research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2,2′-bipyridin-1-ium 1,1,3,3-tetra­cyano-2-ethoxyprop-2-en-1-ide and bis­(2,2′-bipyridin-1-ium) 1,1,3,3-tetra­cyano-2-(di­cyano­methylene)propane-1,3-diide

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bUnité de Recherche de Chimie de l'Environnement et, Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, cDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland, dSchool of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa, eMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland, fLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and gSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: fat_setifi@yahoo.fr, cg@st-andrews.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 April 2015; accepted 12 April 2015; online 18 April 2015)

In 2,2′-bipyridin-1-ium 1,1,3,3-tetra­cyano-2-eth­oxy­prop-2-en-1-ide, C10H9N2+·C9H5N4O, (I), the ethyl group in the anion is disordered over two sets of atomic sites with occupancies 0.634 (9) and 0.366 (9), and the dihedral angle between the ring planes in the cation is 2.11 (7)°. The two independent C(CN)2 groups in the anion make dihedral angles of 10.60 (6) and 12.44 (4)° with the central propenide unit, and the bond distances in the anion provide evidence for extensive electronic delocalization. In bis­(2,2′-bipyridin-1-ium) 1,1,3,3-tetra­cyano-2-(di­cyano­methyl­ene)propane-1,3-diide [alternative name bis­(2,2′-bipyridin-1-ium) tris­(di­cyano­methyl­ene)methane­diide], 2C10H9N2+·C10N62− (II), the dihedral angles between the ring planes in the two independent cations are 7.7 (2) and 10.92 (17)°. The anion exhibits approximate C3 symmetry, consistent with extensive electronic delocalization, and the three independent C(CN)2 groups make dihedral angles of 23.8 (2), 27.0 (3) and 27.4 (2)° with the central plane. The ions in (I) are linked by an N—H⋯N hydrogen bond and the resulting ion pairs are linked by two independent C—H⋯N hydrogen bonds, forming a ribbon containing alternating R44(18) and R44(26) rings, where both ring types are centrosymmetric. The ions in (II) are linked by two independent N—H⋯N hydrogen bonds and the resulting ion triplets are linked by a C—H⋯N hydrogen bond, forming a C21(7) chain containing anions and only one type of cation, with the other cation linked to the chain by a further C—H⋯N hydrogen bond.

1. Chemical context

Polynitrile anions have received considerable attention recently because of their importance in both coordination chemistry and in mol­ecular materials chemistry (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]; Benmansour et al., 2007[Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.]; Setifi, Domasevitch et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]; Setifi, Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]; Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]). These organic anions are inter­esting for their extensive electronic delocalization, and for their structural versatility, in particular the potential to utilize a variety of coordination modes, including their action as bridging ligands between metal centres in μ2-, μ3- or μ4- modes, so forming polymeric assemblies which can be one-, two- or three-dimensional. Thus such anions readily form binary complexes with transition-metal and ternary complexes in which a transition-metal centre is also coordinated by other bridging or chelating ligands, and such materials exhibit inter­esting magnetic properties (Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.]).

[Scheme 1]

In view of the possible roles of these versatile anionic ligands, we have been inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the extensive field of mol­ecular materials exhibiting the spin-crossover (SCO) phenomenon (Dupouy et al., 2008[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921-8931.], 2009[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404-3406.]; Setifi, Charles et al., 2014[Setifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242-247.]). During the course of attempts to prepare such complexes, using the anions 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (tcnoet) and tris­(di­cyano­methyl­ene)methane­diide (tcpd), we isolated the two title compounds whose structures are described here.

2. Structural commentary

Compound (I)[link] consists of a 2,2′-bipyridin-1-ium cation and a 1,1,3,3-tetra­cyano-2-eth­oxy­propenide anion in which the C atoms of the ethyl group are disordered over two sets of sites having occupancies 0.634 (9) and 0.366 (9). In the selected asymmetric unit for (I)[link] (Fig. 1[link]) the two ions are linked by an N—H⋯N hydrogen bond (Table 1[link]). For compound (II)[link], which consists of two 2,2′-bipyridin-1-ium cations and a single tris­(di­cyano­methyl­ene)methane­diide dianion, it was possible to select an asymmetric unit (Fig. 2[link]) in which the two cations are both linked to the anion by N—H⋯N hydrogen bonds (Table 2[link]), although an asymmetric unit selected in this way does not fit neatly into the reference unit cell. It will be convenient to refer to the cations of compound (II)[link] containing the atoms N11 and N31 as cations of types 1 and 2 respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.901 (15) 2.202 (15) 2.6306 (15) 108.5 (12)
N11—H11⋯N311 0.901 (15) 2.082 (15) 2.8268 (17) 139.2 (13)
C13—H13⋯N331i 0.95 2.52 3.4294 (18) 160
C16—H16⋯N312ii 0.95 2.38 3.2238 (18) 148
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.91 (3) 2.15 (3) 2.621 (4) 111 (3)
N11—H11⋯N511 0.91 (3) 2.08 (4) 2.874 (5) 145 (3)
N31—H31⋯N41 0.91 (4) 2.14 (3) 2.627 (4) 113 (3)
N31—H31⋯N522 0.91 (4) 2.15 (4) 2.888 (5) 138 (3)
C16—H16⋯N532 0.95 2.56 3.472 (6) 162
C34—H34⋯N522i 0.95 2.62 3.391 (5) 139
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The independent ionic components of compound (I)[link] showing the atom-labelling scheme and the N—H⋯N hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent ionic components of compound (II)[link] showing the atom-labelling scheme and the N—H⋯N hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

In none of the cations are the two rings exactly parallel: the dihedral angle between the mean planes of the two rings in the cation of compound (I)[link] is 2.11 (7)°, and the corresponding angles for the type 1 and 2 cations of compound (II)[link] are 10.92 (17) and 7.7 (2)° respectively. Although each cation contains a short intra-cation N—H⋯N contact (Tables 1[link] and 2[link]), the very small N—H⋯N angles indicate that these contacts are unlikely to be of structural significance (cf. Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

In the anion of compound (I)[link], the central bonds C31—C32 and C32—C33 have lengths which are equal within experimental uncertainly (Table 3[link]). In addition, the four C—C bonds linking the cyano substituents to the central propenide unit are not only similar in length, but all of them are short for their type [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) 1.431 Å, lower quartile value 1.425 Å]; on the other hand, the C—N distances are all similar and long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations point to extensive delocalization of the negative charge in the anion of (I)[link] with the forms (A)–(F) (see scheme below) all playing a role in the overall electronic structure. Accordingly, the N—H⋯N hydrogen bond linking the two ions within the selected asymmetric unit of (I)[link] is a charge-assisted hydrogen bond (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]). The tetra­cyano­propenide fragment of this anion is not planar: the two C(CN)2 units are twisted out of the plane of the central C3O core in a conrotatory fashion, and the dihedral angles between the planes of the C(CN)2 units and that of the central core are 10.60 (6)° and 12.44 (4)° respectively for the two units containing atoms C31 and C33.

[Scheme 2]

Table 3
Selected geometric parameters (Å, °) for (I)[link]

C31—C32 1.3982 (17) C32—O321 1.3618 (13)
C32—C33 1.3956 (16) O321—C321 1.428 (2)
C31—C311 1.4136 (16) C311—N311 1.1471 (17)
C31—C312 1.4224 (16) C312—N312 1.1498 (16)
C33—C331 1.4261 (17) C331—N331 1.1504 (16)
C33—C332 1.4181 (16) C332—N332 1.1522 (16)
       
C32—C31—C311 119.84 (11) C32—C33—C331 119.94 (10)
C32—C31—C312 123.31 (10) C32—C33—C332 124.72 (11)
C311—C31—C312 116.80 (11) C331—C33—C332 115.15 (10)
N311—C311—C31 178.44 (17) C31—C32—C33 127.46 (10)
N312—C312—C31 178.53 (13) O321—C32—C31 118.45 (10)
N331—C331—C33 176.77 (13) O321—C32—C33 114.02 (10)
N332—C332—C33 175.54 (13)    
       
C31—C32—C33—C331 −171.92 (11) C31—C32—O321—C321 76.5 (3)
C31—C32—C33—C332 13.3 (2) C33—C32—O321—C321 −106.2 (3)
C33—C32—C31—C311 −166.68 (12) C32—O321—C321—C322 −156.1 (4)
C33—C32—C31—C312 10.92 (19)    

In the anion of compound (II)[link], the geometry at the central atom C5 (Fig. 2[link]) is planar, and the three C—C bonds involving atom C5 are similar in length (Table 4[link]). Each of the independent C(CN)2 units is rotated out of the plane of the central four-atom core, with dihedral angles between the planes of these three units and that of the central core of 23.8 (3), 27.0 (3) and 27.4 (2)°, respectively, for the C(CN)2 units containing atoms C51, C52 and C53. These rotations are in a concerted sense, giving approximate mol­ecular, but not crystallographic, symmetry of D3 (32) type for the anion. Although the bond distances involving the cyano substituents show some variations (Table 4[link]) the approximate overall D3 symmetry is consistent with delocalization of the two negative charges over the whole anion, particularly into the cyano groups.

Table 4
Selected geometric parameters (Å, °) for (II)[link]

C5—C51 1.411 (5) C53—C532 1.437 (6)
C5—C52 1.413 (5) C511—N511 1.136 (4)
C5—C53 1.433 (5) C512—N512 1.140 (5)
C51—C511 1.413 (5) C521—N521 1.155 (5)
C51—C512 1.439 (5) C522—N522 1.153 (5)
C52—C521 1.428 (5) C531—N531 1.129 (5)
C52—C522 1.410 (5) C532—N532 1.121 (5)
C53—C531 1.428 (6)    
       
C51—C5—C52 122.1 (3) C5—C52—C521 121.9 (3)
C51—C5—C53 119.5 (3) C5—C52—C522 123.0 (3)
C52—C5—C53 118.4 (4) C521—C52—C522 115.0 (3)
C5—C51—C511 120.9 (3) C5—C53—C531 121.2 (4)
C5—C51—C512 122.0 (3) C5—C53—C532 122.0 (4)
C511—C51—C512 117.1 (3) C531—C53—C532 116.9 (3)
       
C51—C5—C52—C521 26.5 (6) C51—C5—C53—C531 −153.1 (4)
C51—C5—C52—C522 −150.5 (4) C51—C5—C53—C532 25.9 (6)
C52—C5—C53—C531 28.8 (6) C52—C5—C51—C511 −156.5 (4)
C52—C5—C53—C532 −152.2 (4) C52—C5—C51—C512 22.0 (6)
C53—C5—C51—C511 25.5 (6) C53—C5—C52—C521 −155.5 (4)
C53—C5—C51—C512 −156.0 (4) C53—C5—C52—C522 27.5 (6)

3. Supra­molecular inter­actions

The supra­molecular assembly in compound (I)[link] is determined by the linkage of the ion pairs, themselves inter­nally linked by an N—H⋯N hydrogen bond (Fig. 1[link]), by two independent C—H⋯N hydrogen bonds both of which involve donors in the protonated pyridyl ring (Table 1[link]), and both of which therefore can be regarded as charge-assisted hydrogen bonds. The hydrogen bond having atom C13 as the donor links ion pairs related by translation, forming a C22(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [111] direction (Fig. 3[link]). The hydrogen bond having atom C16 as the donor links ion pairs related by inversion, forming a centrosymmetric [R_{4}^{4}](18) motif (Fig. 3[link]). The combination of these two inter­actions generates a ribbon running parallel to [111] in which [R_{4}^{4}](18) rings centred at (n − ½, n, n − ½) alternate with [R_{4}^{4}](26) rings centred at (n, n + ½, n), where n represents an integer in both cases (Fig. 3[link]). A single ribbon of this type passes through each unit cell. The crystal structure of compound (I)[link] contains no C—H⋯π hydrogen bonds, but there is a single rather weak ππ stacking inter­action between components of adjacent ribbons. The planes of the protonated pyridyl ring of the reference cation and of the unprotonated ring of the cation at (−x, 1 − y, 1 − z) make a dihedral angle of 2.11 (7)°: the ring-centroid separation is 3.7395 (8) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3413 (5) Å, corresponding to a ring-centroid offset of ca 1.65 Å, so that there is only a very modest overlap of the two rings in question (Fig. 4[link]). If this inter­action is regarded as structurally significant, its effect is to link the ribbons (Fig. 3[link]) into a sheet parallel to (1[\overline{1}]0).

[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded ribbon parallel to [111] in which centrosymmetric [R_{4}^{4}](18) and [R_{4}^{4}](26) rings alternate. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the overlap between pairs of inversion-related cations, viewed normal to the ring planes. For the sake of clarity, the unit-cell outline, the anions, and H atoms bonded to C atoms in the cations have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).

Despite the presence of three independent ions in the structure of compound (II)[link], the supra­molecular assembly in (II)[link] is somewhat simpler than that in (I)[link]. Ion triplets (Fig. 2[link]) which are related by the c-glide plane at y = 0.75 are linked by a C—H⋯N hydrogen bond (Table 2[link]), forming a [C_{2}^{1}](7) chain running parallel to the [001] direction (Fig. 5[link]). This chain comprises alternating anions and type 2 cations, while the type 1 cations are simply pendent from the chain. Two chains of this type, related to one another by inversion, pass through each unit cell but there are no direction-specific inter­actions between adjacent chains. Hydrogen bonds of the C—H⋯π type are absent from the crystal structure of compound (II)[link] and the only ππ stacking inter­action lies within the hydrogen-bonded chain.

[Figure 5]
Figure 5
A stereoview of part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded [C_{2}^{1}](7) chain parallel to [001] from which the type 1 cations are pendent. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

4. Database survey

We have recently reported the structures of several salts containing the 2-eth­oxy-1,1,3,3-tetra­cyano­propenide anion, including salts with the bis­(2,2′-bi-1H-imidazole)­copper(II) cation (Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]), with tris­(phen­an­thro­line)iron(II) (Setifi, Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]), with the 1,1′-diethyl-4,4′-bi­pyridine-1,1′-diium dication (Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]) and with tris­(2,2′-bi­pyridine)­iron(II) (Setifi, Setifi et al., 2014[Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465-469.]). In each of these salts, the cyano substituents in the anion adopt a very similar conformation to that observed here in compound (I)[link] with, in each case, a similar pattern of bond distances and hence of electronic delocalization. Despite the disparate nature of the counter-ions, the anion conformation is almost constant, suggesting that this is determined primarily by intra-anion forces, rather than by inter-ion inter­actions.

The structures of two organic salts containing the 2-di­cyano­methyl­ene-1,1,3,3-tetra­cyaopropenediide anion have been reported. In both the N,N′-dimethyl-4,4–bipyridindiium salt [CSD (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) refcode BELTER; Nakamura et al., 1981[Nakamura, K., Kai, Y., Yasuoka, N. & Kasai, N. (1981). Bull. Chem. Soc. Jpn, 54, 3300-3303.])] and the bis­(quinolinium) salt (CSD refcode QUCNPR10; Sakanoue et al., 1971[Sakanoue, S., Yasuoka, N., Kasai, N. & Kakudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 1-8.]) the anion adopts a conformation having approximately D3 symmetry, just as found in compound (II)[link] reported here: indeed, the anion in QUCNPR10 lies across a twofold rotation axis in space group Pbcn, so that while two of the twofold rotation axes are only approximate, the third is a crystallographic axis. As in compound (II)[link], the C—C and C—N distances in the anions in both BELTER and QUCNPR10 show a degree of variation, but again the approximate symmetry is consistent with extensive electronic delocalization. The structures of the isomorphous salts of this anion with the cations [Ca(H2O)6]2+ (CSD refcode CAHCYB; Bekoe et al., 1967[Bekoe, D. A., Gantzel, P. K. & Trueblood, K. N. (1967). Acta Cryst. 22, 657-665.]) and [Ba(H2O)6]2+ (CSD refcode BACMCP; Bekoe et al., 1963[Bekoe, D. A., Gauzel, P. K. & Trueblood, K. N. (1963). Acta Cryst. 16, A62.]) have been determined, but no atomic coordinates are deposited in the CSD. A number of salts containing the 2,2′-bipyridin-1-ium cation with a range of organic anions have been structurally analysed, but more relevant to the present study are three salts of this cation with simple inorganic anions. In the hydrated monobromide (Bowen et al., 2004[Bowen, R. J., Fernandes, M. A., Gitari, P. W. & Layh, M. (2004). Acta Cryst. C60, o113-o114.]), the bromide ions and the water mol­ecules are linked by O—H⋯Br hydrogen bonds, forming [C_{2}^{1}](4) chains to which the cations are linked by N—H⋯ O hydrogen bonds. In the thio­cyanate salt, in which the cations are disordered over two sets of atomic sites (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]), the ions are linked by a combination of N—H⋯N and C—H⋯N hydrogen bonds, forming [C_{2}^{1}](6) chains, while in the hydrogensulfate salt a combination of five independent hydrogen bonds links the ions into complex sheets (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]).

5. Synthesis and crystallization

The salts K(tcnoet) and K2(tcpd) were prepared using published methods (Middleton et al., 1958[Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795-2806.]; Middleton & Engelhardt, 1958[Middleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788-2795.]). Compounds (I)[link] and (II)[link] were prepared under solvothermal conditions in Teflon-lined steel autoclaves (inner volume ca 30 cm3). For the synthesis of salt (I)[link], a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 2,2′-bi­pyridine (16 mg, 0.1 mmol) and Ktcnoet (45 mg, 0.2 mmol) was dissolved in water–ethanol (4:1 v/v, 15 cm3) and then held in the autoclave at 393 K for 3 d. After slowly cooling to room temperature, pale-orange crystals of (I)[link] suitable for single-crystal X-ray diffraction were obtained (yield 15%). The synthesis of (II)[link] was similar to that of (I)[link], but using K2tcpd (50 mg, 0.2 mmol) instead of K(tcnoet), giving yellow crystals suitable for single-crystal X-ray diffraction (yield 40%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms in the cations were located in difference maps. The H atoms bonded to C atoms in the cations were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å and Uiso(H) = 1.2Ueq(C): for H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Tables 1[link] and 2[link]. It was apparent from an early stage that the eth­oxy substituent in the anion of compound (I)[link] was disordered over two sets of atomic sites having unequal occupancy. For the minor occupancy component, atoms O341, C341 and C342 (see Fig. 1[link]), the bonded distances and the one angle non-bonded distances were constrained to be identical to the corresponding distances in the major component, atoms O321, C321 and C322, subject to s.u. values of 0.005 and 0.01 Å respectively. In addition, the atomic coordinates and anisotropic displacement parameters of atoms O321 and O341 were constrained to be identical. Subject to these conditions, the site occupancies refined to values of 0.634 (9) and 0.366 (9). The H atoms in the disordered ethyl group of the anion in compound (I)[link] were included in calculated positions with C—H distances of 0.98 Å with Uiso(H) = 1.5Ueq(C) for the methyl groups, which were permitted to rotate but not to tilt, and C—H distances of 0.99 Å with Uiso(H) = 1.2Ueq(C) for the CH2 groups.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H9N2+·C9H5N4O 2C10H9N2+·C10N62−
Mr 342.36 518.54
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 123 173
a, b, c (Å) 7.2514 (1), 10.6647 (2), 11.5619 (2) 13.4195 (8), 16.1801 (8), 12.9058 (9)
α, β, γ (°) 100.020 (1), 104.372 (1), 92.590 (1) 90, 116.721 (3), 90
V3) 849.27 (3) 2503.0 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.40 × 0.35 × 0.13 0.21 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.870, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6234, 4152, 3447 14513, 4607, 2137
Rint 0.017 0.086
(sin θ/λ)max−1) 0.667 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.02 0.067, 0.183, 0.98
No. of reflections 4152 4607
No. of parameters 259 367
No. of restraints 3 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20 0.38, −0.26
Computer programs: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.], SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2008) for (I); APEX2 (Bruker, 2009 for (II). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1997) for (I); APEX2 and SAINT (Bruker, 2009) for (II). Data reduction: DENZO-SMN (Otwinowski & Minor, 1997) for (I); SAINT (Bruker, 2009) for (II). Program(s) used to solve structure: SIR2011 (Burla et al., 2012) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide top
Crystal data top
C10H9N2+·C9H5N4OZ = 2
Mr = 342.36F(000) = 356
Triclinic, P1Dx = 1.339 Mg m3
a = 7.2514 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6647 (2) ÅCell parameters from 4152 reflections
c = 11.5619 (2) Åθ = 2.9–28.3°
α = 100.020 (1)°µ = 0.09 mm1
β = 104.372 (1)°T = 123 K
γ = 92.590 (1)°Plate, pale orange
V = 849.27 (3) Å30.40 × 0.35 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
4152 independent reflections
Radiation source: fine-focus sealed tube3447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ & ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.870, Tmax = 0.988k = 1114
6234 measured reflectionsl = 1515
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2911P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4152 reflectionsΔρmax = 0.25 e Å3
259 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.21857 (15)0.52707 (9)0.43771 (10)0.0285 (2)
H110.304 (2)0.5526 (14)0.5105 (14)0.034*
C120.13048 (16)0.40769 (10)0.41532 (11)0.0250 (2)
C130.00916 (18)0.36846 (12)0.30713 (11)0.0300 (3)
H130.07600.28580.28910.036*
C140.0511 (2)0.45071 (13)0.22510 (12)0.0354 (3)
H140.14630.42400.15050.042*
C150.0455 (2)0.57160 (13)0.25183 (13)0.0370 (3)
H150.01910.62780.19560.044*
C160.18018 (19)0.60851 (12)0.36102 (13)0.0347 (3)
H160.24590.69170.38200.042*
N210.33192 (15)0.39123 (10)0.60741 (9)0.0298 (2)
C220.19143 (16)0.33195 (11)0.51119 (10)0.0248 (2)
C230.10772 (18)0.20973 (12)0.50218 (12)0.0316 (3)
H230.00980.17040.43240.038*
C240.1711 (2)0.14670 (12)0.59796 (13)0.0358 (3)
H240.11670.06310.59490.043*
C250.31365 (19)0.20658 (13)0.69753 (12)0.0336 (3)
H250.35850.16560.76450.040*
C260.39027 (18)0.32811 (13)0.69780 (12)0.0334 (3)
H260.48980.36860.76620.040*
C310.63575 (17)0.92545 (11)0.75796 (11)0.0258 (2)
C320.66992 (16)0.94146 (11)0.88432 (11)0.0243 (2)
C330.73776 (16)1.05351 (11)0.97022 (10)0.0252 (2)
C3110.52991 (19)0.81335 (12)0.68277 (12)0.0327 (3)
N3110.4472 (2)0.72078 (12)0.62292 (12)0.0525 (4)
C3120.69653 (17)1.01940 (11)0.69840 (11)0.0278 (3)
N3120.74430 (19)1.09353 (11)0.64791 (11)0.0396 (3)
C3310.78777 (17)1.04922 (11)1.09671 (11)0.0281 (3)
N3310.83067 (17)1.05186 (11)1.19987 (10)0.0365 (3)
C3320.74824 (17)1.17768 (11)0.94263 (11)0.0277 (2)
N3320.75833 (18)1.28170 (10)0.92815 (10)0.0366 (3)
O3210.62639 (12)0.83982 (8)0.93268 (8)0.0279 (2)0.634 (9)
C3210.7550 (4)0.7422 (3)0.9381 (5)0.0381 (9)0.634 (9)
H32A0.86320.76631.01170.046*0.634 (9)
H32B0.80690.73080.86580.046*0.634 (9)
C3220.6481 (8)0.6213 (3)0.9417 (6)0.0430 (11)0.634 (9)
H32C0.73430.55300.94580.064*0.634 (9)
H32D0.54220.59770.86810.064*0.634 (9)
H32E0.59740.63341.01350.064*0.634 (9)
O3410.62639 (12)0.83982 (8)0.93268 (8)0.0279 (2)0.366 (9)
C3410.6787 (17)0.7134 (5)0.8864 (6)0.051 (2)0.366 (9)
H34A0.80190.72180.86470.061*0.366 (9)
H34B0.57960.67120.81250.061*0.366 (9)
C3420.6957 (17)0.6360 (6)0.9825 (6)0.0423 (18)0.366 (9)
H42C0.73500.55190.95410.063*0.366 (9)
H42D0.57180.62521.00100.063*0.366 (9)
H42E0.79140.67961.05600.063*0.366 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0302 (5)0.0213 (5)0.0365 (6)0.0010 (4)0.0157 (4)0.0026 (4)
C120.0269 (6)0.0197 (5)0.0310 (6)0.0016 (4)0.0148 (5)0.0016 (4)
C130.0346 (6)0.0245 (6)0.0316 (6)0.0005 (5)0.0123 (5)0.0021 (5)
C140.0414 (7)0.0367 (7)0.0310 (6)0.0075 (6)0.0142 (6)0.0065 (5)
C150.0456 (8)0.0347 (7)0.0422 (7)0.0120 (6)0.0257 (6)0.0161 (6)
C160.0394 (7)0.0243 (6)0.0491 (8)0.0029 (5)0.0261 (6)0.0097 (5)
N210.0296 (5)0.0285 (5)0.0301 (5)0.0028 (4)0.0097 (4)0.0011 (4)
C220.0254 (5)0.0216 (5)0.0283 (6)0.0006 (4)0.0113 (4)0.0012 (4)
C230.0338 (6)0.0232 (6)0.0342 (6)0.0026 (5)0.0047 (5)0.0035 (5)
C240.0398 (7)0.0245 (6)0.0419 (7)0.0003 (5)0.0076 (6)0.0084 (5)
C250.0326 (6)0.0342 (7)0.0361 (7)0.0068 (5)0.0092 (5)0.0107 (5)
C260.0293 (6)0.0373 (7)0.0313 (6)0.0007 (5)0.0066 (5)0.0031 (5)
C310.0275 (6)0.0206 (5)0.0310 (6)0.0001 (4)0.0110 (5)0.0049 (4)
C320.0212 (5)0.0218 (5)0.0332 (6)0.0027 (4)0.0102 (4)0.0092 (4)
C330.0241 (5)0.0246 (6)0.0280 (6)0.0020 (4)0.0067 (4)0.0082 (4)
C3110.0382 (7)0.0266 (6)0.0371 (7)0.0017 (5)0.0197 (5)0.0027 (5)
N3110.0676 (9)0.0374 (7)0.0510 (8)0.0208 (6)0.0312 (7)0.0117 (6)
C3120.0327 (6)0.0219 (5)0.0297 (6)0.0019 (4)0.0116 (5)0.0020 (4)
N3120.0552 (7)0.0269 (5)0.0423 (6)0.0002 (5)0.0233 (6)0.0075 (5)
C3310.0272 (6)0.0240 (6)0.0334 (7)0.0001 (4)0.0071 (5)0.0082 (5)
N3310.0447 (7)0.0315 (6)0.0314 (6)0.0005 (5)0.0047 (5)0.0095 (4)
C3320.0308 (6)0.0257 (6)0.0253 (6)0.0025 (4)0.0057 (5)0.0042 (4)
N3320.0522 (7)0.0265 (6)0.0300 (6)0.0033 (5)0.0082 (5)0.0063 (4)
O3210.0309 (4)0.0215 (4)0.0357 (5)0.0025 (3)0.0145 (4)0.0092 (3)
C3210.0313 (13)0.0412 (15)0.055 (2)0.0185 (11)0.0194 (12)0.0291 (14)
C3220.061 (3)0.0208 (13)0.054 (3)0.0070 (12)0.027 (2)0.0080 (15)
O3410.0309 (4)0.0215 (4)0.0357 (5)0.0025 (3)0.0145 (4)0.0092 (3)
C3410.090 (6)0.037 (3)0.039 (3)0.033 (3)0.029 (3)0.019 (2)
C3420.061 (5)0.026 (3)0.043 (4)0.010 (2)0.018 (3)0.007 (2)
Geometric parameters (Å, º) top
N11—C161.3361 (17)C32—C331.3956 (16)
N11—C121.3512 (14)C31—C3111.4136 (16)
N11—H110.901 (16)C31—C3121.4224 (16)
C12—C131.3842 (17)C33—C3311.4261 (17)
C12—C221.4755 (17)C33—C3321.4181 (16)
C13—C141.3900 (18)C32—O3211.3618 (13)
C13—H130.9500O321—C3211.428 (2)
C14—C151.3860 (19)C311—N3111.1471 (17)
C14—H140.9500C312—N3121.1498 (16)
C15—C161.372 (2)C331—N3311.1504 (16)
C15—H150.9500C332—N3321.1522 (16)
C16—H160.9500C321—C3221.487 (3)
N21—C261.3325 (17)C321—H32A0.9900
N21—C221.3451 (15)C321—H32B0.9900
C22—C231.3886 (16)C322—H32C0.9800
C23—C241.3870 (18)C322—H32D0.9800
C23—H230.9500C322—H32E0.9800
C24—C251.3767 (19)C341—C3421.480 (4)
C24—H240.9500C341—H34A0.9900
C25—C261.3861 (18)C341—H34B0.9900
C25—H250.9500C342—H42C0.9800
C26—H260.9500C342—H42D0.9800
C31—C321.3982 (17)C342—H42E0.9800
C16—N11—C12123.83 (12)C32—C31—C312123.31 (10)
C16—N11—H11119.5 (10)C311—C31—C312116.80 (11)
C12—N11—H11116.6 (10)N311—C311—C31178.44 (17)
N11—C12—C13117.84 (11)N312—C312—C31178.53 (13)
N11—C12—C22116.02 (11)N331—C331—C33176.77 (13)
C13—C12—C22126.13 (10)N332—C332—C33175.54 (13)
C12—C13—C14119.62 (12)C32—C33—C331119.94 (10)
C12—C13—H13120.2C32—C33—C332124.72 (11)
C14—C13—H13120.2C331—C33—C332115.15 (10)
C15—C14—C13120.18 (13)C31—C32—C33127.46 (10)
C15—C14—H14119.9O321—C32—C31118.45 (10)
C13—C14—H14119.9O321—C32—C33114.02 (10)
C16—C15—C14118.72 (12)C32—O321—C321117.18 (14)
C16—C15—H15120.6O321—C321—C322108.2 (3)
C14—C15—H15120.6O321—C321—H32A110.1
N11—C16—C15119.78 (12)C322—C321—H32A110.1
N11—C16—H16120.1O321—C321—H32B110.1
C15—C16—H16120.1C322—C321—H32B110.1
C26—N21—C22117.27 (11)H32A—C321—H32B108.4
N21—C22—C23123.22 (11)C321—C322—H32C109.5
N21—C22—C12114.70 (10)C321—C322—H32D109.5
C23—C22—C12122.08 (11)H32C—C322—H32D109.5
C24—C23—C22118.13 (12)C321—C322—H32E109.5
C24—C23—H23120.9H32C—C322—H32E109.5
C22—C23—H23120.9H32D—C322—H32E109.5
C25—C24—C23119.32 (12)C342—C341—H34A110.0
C25—C24—H24120.3C342—C341—H34B110.0
C23—C24—H24120.3H34A—C341—H34B108.4
C24—C25—C26118.46 (12)C341—C342—H42C109.5
C24—C25—H25120.8C341—C342—H42D109.5
C26—C25—H25120.8H42C—C342—H42D109.5
N21—C26—C25123.59 (12)C341—C342—H42E109.5
N21—C26—H26118.2H42C—C342—H42E109.5
C25—C26—H26118.2H42D—C342—H42E109.5
C32—C31—C311119.84 (11)
C16—N11—C12—C130.79 (17)C22—C23—C24—C250.2 (2)
C16—N11—C12—C22179.72 (10)C23—C24—C25—C260.6 (2)
N11—C12—C13—C141.28 (17)C22—N21—C26—C250.31 (18)
C22—C12—C13—C14179.92 (11)C24—C25—C26—N210.9 (2)
C12—C13—C14—C150.39 (19)C311—C31—C32—O32110.27 (17)
C13—C14—C15—C161.02 (19)C312—C31—C32—O321172.13 (11)
C12—N11—C16—C150.64 (18)O321—C32—C33—C33111.01 (16)
C14—C15—C16—N111.53 (19)O321—C32—C33—C332163.73 (11)
C26—N21—C22—C230.53 (17)C31—C32—C33—C331171.92 (11)
C26—N21—C22—C12178.83 (10)C31—C32—C33—C33213.3 (2)
N11—C12—C22—N211.88 (15)C33—C32—C31—C311166.68 (12)
C13—C12—C22—N21179.30 (11)C33—C32—C31—C31210.92 (19)
N11—C12—C22—C23177.49 (11)C31—C32—O321—C32176.5 (3)
C13—C12—C22—C231.34 (18)C33—C32—O321—C321106.2 (3)
N21—C22—C23—C240.76 (19)C32—O321—C321—C322156.1 (4)
C12—C22—C23—C24178.54 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N210.901 (15)2.202 (15)2.6306 (15)108.5 (12)
N11—H11···N3110.901 (15)2.082 (15)2.8268 (17)139.2 (13)
C13—H13···N331i0.952.523.4294 (18)160
C16—H16···N312ii0.952.383.2238 (18)148
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+2, z+1.
(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide top
Crystal data top
2C10H9N2+·C10N62F(000) = 1072
Mr = 518.54Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4195 (8) ÅCell parameters from 5568 reflections
b = 16.1801 (8) Åθ = 1.7–28.3°
c = 12.9058 (9) ŵ = 0.09 mm1
β = 116.721 (3)°T = 173 K
V = 2503.0 (3) Å3Block, yellow
Z = 40.21 × 0.14 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
φ & ω scansh = 1316
14513 measured reflectionsk = 1819
4607 independent reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4607 reflectionsΔρmax = 0.38 e Å3
367 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.3903 (2)0.52309 (19)0.3636 (3)0.0206 (8)
H110.383 (3)0.483 (2)0.409 (3)0.025*
C120.3951 (3)0.4944 (2)0.2684 (3)0.0209 (9)
C130.4011 (3)0.5512 (2)0.1917 (3)0.0245 (10)
H130.40470.53300.12340.029*
C140.4019 (3)0.6344 (3)0.2146 (4)0.0320 (11)
H140.40440.67370.16120.038*
C150.3990 (3)0.6611 (2)0.3151 (4)0.0317 (11)
H150.40060.71840.33170.038*
C160.3937 (3)0.6040 (2)0.3895 (4)0.0250 (10)
H160.39250.62100.45930.030*
N210.3977 (3)0.36187 (19)0.3483 (3)0.0273 (9)
C220.3892 (3)0.4033 (2)0.2542 (4)0.0235 (10)
C230.3719 (3)0.3648 (2)0.1524 (4)0.0300 (11)
H230.36790.39580.08820.036*
C240.3604 (3)0.2798 (3)0.1462 (4)0.0401 (12)
H240.34650.25130.07660.048*
C250.3694 (4)0.2373 (3)0.2413 (5)0.0409 (12)
H250.36220.17890.23920.049*
C260.3890 (3)0.2808 (3)0.3404 (4)0.0369 (12)
H260.39660.25070.40670.044*
N310.1131 (3)0.62657 (19)1.1404 (3)0.0246 (9)
H310.115 (3)0.592 (2)1.086 (3)0.030*
C320.1142 (3)0.5861 (2)1.2326 (3)0.0185 (9)
C330.1241 (3)0.6335 (2)1.3253 (4)0.0285 (10)
H330.12660.60751.39240.034*
C340.1307 (3)0.7188 (2)1.3214 (4)0.0329 (11)
H340.13780.75101.38590.039*
C350.1269 (3)0.7569 (2)1.2248 (4)0.0292 (11)
H350.12950.81541.22090.035*
C360.1195 (3)0.7089 (2)1.1343 (4)0.0316 (11)
H360.11880.73391.06740.038*
N410.1140 (3)0.46447 (19)1.1296 (3)0.0227 (8)
C420.1077 (3)0.4958 (2)1.2227 (3)0.0207 (9)
C430.0985 (3)0.4463 (2)1.3062 (4)0.0283 (10)
H430.09160.47021.36990.034*
C440.0998 (3)0.3618 (2)1.2944 (4)0.0307 (11)
H440.09650.32641.35150.037*
C450.1060 (3)0.3294 (3)1.1987 (4)0.0299 (11)
H450.10530.27131.18750.036*
C460.1132 (3)0.3834 (2)1.1198 (4)0.0285 (11)
H460.11780.36081.05420.034*
C50.2470 (3)0.5068 (2)0.7478 (3)0.0208 (9)
C510.2195 (3)0.4600 (2)0.6463 (3)0.0236 (10)
C5110.2894 (3)0.4602 (2)0.5908 (3)0.0200 (9)
N5110.3457 (3)0.4592 (2)0.5464 (3)0.0344 (9)
C5120.1214 (4)0.4089 (3)0.5963 (4)0.0290 (11)
N5120.0434 (3)0.3695 (2)0.5487 (3)0.0435 (11)
C520.2057 (3)0.4868 (2)0.8279 (3)0.0255 (10)
C5210.1746 (3)0.4044 (3)0.8405 (4)0.0271 (10)
N5210.1522 (3)0.3395 (2)0.8607 (3)0.0375 (10)
C5220.1872 (3)0.5464 (2)0.8970 (4)0.0233 (10)
N5220.1686 (3)0.5942 (2)0.9524 (3)0.0351 (9)
C530.3161 (3)0.5786 (2)0.7695 (4)0.0271 (10)
C5310.3839 (4)0.6070 (3)0.8849 (4)0.0304 (11)
N5310.4417 (3)0.6318 (2)0.9736 (3)0.0456 (11)
C5320.3220 (3)0.6245 (2)0.6771 (4)0.0261 (10)
N5320.3242 (3)0.6642 (2)0.6070 (3)0.0331 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0184 (19)0.023 (2)0.023 (2)0.0027 (15)0.0117 (17)0.0006 (16)
C120.015 (2)0.035 (2)0.014 (2)0.0003 (17)0.0069 (19)0.0038 (19)
C130.024 (3)0.036 (3)0.017 (2)0.0011 (19)0.012 (2)0.004 (2)
C140.023 (3)0.037 (3)0.031 (3)0.001 (2)0.007 (2)0.010 (2)
C150.028 (3)0.022 (2)0.042 (3)0.0000 (18)0.013 (2)0.001 (2)
C160.020 (2)0.030 (2)0.023 (3)0.0050 (18)0.009 (2)0.000 (2)
N210.031 (2)0.025 (2)0.027 (2)0.0023 (15)0.0142 (19)0.0049 (16)
C220.015 (2)0.030 (2)0.025 (3)0.0011 (18)0.010 (2)0.003 (2)
C230.027 (3)0.043 (3)0.025 (3)0.005 (2)0.016 (2)0.006 (2)
C240.032 (3)0.045 (3)0.040 (3)0.005 (2)0.012 (3)0.016 (2)
C250.034 (3)0.030 (3)0.055 (4)0.003 (2)0.017 (3)0.006 (3)
C260.041 (3)0.029 (3)0.037 (3)0.001 (2)0.014 (3)0.001 (2)
N310.035 (2)0.022 (2)0.022 (2)0.0014 (15)0.0167 (19)0.0069 (16)
C320.015 (2)0.028 (2)0.014 (2)0.0015 (17)0.007 (2)0.0003 (19)
C330.030 (3)0.039 (3)0.021 (3)0.006 (2)0.015 (2)0.004 (2)
C340.035 (3)0.038 (3)0.033 (3)0.005 (2)0.021 (2)0.013 (2)
C350.033 (3)0.025 (2)0.039 (3)0.0009 (18)0.024 (2)0.000 (2)
C360.040 (3)0.028 (3)0.035 (3)0.002 (2)0.024 (3)0.003 (2)
N410.023 (2)0.026 (2)0.020 (2)0.0006 (15)0.0112 (17)0.0023 (16)
C420.018 (2)0.022 (2)0.023 (3)0.0001 (16)0.009 (2)0.0065 (19)
C430.023 (3)0.042 (3)0.018 (3)0.0018 (19)0.007 (2)0.000 (2)
C440.030 (3)0.029 (3)0.033 (3)0.0034 (19)0.013 (2)0.008 (2)
C450.022 (3)0.031 (2)0.035 (3)0.0032 (18)0.011 (2)0.000 (2)
C460.021 (3)0.033 (3)0.031 (3)0.0029 (18)0.011 (2)0.007 (2)
C50.016 (2)0.027 (2)0.023 (2)0.0003 (16)0.0113 (19)0.0029 (18)
C510.020 (2)0.026 (2)0.024 (3)0.0013 (18)0.010 (2)0.000 (2)
C5110.021 (2)0.022 (2)0.020 (2)0.0016 (17)0.011 (2)0.0003 (18)
N5110.029 (2)0.049 (2)0.028 (2)0.0044 (17)0.015 (2)0.0028 (18)
C5120.030 (3)0.036 (3)0.028 (3)0.002 (2)0.019 (2)0.007 (2)
N5120.047 (3)0.051 (2)0.038 (3)0.017 (2)0.023 (2)0.005 (2)
C520.032 (3)0.025 (2)0.023 (3)0.0061 (18)0.016 (2)0.0042 (19)
C5210.023 (3)0.035 (3)0.024 (3)0.004 (2)0.012 (2)0.001 (2)
N5210.050 (3)0.035 (2)0.032 (3)0.0127 (18)0.022 (2)0.0073 (18)
C5220.028 (3)0.024 (2)0.019 (2)0.0046 (18)0.012 (2)0.003 (2)
N5220.038 (2)0.046 (2)0.025 (2)0.0089 (19)0.017 (2)0.0015 (19)
C530.032 (3)0.028 (2)0.025 (3)0.0022 (19)0.017 (2)0.003 (2)
C5310.034 (3)0.037 (3)0.023 (3)0.005 (2)0.015 (3)0.000 (2)
N5310.050 (3)0.052 (2)0.031 (3)0.023 (2)0.014 (2)0.008 (2)
C5320.024 (3)0.029 (2)0.026 (3)0.0022 (18)0.012 (2)0.002 (2)
N5320.043 (2)0.028 (2)0.035 (3)0.0075 (17)0.024 (2)0.0010 (18)
Geometric parameters (Å, º) top
N11—C121.342 (4)C34—H340.9500
N11—C161.346 (5)C35—C361.368 (6)
N11—H110.91 (4)C35—H350.9500
C12—C131.379 (5)C36—H360.9500
C12—C221.483 (5)N41—C461.317 (5)
C13—C141.378 (5)N41—C421.341 (5)
C13—H130.9500C42—C431.392 (5)
C14—C151.384 (6)C43—C441.375 (5)
C14—H140.9500C43—H430.9500
C15—C161.357 (5)C44—C451.379 (6)
C15—H150.9500C44—H440.9500
C16—H160.9500C45—C461.378 (5)
N21—C261.316 (5)C45—H450.9500
N21—C221.346 (5)C46—H460.9500
C22—C231.375 (5)C5—C511.411 (5)
C23—C241.383 (6)C5—C521.413 (5)
C23—H230.9500C5—C531.433 (5)
C24—C251.364 (6)C51—C5111.413 (5)
C24—H240.9500C51—C5121.439 (5)
C25—C261.378 (6)C52—C5211.428 (5)
C25—H250.9500C52—C5221.410 (5)
C26—H260.9500C53—C5311.428 (6)
N31—C361.340 (5)C53—C5321.437 (6)
N31—C321.353 (5)C511—N5111.136 (4)
N31—H310.90 (4)C512—N5121.140 (5)
C32—C331.375 (5)C521—N5211.155 (5)
C32—C421.466 (5)C522—N5221.153 (5)
C33—C341.386 (5)C531—N5311.129 (5)
C33—H330.9500C532—N5321.121 (5)
C34—C351.371 (6)
C12—N11—C16123.5 (3)C35—C34—C33120.3 (4)
C12—N11—H11114 (2)C35—C34—H34119.9
C16—N11—H11123 (2)C33—C34—H34119.9
N11—C12—C13118.0 (4)C36—C35—C34118.7 (4)
N11—C12—C22115.8 (3)C36—C35—H35120.7
C13—C12—C22126.2 (4)C34—C35—H35120.7
C14—C13—C12119.6 (4)N31—C36—C35119.8 (4)
C14—C13—H13120.2N31—C36—H36120.1
C12—C13—H13120.2C35—C36—H36120.1
C13—C14—C15120.4 (4)C46—N41—C42117.5 (3)
C13—C14—H14119.8N41—C42—C43122.6 (4)
C15—C14—H14119.8N41—C42—C32115.4 (3)
C16—C15—C14118.9 (4)C43—C42—C32121.9 (4)
C16—C15—H15120.6C44—C43—C42118.5 (4)
C14—C15—H15120.6C44—C43—H43120.8
N11—C16—C15119.6 (4)C42—C43—H43120.8
N11—C16—H16120.2C43—C44—C45119.1 (4)
C15—C16—H16120.2C43—C44—H44120.5
C26—N21—C22117.3 (4)C45—C44—H44120.5
N21—C22—C23123.0 (4)C46—C45—C44118.2 (4)
N21—C22—C12113.9 (3)C46—C45—H45120.9
C23—C22—C12123.0 (4)C44—C45—H45120.9
C22—C23—C24118.2 (4)N41—C46—C45124.1 (4)
C22—C23—H23120.9N41—C46—H46117.9
C24—C23—H23120.9C45—C46—H46117.9
C25—C24—C23119.1 (4)C51—C5—C52122.1 (3)
C25—C24—H24120.5C51—C5—C53119.5 (3)
C23—C24—H24120.5C52—C5—C53118.4 (4)
C24—C25—C26118.7 (4)C5—C51—C511120.9 (3)
C24—C25—H25120.6C5—C51—C512122.0 (3)
C26—C25—H25120.6C511—C51—C512117.1 (3)
N21—C26—C25123.6 (4)N511—C511—C51179.0 (4)
N21—C26—H26118.2N512—C512—C51174.8 (5)
C25—C26—H26118.2C5—C52—C521121.9 (3)
C36—N31—C32123.8 (4)C5—C52—C522123.0 (3)
C36—N31—H31123 (2)C521—C52—C522115.0 (3)
C32—N31—H31112 (2)N521—C521—C52174.0 (4)
N31—C32—C33117.0 (4)N522—C522—C52177.7 (4)
N31—C32—C42115.4 (3)C5—C53—C531121.2 (4)
C33—C32—C42127.5 (4)C5—C53—C532122.0 (4)
C32—C33—C34120.4 (4)C531—C53—C532116.9 (3)
C32—C33—H33119.8N531—C531—C53175.7 (5)
C34—C33—H33119.8N532—C532—C53176.0 (4)
C16—N11—C12—C131.6 (5)C32—N31—C36—C350.4 (6)
C16—N11—C12—C22179.5 (3)C34—C35—C36—N311.7 (6)
N11—C12—C13—C140.1 (5)C46—N41—C42—C431.2 (5)
C22—C12—C13—C14177.6 (4)C46—N41—C42—C32177.3 (3)
C12—C13—C14—C151.4 (6)N31—C32—C42—N417.0 (5)
C13—C14—C15—C161.0 (6)C33—C32—C42—N41171.0 (4)
C12—N11—C16—C152.0 (5)N31—C32—C42—C43174.5 (3)
C14—C15—C16—N110.7 (6)C33—C32—C42—C437.4 (6)
C26—N21—C22—C230.1 (6)N41—C42—C43—C442.3 (6)
C26—N21—C22—C12177.5 (3)C32—C42—C43—C44176.1 (4)
N11—C12—C22—N2110.0 (5)C42—C43—C44—C452.3 (6)
C13—C12—C22—N21172.3 (4)C43—C44—C45—C461.4 (6)
N11—C12—C22—C23167.4 (3)C42—N41—C46—C450.2 (6)
C13—C12—C22—C2310.3 (6)C44—C45—C46—N410.4 (6)
N21—C22—C23—C241.5 (6)C51—C5—C52—C52126.5 (6)
C12—C22—C23—C24175.8 (3)C51—C5—C52—C522150.5 (4)
C22—C23—C24—C251.6 (6)C52—C5—C53—C53128.8 (6)
C23—C24—C25—C260.4 (6)C52—C5—C53—C532152.2 (4)
C22—N21—C26—C251.4 (6)C53—C5—C51—C51125.5 (6)
C24—C25—C26—N211.3 (7)C53—C5—C51—C512156.0 (4)
C36—N31—C32—C331.0 (5)C51—C5—C53—C531153.1 (4)
C36—N31—C32—C42179.3 (3)C51—C5—C53—C53225.9 (6)
N31—C32—C33—C341.1 (5)C52—C5—C51—C511156.5 (4)
C42—C32—C33—C34179.1 (4)C52—C5—C51—C51222.0 (6)
C32—C33—C34—C350.2 (6)C53—C5—C52—C521155.5 (4)
C33—C34—C35—C361.6 (6)C53—C5—C52—C52227.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N210.91 (3)2.15 (3)2.621 (4)111 (3)
N11—H11···N5110.91 (3)2.08 (4)2.874 (5)145 (3)
N31—H31···N410.91 (4)2.14 (3)2.627 (4)113 (3)
N31—H31···N5220.91 (4)2.15 (4)2.888 (5)138 (3)
C16—H16···N5320.952.563.472 (6)162
C34—H34···N522i0.952.623.391 (5)139
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBekoe, D. A., Gantzel, P. K. & Trueblood, K. N. (1967). Acta Cryst. 22, 657–665.  CSD CrossRef IUCr Journals Google Scholar
First citationBekoe, D. A., Gauzel, P. K. & Trueblood, K. N. (1963). Acta Cryst. 16, A62.  Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowen, R. J., Fernandes, M. A., Gitari, P. W. & Layh, M. (2004). Acta Cryst. C60, o113–o114.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406.  Web of Science CSD CrossRef Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiddleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788–2795.  CrossRef CAS Web of Science Google Scholar
First citationMiddleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.  CrossRef CAS Web of Science Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationNakamura, K., Kai, Y., Yasuoka, N. & Kasai, N. (1981). Bull. Chem. Soc. Jpn, 54, 3300–3303.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSakanoue, S., Yasuoka, N., Kasai, N. & Kakudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 1–8.  CrossRef Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242–247.  Web of Science CrossRef Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465–469.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds