organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5,11-di­hydro­pyrido[2,3-b][1,4]benzodiazepin-6-one

aThe German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt, and bInstitute of Pharmacy and Food Chemistry, Wuerzburg University, 97074 Wuerzburg, Germany
*Correspondence e-mail: darius.zlotos@guc.edu.eg

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 April 2015; accepted 4 April 2015; online 11 April 2015)

The title compound, C12H9N3O, is an inter­mediate in the synthesis of the muscarinic M2 receptor antagonist AFDX-384. The seven-membered ring adopts a boat conformation and the dihedral angle between the planes of the aromatic rings is 41.51 (9)°. In the crystal, mol­ecules are linked into [001] chains of alternating inversion dimers formed by pairs of N—H⋯O hydrogen bonds and pairs of N—H⋯N hydrogen bonds. In both cases, R22(8) loops are generated.

1. Related literature

For the synthesis of the title compound, see: Holzgrabe & Heller (2003[Holzgrabe, U. & Heller, E. (2003). Tetrahedron, 59, 781-787.]). For the biological activity of substituted 5,11-di­hydro­pyrido[2,3-b][1,4]benzodiazepin-6-ones, see: Mohr et al. (2004[Mohr, M., Heller, E., Ataie, A., Mohr, K. & Holzgrabe, U. (2004). J. Med. Chem. 47, 3324-3327.]); Tahtaoui et al. (2004[Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J.-C., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300-4315.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H9N3O

  • Mr = 211.22

  • Triclinic, [P \overline 1]

  • a = 3.7598 (5) Å

  • b = 10.2467 (14) Å

  • c = 12.8768 (17) Å

  • α = 104.628 (6)°

  • β = 96.616 (5)°

  • γ = 98.009 (4)°

  • V = 469.43 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.26 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.959

  • 6425 measured reflections

  • 2000 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.06

  • 2000 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 (2) 1.98 (2) 2.840 (2) 175 (2)
N3—H3⋯N1ii 0.93 (2) 2.28 (2) 3.200 (2) 168.7 (19)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2, Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Related literature top

For the synthesis of the title compound, see: Holzgrabe & Heller (2003). For the biological activity of substituted 5,11-dihydropyrido[2,3-b][1,4]benzodiazepin-6-ones, see: Mohr et al. (2004); Tahtaoui et al. (2004).

Experimental top

The title compound was synthesized as previously reported (Holzgrabe & Heller, 2003) and recrystallized from methanol–toluene.

Refinement top

The N- and C-bound H atoms were included in calculated positions and refined as riding: N2—H = 0.86 Å, C—H and N3—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

For the synthesis of the title compound, see: Holzgrabe & Heller (2003). For the biological activity of substituted 5,11-dihydropyrido[2,3-b][1,4]benzodiazepin-6-ones, see: Mohr et al. (2004); Tahtaoui et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing atom labeling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Unit-cell packing of the title compound showing two inverted molecules linked by hydrogen bonds indicated as dotted lines.
5,11-Dihydropyrido[2,3-b][1,4]benzodiazepin-6-one top
Crystal data top
C12H9N3OZ = 2
Mr = 211.22F(000) = 220
Triclinic, P1Dx = 1.494 Mg m3
a = 3.7598 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2467 (14) ÅCell parameters from 1512 reflections
c = 12.8768 (17) Åθ = 2.3–26.2°
α = 104.628 (6)°µ = 0.10 mm1
β = 96.616 (5)°T = 100 K
γ = 98.009 (4)°Plate, colourless
V = 469.43 (11) Å30.35 × 0.26 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1467 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 26.8°, θmin = 1.7°
Tmin = 0.898, Tmax = 0.959h = 44
6425 measured reflectionsk = 1212
2000 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2092P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2000 reflectionsΔρmax = 0.23 e Å3
153 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C12H9N3Oγ = 98.009 (4)°
Mr = 211.22V = 469.43 (11) Å3
Triclinic, P1Z = 2
a = 3.7598 (5) ÅMo Kα radiation
b = 10.2467 (14) ŵ = 0.10 mm1
c = 12.8768 (17) ÅT = 100 K
α = 104.628 (6)°0.35 × 0.26 × 0.06 mm
β = 96.616 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1467 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.959Rint = 0.035
6425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2000 reflectionsΔρmin = 0.22 e Å3
153 parameters
Special details top

Experimental. Absorption correctiuon: SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0475 before and 0.0419 after correction. The Ratio of minimum to maximum transmission is 0.9367. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3371 (4)0.33046 (14)0.49729 (10)0.0196 (3)
N30.4460 (4)0.42582 (15)0.83790 (13)0.0152 (4)
N10.3852 (4)0.64248 (15)0.93418 (12)0.0157 (4)
N20.3945 (4)0.51349 (17)0.63963 (13)0.0163 (4)
C40.3379 (5)0.59565 (19)0.74023 (14)0.0143 (4)
C120.3836 (5)0.55643 (19)0.83732 (14)0.0133 (4)
C10.3340 (5)0.7706 (2)0.93750 (16)0.0174 (4)
H10.34310.83201.00510.021*
C100.0818 (5)0.20571 (19)0.81375 (15)0.0148 (4)
H100.12910.22030.88870.018*
C30.2728 (5)0.72576 (19)0.74596 (15)0.0168 (4)
H3A0.23140.75350.68290.020*
C60.1477 (5)0.28402 (18)0.65494 (14)0.0137 (4)
C70.0602 (5)0.15952 (19)0.59213 (15)0.0162 (4)
H70.10710.14340.51710.019*
C110.2231 (5)0.30746 (18)0.76774 (14)0.0130 (4)
C50.2998 (5)0.37759 (19)0.59331 (14)0.0150 (4)
C20.2691 (5)0.81567 (19)0.84655 (15)0.0170 (4)
H2A0.22390.90390.85210.020*
C80.1979 (5)0.0597 (2)0.63858 (16)0.0177 (4)
H80.33660.02260.59560.021*
C90.1254 (5)0.08462 (19)0.75055 (15)0.0168 (4)
H90.21800.01870.78310.020*
H30.497 (6)0.419 (2)0.9087 (19)0.027 (6)*
H20.467 (6)0.557 (2)0.5943 (19)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (8)0.0201 (7)0.0118 (7)0.0026 (6)0.0058 (6)0.0042 (6)
N30.0192 (9)0.0143 (8)0.0113 (8)0.0023 (7)0.0008 (7)0.0036 (7)
N10.0174 (8)0.0157 (8)0.0137 (8)0.0016 (7)0.0032 (6)0.0039 (7)
N20.0212 (9)0.0165 (9)0.0122 (8)0.0010 (7)0.0043 (7)0.0062 (7)
C40.0119 (9)0.0174 (10)0.0125 (9)0.0007 (8)0.0012 (7)0.0041 (8)
C120.0101 (9)0.0155 (10)0.0143 (9)0.0002 (7)0.0015 (7)0.0053 (8)
C10.0159 (10)0.0178 (10)0.0173 (10)0.0024 (8)0.0046 (8)0.0018 (8)
C100.0158 (9)0.0184 (10)0.0128 (9)0.0052 (8)0.0031 (7)0.0072 (8)
C30.0153 (10)0.0203 (10)0.0166 (10)0.0021 (8)0.0011 (8)0.0097 (8)
C60.0117 (9)0.0151 (10)0.0154 (9)0.0038 (8)0.0046 (7)0.0043 (8)
C70.0150 (10)0.0192 (10)0.0145 (9)0.0047 (8)0.0005 (7)0.0044 (8)
C110.0105 (9)0.0148 (9)0.0139 (9)0.0040 (7)0.0027 (7)0.0032 (8)
C50.0135 (9)0.0193 (10)0.0127 (9)0.0029 (8)0.0013 (7)0.0056 (8)
C20.0160 (10)0.0163 (10)0.0209 (10)0.0047 (8)0.0045 (8)0.0071 (9)
C80.0139 (10)0.0151 (10)0.0215 (10)0.0012 (8)0.0004 (8)0.0024 (8)
C90.0135 (9)0.0175 (10)0.0229 (11)0.0039 (8)0.0054 (8)0.0102 (9)
Geometric parameters (Å, º) top
O1—C51.240 (2)C10—C111.396 (3)
N3—C121.392 (2)C10—C91.372 (3)
N3—C111.406 (2)C3—H3A0.9300
N3—H30.93 (2)C3—C21.390 (3)
N1—C121.332 (2)C6—C71.396 (3)
N1—C11.344 (2)C6—C111.399 (2)
N2—C41.412 (2)C6—C51.487 (3)
N2—C51.347 (2)C7—H70.9300
N2—H20.87 (3)C7—C81.380 (3)
C4—C121.406 (3)C2—H2A0.9300
C4—C31.374 (3)C8—H80.9300
C1—H10.9300C8—C91.387 (3)
C1—C21.372 (3)C9—H90.9300
C10—H100.9300
C12—N3—C11121.58 (15)C7—C6—C11119.17 (17)
C12—N3—H3110.9 (13)C7—C6—C5115.70 (16)
C11—N3—H3112.7 (13)C11—C6—C5124.91 (17)
C12—N1—C1117.87 (16)C6—C7—H7119.2
C4—N2—H2115.9 (15)C8—C7—C6121.68 (18)
C5—N2—C4130.98 (17)C8—C7—H7119.2
C5—N2—H2112.2 (15)C10—C11—N3117.55 (16)
C12—C4—N2123.05 (17)C10—C11—C6118.58 (17)
C3—C4—N2118.46 (17)C6—C11—N3123.83 (17)
C3—C4—C12118.12 (17)O1—C5—N2119.17 (17)
N3—C12—C4121.47 (16)O1—C5—C6119.73 (17)
N1—C12—N3115.93 (16)N2—C5—C6121.09 (16)
N1—C12—C4122.55 (17)C1—C2—C3118.16 (18)
N1—C1—H1118.2C1—C2—H2A120.9
N1—C1—C2123.52 (18)C3—C2—H2A120.9
C2—C1—H1118.2C7—C8—H8120.7
C11—C10—H10119.4C7—C8—C9118.69 (18)
C9—C10—H10119.4C9—C8—H8120.7
C9—C10—C11121.27 (17)C10—C9—C8120.60 (18)
C4—C3—H3A120.2C10—C9—H9119.7
C4—C3—C2119.64 (17)C8—C9—H9119.7
C2—C3—H3A120.2
N1—C1—C2—C33.0 (3)C7—C6—C11—C101.0 (3)
N2—C4—C12—N37.9 (3)C7—C6—C5—O122.0 (3)
N2—C4—C12—N1169.29 (18)C7—C6—C5—N2157.23 (17)
N2—C4—C3—C2170.60 (17)C7—C8—C9—C100.5 (3)
C4—N2—C5—O1170.53 (18)C11—N3—C12—N1132.19 (18)
C4—N2—C5—C68.7 (3)C11—N3—C12—C450.5 (2)
C4—C3—C2—C10.4 (3)C11—C10—C9—C80.5 (3)
C12—N3—C11—C10129.09 (19)C11—C6—C7—C81.0 (3)
C12—N3—C11—C653.5 (2)C11—C6—C5—O1152.47 (18)
C12—N1—C1—C22.1 (3)C11—C6—C5—N228.3 (3)
C12—C4—C3—C22.7 (3)C5—N2—C4—C1242.4 (3)
C1—N1—C12—N3178.56 (16)C5—N2—C4—C3144.7 (2)
C1—N1—C12—C41.3 (3)C5—C6—C7—C8175.82 (17)
C3—C4—C12—N3179.21 (17)C5—C6—C11—N32.0 (3)
C3—C4—C12—N13.6 (3)C5—C6—C11—C10175.34 (17)
C6—C7—C8—C90.2 (3)C9—C10—C11—N3177.23 (16)
C7—C6—C11—N3176.35 (17)C9—C10—C11—C60.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (2)1.98 (2)2.840 (2)175 (2)
N3—H3···N1ii0.93 (2)2.28 (2)3.200 (2)168.7 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (2)1.98 (2)2.840 (2)175 (2)
N3—H3···N1ii0.93 (2)2.28 (2)3.200 (2)168.7 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank Andreas Lorbach and Todd B. Marder (Institute of Inorganic Chemistry, Wuerzburg University) for the data collection and structure solution. We appreciate the financial support provided to NMR by the Deutscher Akademischer Austauschdienst (DAAD). Thanks are also due to the Deutsche Forschungsgemeinschaft for financial support (SFB 630, Recognition, Preparation and Functional Analysis of Agents against Infectious Diseases, project A1).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolzgrabe, U. & Heller, E. (2003). Tetrahedron, 59, 781–787.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohr, M., Heller, E., Ataie, A., Mohr, K. & Holzgrabe, U. (2004). J. Med. Chem. 47, 3324–3327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J.-C., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300–4315.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds