)
C210.049 (3)0.048 (4)0.039 (3)0.005 (2)0.020 (3)0.006 (3)
C220.058 (2)0.038 (3)0.042 (3)0.012 (2)0.019 (2)0.012 (2)
C230.098 (4)0.053 (3)0.062 (3)0.010 (2)0.020 (3)0.025 (3)
C240.137 (6)0.051 (3)0.109 (5)0.004 (3)0.044 (4)0.036 (3)
C250.129 (6)0.061 (4)0.105 (5)0.017 (3)0.019 (4)0.017 (4)
C260.107 (4)0.066 (5)0.076 (5)0.003 (3)0.021 (4)0.016 (4)
C21'0.055 (3)0.040 (3)0.053 (4)0.002 (2)0.028 (3)0.016 (3)
C22'0.077 (3)0.069 (4)0.070 (4)0.005 (3)0.014 (3)0.027 (3)
C23'0.115 (4)0.072 (4)0.108 (5)0.005 (3)0.020 (4)0.052 (4)
C24'0.149 (6)0.046 (3)0.090 (4)0.008 (3)0.034 (4)0.022 (3)
C25'0.113 (4)0.044 (3)0.065 (3)0.018 (2)0.016 (3)0.008 (2)
C26'0.075 (3)0.037 (3)0.039 (3)0.012 (2)0.012 (2)0.008 (2)
Geometric parameters (Å, º) top
C1—N11.351 (2)C18—N41.421 (2)
C1—C81.362 (2)C19—N21.378 (2)
C1—H10.9300C19—C201.467 (2)
C2—N11.367 (3)C20—O11.2158 (19)
C2—C31.388 (3)C20—C211.4368 (19)
C2—C71.398 (2)C20—C21'1.4940 (19)
C3—C41.356 (4)N1—H1A0.920 (10)
C3—H30.9300N2—H2A0.916 (9)
C4—C51.384 (4)N4—N51.231 (2)
C4—H40.9300N5—N61.132 (2)
C5—C61.359 (3)C21—C221.3900
C5—H50.9300C21—C261.3900
C6—C71.390 (3)C22—C231.3900
C6—H60.9300C22—H220.9300
C7—C81.430 (2)C23—C241.3900
C8—C91.441 (2)C23—H230.9300
C9—N21.347 (2)C24—C251.3900
C9—C101.390 (2)C24—H240.9300
C10—C121.417 (2)C25—C261.3900
C10—C111.419 (2)C25—H250.9300
C11—N31.137 (2)C26—H260.9300
C12—C191.381 (2)C21'—C22'1.3900
C12—C131.471 (2)C21'—C26'1.3900
C13—C141.391 (3)C22'—C23'1.3900
C13—C181.396 (3)C22'—H22'0.9300
C14—C151.382 (3)C23'—C24'1.3900
C14—H140.9300C23'—H23'0.9300
C15—C161.359 (4)C24'—C25'1.3900
C15—H150.9300C24'—H24'0.9300
C16—C171.369 (4)C25'—C26'1.3900
C16—H160.9300C25'—H25'0.9300
C17—C181.382 (3)C26'—H26'0.9300
C17—H170.9300
N1—C1—C8110.10 (17)N2—C19—C20117.84 (14)
N1—C1—H1124.9C12—C19—C20134.10 (15)
C8—C1—H1124.9O1—C20—C21118.38 (15)
N1—C2—C3130.43 (19)O1—C20—C19118.84 (15)
N1—C2—C7107.62 (16)C21—C20—C19122.36 (14)
C3—C2—C7121.9 (2)O1—C20—C21'123.14 (15)
C4—C3—C2117.1 (2)C21—C20—C21'9.3
C4—C3—H3121.4C19—C20—C21'117.99 (13)
C2—C3—H3121.4C1—N1—C2109.22 (15)
C3—C4—C5121.9 (2)C1—N1—H1A125.6 (14)
C3—C4—H4119.0C2—N1—H1A125.1 (14)
C5—C4—H4119.0C9—N2—C19111.13 (13)
C6—C5—C4121.2 (2)C9—N2—H2A124.4 (12)
C6—C5—H5119.4C19—N2—H2A123.3 (12)
C4—C5—H5119.4N5—N4—C18115.33 (17)
C5—C6—C7118.7 (2)N6—N5—N4172.4 (2)
C5—C6—H6120.6C22—C21—C26120.0
C7—C6—H6120.6C22—C21—C20120.87 (8)
C6—C7—C2119.01 (17)C26—C21—C20118.97 (8)
C6—C7—C8134.25 (17)C21—C22—C23120.0
C2—C7—C8106.73 (15)C21—C22—H22120.0
C1—C8—C7106.32 (15)C23—C22—H22120.0
C1—C8—C9126.31 (16)C24—C23—C22120.0
C7—C8—C9127.33 (15)C24—C23—H23120.0
N2—C9—C10106.05 (14)C22—C23—H23120.0
N2—C9—C8122.71 (14)C25—C24—C23120.0
C10—C9—C8131.23 (15)C25—C24—H24120.0
C9—C10—C12109.26 (13)C23—C24—H24120.0
C9—C10—C11123.89 (15)C24—C25—C26120.0
C12—C10—C11126.73 (15)C24—C25—H25120.0
N3—C11—C10178.92 (19)C26—C25—H25120.0
C19—C12—C10105.61 (14)C25—C26—C21120.0
C19—C12—C13129.39 (16)C25—C26—H26120.0
C10—C12—C13124.77 (14)C21—C26—H26120.0
C14—C13—C18117.82 (17)C22'—C21'—C26'120.0
C14—C13—C12120.37 (18)C22'—C21'—C20122.25 (8)
C18—C13—C12121.68 (15)C26'—C21'—C20117.58 (8)
C15—C14—C13121.1 (2)C23'—C22'—C21'120.0
C15—C14—H14119.5C23'—C22'—H22'120.0
C13—C14—H14119.5C21'—C22'—H22'120.0
C16—C15—C14119.8 (2)C22'—C23'—C24'120.0
C16—C15—H15120.1C22'—C23'—H23'120.0
C14—C15—H15120.1C24'—C23'—H23'120.0
C15—C16—C17120.9 (2)C25'—C24'—C23'120.0
C15—C16—H16119.6C25'—C24'—H24'120.0
C17—C16—H16119.6C23'—C24'—H24'120.0
C16—C17—C18119.9 (2)C24'—C25'—C26'120.0
C16—C17—H17120.0C24'—C25'—H25'120.0
C18—C17—H17120.0C26'—C25'—H25'120.0
C17—C18—C13120.53 (19)C25'—C26'—C21'120.0
C17—C18—N4123.1 (2)C25'—C26'—H26'120.0
C13—C18—N4116.33 (15)C21'—C26'—H26'120.0
N2—C19—C12107.93 (14)
N1—C2—C3—C4179.6 (2)C13—C12—C19—N2173.68 (16)
C7—C2—C3—C40.8 (3)C10—C12—C19—C20176.61 (18)
C2—C3—C4—C50.5 (3)C13—C12—C19—C201.9 (3)
C3—C4—C5—C60.7 (4)N2—C19—C20—O129.5 (3)
C4—C5—C6—C70.5 (3)C12—C19—C20—O1145.7 (2)
C5—C6—C7—C21.7 (3)N2—C19—C20—C21142.88 (17)
C5—C6—C7—C8179.35 (19)C12—C19—C20—C2141.8 (3)
N1—C2—C7—C6178.41 (16)N2—C19—C20—C21'152.33 (16)
C3—C2—C7—C61.9 (3)C12—C19—C20—C21'32.4 (3)
N1—C2—C7—C80.81 (19)C8—C1—N1—C20.1 (2)
C3—C2—C7—C8178.89 (16)C3—C2—N1—C1179.22 (19)
N1—C1—C8—C70.6 (2)C7—C2—N1—C10.4 (2)
N1—C1—C8—C9177.26 (15)C10—C9—N2—C190.33 (19)
C6—C7—C8—C1178.18 (19)C8—C9—N2—C19178.93 (15)
C2—C7—C8—C10.87 (19)C12—C19—N2—C90.45 (19)
C6—C7—C8—C94.0 (3)C20—C19—N2—C9176.88 (15)
C2—C7—C8—C9176.98 (15)C17—C18—N4—N53.8 (3)
C1—C8—C9—N2141.04 (18)C13—C18—N4—N5177.93 (17)
C7—C8—C9—N236.4 (3)C18—N4—N5—N6170.4 (15)
C1—C8—C9—C1038.0 (3)O1—C20—C21—C22149.95 (13)
C7—C8—C9—C10144.54 (18)C19—C20—C21—C2222.5 (2)
N2—C9—C10—C120.97 (19)C21'—C20—C21—C2286.80 (6)
C8—C9—C10—C12178.21 (16)O1—C20—C21—C2625.4 (2)
N2—C9—C10—C11177.12 (16)C19—C20—C21—C26162.12 (12)
C8—C9—C10—C112.1 (3)C21'—C20—C21—C2697.82 (7)
C9—C10—C11—N330 (11)C26—C21—C22—C230.0
C12—C10—C11—N3145 (11)C20—C21—C22—C23175.34 (13)
C9—C10—C12—C191.23 (19)C21—C22—C23—C240.0
C11—C10—C12—C19177.24 (16)C22—C23—C24—C250.0
C9—C10—C12—C13173.77 (16)C23—C24—C25—C260.0
C11—C10—C12—C132.2 (3)C24—C25—C26—C210.0
C19—C12—C13—C14134.4 (2)C22—C21—C26—C250.0
C10—C12—C13—C1451.9 (2)C20—C21—C26—C25175.43 (13)
C19—C12—C13—C1849.9 (3)O1—C20—C21'—C22'152.61 (14)
C10—C12—C13—C18123.87 (19)C21—C20—C21'—C22'91.12 (7)
C18—C13—C14—C151.0 (3)C19—C20—C21'—C22'29.3 (2)
C12—C13—C14—C15176.89 (18)O1—C20—C21'—C26'22.6 (2)
C13—C14—C15—C160.4 (3)C21—C20—C21'—C26'84.11 (7)
C14—C15—C16—C170.1 (4)C19—C20—C21'—C26'155.43 (12)
C15—C16—C17—C180.4 (4)C26'—C21'—C22'—C23'0.0
C16—C17—C18—C131.1 (3)C20—C21'—C22'—C23'175.12 (12)
C16—C17—C18—N4177.1 (2)C21'—C22'—C23'—C24'0.0
C14—C13—C18—C171.3 (3)C22'—C23'—C24'—C25'0.0
C12—C13—C18—C17177.15 (17)C23'—C24'—C25'—C26'0.0
C14—C13—C18—N4176.97 (16)C24'—C25'—C26'—C21'0.0
C12—C13—C18—N41.1 (2)C22'—C21'—C26'—C25'0.0
C10—C12—C19—N21.01 (19)C20—C21'—C26'—C25'175.34 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.92 (1)1.95 (1)2.8526 (17)166 (2)
N1—H1A···N3ii0.92 (1)2.10 (1)2.988 (2)163 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.916 (9)1.954 (10)2.8526 (17)166.1 (17)
N1—H1A···N3ii0.920 (10)2.095 (12)2.988 (2)163 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
 

Acknowledgements

GV and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.  CSD CrossRef IUCr Journals Google Scholar
First citationSrivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1–17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds