organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4-meth­­oxy­phen­yl)-2,3-di­hydro-1H-naphtho­[2,1-b]pyran-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 April 2015; accepted 9 April 2015; online 22 April 2015)

In the title compound, C20H16O3, the hydro­pyran ring adopts a distorted half-chair conformation with the methine C atom and the ring O atom displaced by −0.554 (2) and 0.158 (1) Å, respectively, from the plane of the other four atoms (r.m.s. deviation = 0.020 Å). Its mean plane (all atoms) is inclined to the naphthalene ring system at a dihedral angle of 11.67 (1)°. The dihedral angle between the napthalene ring system and the phenyl ring is 71.84 (1)°. In the crystal, no diectional inter­actions beyond van der Waals contacts could be identified.

1. Related literature

For the biological activity of flavone derivatives, see: Thomas et al. (2013[Thomas, N. & Zachariah, S. M. (2013). Asia. J. Pharm. Clin. Res. 6 (Suppl. 2), 11-15.]); Kumar et al. (2014[Kumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468-1474.]); Lee et al. (2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). Biol. Chem. 57, 129-132.]). For further synthetic details, see: Vasanthi et al. (2014[Vasanthi, R., Reuben Jonathan, D., Ezhilarasi, K. S., Sathya, S. & Usha, G. (2014). Acta Cryst. E70, o1116-o1117.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16O3

  • Mr = 304.33

  • Monoclinic, P 21 /n

  • a = 7.3612 (3) Å

  • b = 17.8540 (9) Å

  • c = 11.9465 (6) Å

  • β = 105.697 (2)°

  • V = 1511.54 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.982

  • 33755 measured reflections

  • 3548 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.171

  • S = 1.00

  • 3548 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Synthesis and crystallization top

The procedure (Vasanthi et al., 2014) adopted in the synthesis of the compound 3-(4-meth­oxy­phenyl)-2,3-di­hydro-1H-benzo(f)chromen-1-one is represented here. In a 250 ml round-bottomed flask 2-hy­droxy-1-aceto­naphthone (0.05 mol) and 4-meth­oxy­oxybenzaldehyde (0.05mol) were placed to which about 100 ml of absolute alcohol was added and stirred at room temperature for a time span of 5 minutes. Then about 10 ml of 40% sodium hydroxide solution was added and the mixture was stirred for 6 hours. On adding ice cold water a precipitate was generated which was filtered, washed with sufficient qu­antity of distilled water and dried. The crude product was recrystallized twice from chloro­form (yield = 86%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93-0.97Å with Uiso(H)= 1.5 Ueq(c-methyl) and Uiso(H)= 1.2Ueq(C) for other H atom.

Related literature top

For the biological activity of flavone derivatives, see: Thomas et al. (2013); Kumar et al. (2014); Lee et al. (2014). For further synthetic details, see: Vasanthi et al. (2014).

Structure description top

For the biological activity of flavone derivatives, see: Thomas et al. (2013); Kumar et al. (2014); Lee et al. (2014). For further synthetic details, see: Vasanthi et al. (2014).

Synthesis and crystallization top

The procedure (Vasanthi et al., 2014) adopted in the synthesis of the compound 3-(4-meth­oxy­phenyl)-2,3-di­hydro-1H-benzo(f)chromen-1-one is represented here. In a 250 ml round-bottomed flask 2-hy­droxy-1-aceto­naphthone (0.05 mol) and 4-meth­oxy­oxybenzaldehyde (0.05mol) were placed to which about 100 ml of absolute alcohol was added and stirred at room temperature for a time span of 5 minutes. Then about 10 ml of 40% sodium hydroxide solution was added and the mixture was stirred for 6 hours. On adding ice cold water a precipitate was generated which was filtered, washed with sufficient qu­antity of distilled water and dried. The crude product was recrystallized twice from chloro­form (yield = 86%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93-0.97Å with Uiso(H)= 1.5 Ueq(c-methyl) and Uiso(H)= 1.2Ueq(C) for other H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
3-(4-Methoxyphenyl)-2,3-dihydro-1H-naphtho[2,1-b]pyran-1-one top
Crystal data top
C20H16O3F(000) = 640
Mr = 304.33Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 3548 reflections
a = 7.3612 (3) Åθ = 2.1–27.7°
b = 17.8540 (9) ŵ = 0.09 mm1
c = 11.9465 (6) ÅT = 293 K
β = 105.697 (2)°Block, pale yellow
V = 1511.54 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3548 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.974, Tmax = 0.982k = 2323
33755 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
3548 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H16O3V = 1511.54 (12) Å3
Mr = 304.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3612 (3) ŵ = 0.09 mm1
b = 17.8540 (9) ÅT = 293 K
c = 11.9465 (6) Å0.30 × 0.25 × 0.20 mm
β = 105.697 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2297 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.035
33755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3548 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8210 (3)0.31670 (11)0.50857 (17)0.0479 (5)
H10.73800.34830.45720.057*
C20.9984 (3)0.34116 (12)0.5627 (2)0.0569 (6)
H21.03480.38900.54680.068*
C31.1261 (3)0.29601 (14)0.6411 (2)0.0615 (6)
H31.24570.31390.67850.074*
C41.0749 (3)0.22571 (13)0.66264 (19)0.0552 (5)
H41.16030.19560.71520.066*
C50.8940 (3)0.19745 (11)0.60665 (16)0.0442 (4)
C60.7616 (2)0.24405 (10)0.52940 (15)0.0398 (4)
C70.5772 (2)0.21474 (10)0.47367 (14)0.0380 (4)
C80.5436 (2)0.13995 (10)0.48896 (15)0.0404 (4)
C90.6770 (3)0.09415 (11)0.56488 (18)0.0480 (5)
H90.65000.04400.57410.058*
C100.8442 (3)0.12317 (11)0.62434 (17)0.0494 (5)
H100.92850.09350.67820.059*
C110.4166 (3)0.26181 (11)0.41137 (16)0.0444 (4)
C120.2355 (3)0.22029 (11)0.3582 (2)0.0534 (5)
H12A0.15730.22140.41180.064*
H12B0.16750.24560.28750.064*
C130.2685 (3)0.14097 (11)0.33062 (18)0.0478 (5)
H130.34050.14080.27260.057*
C140.0947 (3)0.09419 (11)0.28505 (18)0.0461 (5)
C150.0210 (3)0.07528 (12)0.35425 (18)0.0537 (5)
H150.00940.09180.43090.064*
C160.1816 (3)0.03216 (12)0.31180 (18)0.0514 (5)
H160.25870.02010.35930.062*
C170.2257 (3)0.00744 (10)0.19866 (17)0.0451 (5)
C180.0466 (3)0.06940 (12)0.17210 (18)0.0511 (5)
H180.12260.08180.12410.061*
C190.1111 (3)0.02680 (12)0.12893 (18)0.0521 (5)
H190.14130.01070.05200.062*
C200.5019 (3)0.05604 (15)0.2142 (3)0.0741 (7)
H20A0.43250.08340.28140.111*
H20B0.60090.08700.16840.111*
H20C0.55580.01200.23860.111*
O10.38066 (18)0.10428 (7)0.43445 (12)0.0496 (4)
O20.4204 (2)0.32953 (8)0.40683 (15)0.0635 (5)
O30.3787 (2)0.03475 (9)0.14670 (14)0.0619 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0537 (11)0.0423 (11)0.0461 (11)0.0051 (8)0.0107 (9)0.0012 (8)
C20.0593 (13)0.0490 (12)0.0598 (13)0.0147 (10)0.0116 (10)0.0031 (10)
C30.0483 (11)0.0647 (14)0.0659 (14)0.0137 (10)0.0059 (10)0.0081 (11)
C40.0475 (11)0.0594 (13)0.0524 (12)0.0030 (9)0.0026 (9)0.0006 (10)
C50.0453 (10)0.0439 (10)0.0416 (10)0.0005 (8)0.0083 (8)0.0015 (8)
C60.0460 (10)0.0382 (9)0.0351 (9)0.0008 (7)0.0110 (7)0.0026 (7)
C70.0438 (9)0.0356 (9)0.0336 (9)0.0003 (7)0.0089 (7)0.0012 (7)
C80.0424 (10)0.0377 (10)0.0404 (10)0.0021 (7)0.0103 (7)0.0002 (8)
C90.0535 (11)0.0367 (10)0.0514 (11)0.0010 (8)0.0099 (9)0.0069 (8)
C100.0523 (11)0.0460 (11)0.0451 (11)0.0071 (9)0.0047 (9)0.0066 (9)
C110.0499 (10)0.0365 (10)0.0443 (10)0.0010 (8)0.0084 (8)0.0005 (8)
C120.0491 (11)0.0445 (11)0.0597 (13)0.0020 (8)0.0029 (9)0.0016 (9)
C130.0472 (11)0.0463 (11)0.0473 (11)0.0005 (8)0.0084 (8)0.0003 (9)
C140.0424 (10)0.0417 (10)0.0520 (11)0.0004 (8)0.0091 (8)0.0005 (8)
C150.0587 (12)0.0587 (13)0.0419 (11)0.0037 (10)0.0104 (9)0.0084 (9)
C160.0515 (11)0.0538 (12)0.0512 (12)0.0021 (9)0.0178 (9)0.0032 (9)
C170.0414 (10)0.0399 (10)0.0520 (11)0.0015 (8)0.0093 (8)0.0043 (8)
C180.0495 (11)0.0545 (12)0.0518 (12)0.0038 (9)0.0182 (9)0.0047 (9)
C190.0536 (11)0.0571 (13)0.0461 (11)0.0038 (9)0.0146 (9)0.0103 (9)
C200.0521 (13)0.0760 (17)0.098 (2)0.0161 (12)0.0263 (13)0.0099 (15)
O10.0474 (8)0.0395 (7)0.0554 (8)0.0048 (6)0.0028 (6)0.0053 (6)
O20.0619 (10)0.0377 (8)0.0802 (11)0.0039 (6)0.0008 (8)0.0028 (7)
O30.0538 (9)0.0633 (10)0.0681 (10)0.0171 (7)0.0159 (7)0.0162 (8)
Geometric parameters (Å, º) top
C1—C21.362 (3)C12—C131.489 (3)
C1—C61.413 (3)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
C2—C31.391 (3)C13—O11.448 (2)
C2—H20.9300C13—C141.501 (3)
C3—C41.355 (3)C13—H130.9800
C3—H30.9300C14—C181.372 (3)
C4—C51.412 (3)C14—C151.380 (3)
C4—H40.9300C15—C161.387 (3)
C5—C101.407 (3)C15—H150.9300
C5—C61.417 (3)C16—C171.375 (3)
C6—C71.439 (2)C16—H160.9300
C7—C81.379 (2)C17—O31.357 (2)
C7—C111.477 (2)C17—C191.381 (3)
C8—O11.359 (2)C18—C191.366 (3)
C8—C91.405 (3)C18—H180.9300
C9—C101.347 (3)C19—H190.9300
C9—H90.9300C20—O31.419 (3)
C10—H100.9300C20—H20A0.9600
C11—O21.211 (2)C20—H20B0.9600
C11—C121.507 (3)C20—H20C0.9600
C2—C1—C6120.91 (19)C13—C12—H12B109.1
C2—C1—H1119.5C11—C12—H12B109.1
C6—C1—H1119.5H12A—C12—H12B107.8
C1—C2—C3121.3 (2)O1—C13—C12109.26 (16)
C1—C2—H2119.3O1—C13—C14106.95 (15)
C3—C2—H2119.3C12—C13—C14115.83 (16)
C4—C3—C2119.52 (19)O1—C13—H13108.2
C4—C3—H3120.2C12—C13—H13108.2
C2—C3—H3120.2C14—C13—H13108.2
C3—C4—C5121.08 (19)C18—C14—C15118.26 (18)
C3—C4—H4119.5C18—C14—C13120.25 (18)
C5—C4—H4119.5C15—C14—C13121.49 (18)
C10—C5—C4121.09 (18)C14—C15—C16121.34 (19)
C10—C5—C6119.34 (17)C14—C15—H15119.3
C4—C5—C6119.56 (18)C16—C15—H15119.3
C1—C6—C5117.55 (17)C17—C16—C15119.26 (19)
C1—C6—C7123.44 (17)C17—C16—H16120.4
C5—C6—C7118.98 (16)C15—C16—H16120.4
C8—C7—C6118.11 (16)O3—C17—C16125.00 (19)
C8—C7—C11118.04 (16)O3—C17—C19115.47 (18)
C6—C7—C11123.53 (16)C16—C17—C19119.52 (18)
O1—C8—C7123.85 (16)C19—C18—C14121.16 (19)
O1—C8—C9114.13 (16)C19—C18—H18119.4
C7—C8—C9122.01 (17)C14—C18—H18119.4
C10—C9—C8119.73 (18)C18—C19—C17120.47 (19)
C10—C9—H9120.1C18—C19—H19119.8
C8—C9—H9120.1C17—C19—H19119.8
C9—C10—C5121.42 (17)O3—C20—H20A109.5
C9—C10—H10119.3O3—C20—H20B109.5
C5—C10—H10119.3H20A—C20—H20B109.5
O2—C11—C7124.46 (17)O3—C20—H20C109.5
O2—C11—C12120.04 (17)H20A—C20—H20C109.5
C7—C11—C12115.37 (16)H20B—C20—H20C109.5
C13—C12—C11112.50 (16)C8—O1—C13115.06 (14)
C13—C12—H12A109.1C17—O3—C20117.87 (18)
C11—C12—H12A109.1
C6—C1—C2—C30.8 (3)C8—C7—C11—C127.0 (2)
C1—C2—C3—C41.3 (4)C6—C7—C11—C12179.61 (17)
C2—C3—C4—C50.1 (4)O2—C11—C12—C13157.9 (2)
C3—C4—C5—C10176.6 (2)C7—C11—C12—C1326.1 (2)
C3—C4—C5—C62.0 (3)C11—C12—C13—O155.1 (2)
C2—C1—C6—C51.1 (3)C11—C12—C13—C14175.91 (17)
C2—C1—C6—C7179.08 (19)O1—C13—C14—C18126.0 (2)
C10—C5—C6—C1176.18 (18)C12—C13—C14—C18112.0 (2)
C4—C5—C6—C12.5 (3)O1—C13—C14—C1554.4 (2)
C10—C5—C6—C71.9 (3)C12—C13—C14—C1567.7 (3)
C4—C5—C6—C7179.48 (17)C18—C14—C15—C160.2 (3)
C1—C6—C7—C8171.55 (18)C13—C14—C15—C16179.89 (18)
C5—C6—C7—C86.4 (3)C14—C15—C16—C170.4 (3)
C1—C6—C7—C1115.1 (3)C15—C16—C17—O3179.74 (19)
C5—C6—C7—C11167.02 (17)C15—C16—C17—C190.9 (3)
C6—C7—C8—O1175.03 (16)C15—C14—C18—C190.3 (3)
C11—C7—C8—O111.2 (3)C13—C14—C18—C19179.97 (19)
C6—C7—C8—C95.9 (3)C14—C18—C19—C170.2 (3)
C11—C7—C8—C9167.86 (18)O3—C17—C19—C18179.78 (18)
O1—C8—C9—C10179.81 (18)C16—C17—C19—C180.9 (3)
C7—C8—C9—C100.7 (3)C7—C8—O1—C1320.1 (3)
C8—C9—C10—C54.2 (3)C9—C8—O1—C13160.76 (17)
C4—C5—C10—C9175.1 (2)C12—C13—O1—C852.9 (2)
C6—C5—C10—C93.5 (3)C14—C13—O1—C8178.94 (15)
C8—C7—C11—O2168.8 (2)C16—C17—O3—C200.9 (3)
C6—C7—C11—O24.6 (3)C19—C17—O3—C20179.7 (2)

Experimental details

Crystal data
Chemical formulaC20H16O3
Mr304.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.3612 (3), 17.8540 (9), 11.9465 (6)
β (°) 105.697 (2)
V3)1511.54 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
33755, 3548, 2297
Rint0.035
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.171, 1.00
No. of reflections3548
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The authors thank SAIF (IIT Madras) for collecting the intensity data.

References

First citationBruker (2004). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468–1474.  CAS Google Scholar
First citationLee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). Biol. Chem. 57, 129–132.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, N. & Zachariah, S. M. (2013). Asia. J. Pharm. Clin. Res. 6 (Suppl. 2), 11–15.  Google Scholar
First citationVasanthi, R., Reuben Jonathan, D., Ezhilarasi, K. S., Sathya, S. & Usha, G. (2014). Acta Cryst. E70, o1116–o1117.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds